
CHAPTER 9

Microscopic Approach: from Boltzmann to Navier-Stokes

In the previous chapter we derived the closed Boltzmann equation:

df

dt
=

∂f

∂t
+ {f,H} = I[f ]

where I[f ] is the collision integral, and we have used the shorthand notation

f for the 1-particle DF f (1). In what follows we will adopt that notation
throughout, and only use the superscript-notation whenever confusion might
arise. The Boltzmann equation describes how the phase-space density around
a particle (or fluid element) changes with time due to collisions.

Note that for a collisionless fluid, I[f ] = 0, and the Boltzmann equation
reduces to the collisionless Boltzmann equation (CBE):

df

dt
= 0

which expresses that the 6D phase-space density of a collisionless fluid is
incompressible: the phase-space density around any given particle is con-

served.

Adopting qi = xi, so that the conjugate momenta pi = mvi = mẋi, we have
that

{f,H} =
∂f

∂xi

∂H

∂pi
−

∂f

∂pi

∂H

∂xi

=
pi
m

∂f

∂xi

+ Fi

∂f

∂pi

where we have used the Hamiltonian equations of motion (∂H/∂qi = −ṗi and
∂H/∂pi = q̇i) and Newton’s second law of motion (ṗi = Fi). Hence, if the
force is gravity (as will typically be the case in astrophysical applications),
then we can rewrite the Boltzmann equation, in vector-form, as

∂f

∂t
+ ~v ·

∂f

∂~x
−∇Φ ·

∂f

∂~v
= I[f ]
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Figure 1: Illustration of ‘collision’ between two particles with momenta p1 and
p2 due to interaction potential U(r). The impact parameter of the collision
is b.

Let us now take a closer look at the collision integral I[f ] = (∂f/∂t)coll.
Recall that we have made the assumption of a dilute gas, so that we only need
to consider two-body interactions. In what follows, we make the additional
assumption that all collisions are elastic [actually, this is sort of implied by
the assumption of monoatoms]. An example is shown in Figure 1, where
~p1 + ~p2 → ~p1

′ + ~p2
′. Since we assumed a short-range, instantaneous and

localized interaction, so that the external potential doesn’t significantly vary
over the interaction volume (the dashed circle in Fig. 1), we have

momentum conservation: ~p1 + ~p2 = ~p1
′ + ~p2

′

energy conservation: |~p1|
2 + |~p2|

2 = |~p1
′|2 + |~p2

′|2

where we have assumed equal mass particles, which will be our assumption
throughout.
In addition, we have time-reversibility, so that it is equally likely that the
inverse process (−~p1

′ +−~p2
′ → −~p1 +−~p2) happens.

We can write the rate at which particles of momentum ~p1 at location ~x
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experience collisions ~p1 + ~p2 → ~p1
′ + ~p2

′ as

R = ω(~p1, ~p2|~p1
′, ~p2

′) f (2)(~x, ~x, ~p1, ~p2) d
3~p2 d

3~p1
′ d3~p2

′

Here f (2)(~x, ~x, ~p1, ~p2) is the 2-particle DF, expressing the probability that at
location ~x, you encounter two particles with momenta ~p1 and ~p2, respectively.
The function ω(~p1, ~p2|~p1

′, ~p2
′) depends on the interaction potential U(~r) and

can be calculated (using kinetic theory) via differential cross sections.

Using our assumption of molecular chaos, which states that the momenta of
the interacting particles are independent, we have that

f (2)(~x, ~x, ~p1, ~p2) = f (1)(~x, ~p1) f
(1)(~x, ~p2)

so that the collision integral can be written as

I[f ] =

∫

d3~p2 d
3~p1

′ d3~p2
′ ω(~p1

′, ~p2
′|~p1, ~p2)

[

f(~x, ~p1
′) f(~x, ~p2

′)− f(~x, ~p1) f(~x, ~p2)
]

The first term within the square brackets describes the repleneshing collisions,
in which particles at (~x, ~p1

′) are scattered into (~x, ~p1). The second term with
the square brackets describes the depleting collisions, in which particles at
(~x, ~p1) are kicked out of their phase-space volume into (~x, ~p1

′).

Because of the symmetries in ω(~p1
′, ~p2

′|~p1, ~p2) (i.e., time-reversibility, and
elasticity of collisions), it is straightforward to show that

∫

d3~pA(~x, ~p)

(

∂f

∂t

)

coll

= 0

if

A(~x, ~p1) + A(~x, ~p2) = A(~x, ~p1
′) + A(~x, ~p2

′)

Quantities A(~x, ~p) for which this is the case are called collisional invariants.
There are three such quantities of interest to us

A = 1 particle number conservations

A = ~p momentum conservation

A = ~p 2/(2m) energy conservation
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Thus far, we have derived the Boltzmann equation, and we have been able to
write down an expression for the collision integral under the assumptions of
(i) short-range, elastic collisions and (ii) molecular chaos. How do we proceed
from here? Solving the actual Boltzmann equation, i.e. characterizing the
evolution of f in 6D phase-space is extremely difficult, and provides little in-
sight. Rather, we are interested what happens to our macroscopic quantities
that describe the fluid (ρ, ~u, P , ε, etc). We can use the Boltmann equation
to describe the time-evolution of these macroscopic quantities by considering
moment equations of the Boltzmann equation.

In mathematics, the nth-moment of a real-valued, continuous function f(x)
is

µn =

∫

xnf(x) dx

If f(x) is normalized, so that it can be interpreted as a probability function,
then µn = 〈xn〉.

In our case, consider the scalar function Q(~v). The expectation value for Q
at location ~x at time t is given by

〈Q〉 = 〈Q〉(~x, t) =

∫

Q(~v) f(~x,~v, t) d3~v
∫

f(~x,~v, t) d3~v

Using that

n = n(~x, t) =

∫

f(~x,~v, t) d3~v

we thus have that

∫

Q(~v) f(~x,~v, t) d3~v = n 〈Q〉

We will use this abundantly in what follows. In particular, define

g(~x, t) =

∫

Q(~v) f(~x,~v, t) d3~v
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Then, in relation to fluid dynamics, there are a few functions Q(~v) that are
of particular interest:

Q(~v) = 1 ⇒ g(~x, t) = n(~x, t) number density
Q(~v) = m ⇒ g(~x, t) = ρ(~x, t) mass density
Q(~v) = m~v ⇒ g(~x, t) = ρ(~x, t) ~u(~x, t) momentum flux density
Q(~v) = 1

2
m(~v − ~u)2 ⇒ g(~x, t) = ρ(~x, t) ε(~x, t) specific energy density

where we have used that 〈~v〉 = ~u, and 〈(~v − ~u)2/2〉 = ε.

This indicates that we can obtain dynamical equations for the macroscopic
fluid quantities by multiplying the Boltzmann equation with appropriate
functions, Q(~v), and integrating over all of velocity space.

Hence, we seek to solve equations of the form

∫

Q(~v)

[

∂f

∂t
+ ~v · ∇f −∇Φ ·

∂f

∂~v

]

d3~v =

∫

Q(~v)

(

∂f

∂t

)

coll

d3~v

In what follows, we restrict ourselves to Q(~v) that are collisional invariants
so that the integral on the right-hand side vanishes, and we are left with

∫

Q(~v)
∂f

∂t
d3~v +

∫

Q(~v)~v · ∇f d3~v −

∫

Q(~v)∇Φ ·
∂f

∂~v
d3~v = 0

Since mass, momentum and energy are all conserved in elastic, short-range
collisions we have that the momentum integral over the collision integral will
be zero for the zeroth, first and second order moment equations! In other
words, although collisional and collisionless systems solve different Boltzmann

equations, their zeroth, first and second moment equations are identical!

We now split the above equation in three terms:

I

∫

Q(~v)
∂f

∂t
d3~v

II

∫

Q(~v) vi
∂f

∂xi

d3~v

III

∫

Q(~v)
∂Φ

∂xi

∂f

∂vi
d3~v

where we have that I+ II− III = 0, as long as Q is a collisional invariant.
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We now proceed to rewrite each of these three integrals in turn.

Integral I

The first integral can be written as

∫

Q(~v)
∂f

∂t
d3~v =

∫

∂Qf

∂t
d3~v =

∂

∂t

∫

Qf d3~v =
∂

∂t
n〈Q〉

where we have used that both Q(~v) and the integration volume are indepen-
dent of time.

Integral II

Using similar logic, the second integral can be written as

∫

Q(~v) vi
∂f

∂xi

d3~v =

∫

∂Q vi f

∂xi

d3~v =
∂

∂xi

∫

Qvi f d3~v =
∂

∂xi

[

n 〈Qvi〉
]

Here we have used that

Qvi
∂f

∂xi

=
∂(Qvi f)

∂xi

− f
∂Q vi
∂xi

=
∂(Qvi f)

∂xi

where the last step follows from the fact that neither vi nor Q depend on xi.

Integral III

For the third, and last integral, we are going to define ~F = ∇Φ and ∇v ≡
(∂/∂vx, ∂/∂vy , ∂/∂vz), i.e., ∇v is the equivalent of ∇ but in velocity space.
This allows us to write

∫

Q ~F · ∇vf d3~v =

∫

∇v · (Qf ~F )d3~v −

∫

f ∇v · (Q~F ) d3~v

=

∫

Qf ~Fd2Sv −

∫

f
∂QFi

∂vi
d3~v

= −

∫

fQ
∂Fi

∂vi
d3~v −

∫

fFi

∂Q

∂vi
d3~v

= −

∫

f
∂Φ

∂xi

∂Q

∂vi
d3~v = −

∂Φ

∂xi

n

〈

∂Q

∂vi

〉
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Here we have used Gauss’ divergence theorem, and the fact that the integral
of Qf ~F over the surface Sv (which is a sphere with radius |~v| = ∞) is equal
to zero. This follows from the ‘normalization’ requirement that

∫

f d3~v = n.
We have also used that Fi = ∂Φ/∂xi is independent of vi.

Combining the above expressions for I, II, and III, we obtain that

∂

∂t
n〈Q〉+

∂

∂xi

[

n〈Qvi〉
]

+
∂Φ

∂xi

n

〈

∂Q

∂vi

〉

= 0

In what follows we refer to this as the ‘master-moment-equation’.

Now let us consider Q = m, which is indeed a collisional invariant, as re-
quired. Substitution in the master-moment equation, and using that 〈m〉 =
m, that mn = ρ and that 〈mvi〉 = m〈vi〉 = mui, we obtain

∂ρ

∂t
+

∂ρui

∂xi

= 0

which we recognize as the continuity equation in Eulerian index form.

Nex we consider Q = mvj , which is also a collisional invariant. Using that
n〈mvjvi〉 = ρ〈vivj〉 and that

∂Φ

∂xi

n

〈

∂mvj
∂vi

〉

=
∂Φ

∂xi

ρ

〈

∂vj
∂vi

〉

=
∂Φ

∂xi

ρδij = ρ
∂Φ

∂xj

substitution of Q = mvj in the master-moment equation yields

∂ρuj

∂t
+

∂ρ〈vivj〉

∂xi

+ ρ
∂Φ

∂xj

= 0

Next we use that

∂ρuj

∂t
= ρ

∂uj

∂t
+ uj

∂ρ

∂t
= ρ

∂uj

∂t
− uj

∂ρuk

∂xk

where, in the last step, we have used the continuity equation. Substitution
in the above equation, and using the k is a mere dummy variable (which can
therefore be replaced by i), we obtain that
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ρ
∂uj

∂t
− uj

∂ρui

∂xi

+
∂ρ〈vivj〉

∂xi

+ ρ
∂Φ

∂xj

= 0

⇔ ρ
∂uj

∂t
−

[

∂ρuiuj

∂xi

− ρui

∂uj

∂xi

]

+
∂ρ〈vivj〉

∂xi

+ ρ
∂Φ

∂xj

= 0

⇔ ρ
∂uj

∂t
+ ρui

∂uj

∂xi

+
∂ [ρ〈vivj〉 − ρuiuj]

∂xi

+ ρ
∂Φ

∂xj

= 0

If we now restrict ourselves to collisional fluids, and use that the stress tensor
can be written as

σij = −ρ〈wiwj〉 = −ρ〈vivj〉+ ρuiuj = −Pδij + τij

then the equation above can be rewritten as

∂uj

∂t
+ ui

∂uj

∂xi

= −
1

ρ

∂P

∂xj

+
1

ρ

∂τij
∂xi

−
∂Φ

∂xj

which we recognize as the momentum equations (Navier-Stokes) in Eu-
lerian index form. As we have seen in Chapter 6, as long as the fluid is
Newtonian, the viscous stress tensor, τij , can be described by two param-
eters only: the coefficient of shear viscosity, µ, and the coefficient of bulk
viscosity, η (which can typically be ignored).

If instead we assume a collisionless fluid, then

σij = −ρ 〈wiwj〉 = −ρ〈vivj〉+ ρuiuj

and the momentum equations (now called the Jeans equations) reduce to

∂uj

∂t
+ ui

∂uj

∂xi

=
1

ρ

∂σij

∂xi

−
∂Φ

∂xj

In this case, we have no constraints on σij other than that it is manifest

symmetric; for a collisionless fluid the stress tensor σij = σij(~x, t) has a to-

tal of 6 unknowns. The Jeans equations form the basis for building dynamical
models of galaxies. However, since they contain many more unknowns than

49



the number of equations, they can in general not be solved unless one makes
a number of highly oversimplified assumptions (i.e., the system is spheri-
cally symmetric, the velocity structure is isotropic, etc.). This is the topic
of Galactic Dynamics. Note that adding higher order moment equations
(Q(v) ∝ va with a ≥ 3) doesn’t help in achieving closure since the new
equations also add new unknowns, such as 〈vivjvk〉, etc. Ultimately, the
problem is that collisionless fluids do not have constitutive equations such as
the equation of state for a collisionless fluid.
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Summary

For collisionless systems we have:

∂ρ

∂t
+

∂(ρ〈vi〉)

∂xi

= 0

∂〈vj〉

∂t
+ 〈vi〉

∂〈vj〉

∂xi

= −
∂Φ

∂xj

+
1

ρ

∂σij

∂xi

∇2Φ = 4π Gρ

This is a set of 5 equations with 11 unknowns (ρ, Φ, 〈vi〉 [3] and σij [6])!
Closure can only be achieved by making a number of simplifying assumptions.

For collisional systems we have:

∂ρ

∂t
+

∂(ρ〈vi〉)

∂xi

= 0

∂〈vj〉

∂t
+ 〈vi〉

∂〈vj〉

∂xi

= −
∂Φ

∂xj

+
1

ρ

∂σij

∂xi

∇2Φ = 4πGρ

P = P (ρ, T )

Using that the stress tensor is entirely described by the pressure P , and
the coefficients of shear and bulk viscosity, µ and η, this constitutes a set of 6
equations with 9 unknowns: (ρ, Φ, 〈vi〉 [3], P , µ, η, T ). If the fluid is inviscid
then µ = η = 0, which reduces the number of unknowns to 7. Closure can
then be achieved by either assuming a barotropic EoS, P = P (ρ), or by
including one extra equation (the energy equation; see Chapter 14).
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Figure 2: Flowchart of the origin of the dynamical equations describing fluids.
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