
CHAPTER 8

Microscopic Approach: From Liouville to Boltzmann

In the previous chapters, we derived the Navier-Stokes equations using a
macroscopic (continuum) approach to fluid dynamics, based on the concept
of fluid elements. We now rederive the same set of equations, but using
a far more rigorous, microscopic, particle-based approach. Throughout we
consider a 3-dimensional configuration space, which means that the position
vector of an individual particle has three components. Note, though, that ev-
erything that follows is trivially generalized to a higher or lower dimensional
configuration space.

Degree of freedom: an independent physical parameter in the formal de-
scription of the state of the physical system. In what follows we use n or ndof

to indicate the number of degrees of freedom.

Phase-Space: The phase-space of a dynamical system is a space in which
all possible states of a system are represented, with each possible state cor-
responding to one unique point in that phase-space. The dimensionality of
phase-space is ndof .

Caution: I will use ‘phase-space’ to refer to both this ndof -dimensional space,
as well as to the 6-dimensional space (~x,~v) in which each individual particle
is associated with a point in that space. Some textbooks (e.g., Binney &

Tremaine) refer to the ndof-dimensional phase-space as Γ-space).

Canonical Coordinates: in classical mechanics, canonical coordinates are
coordinates qi and pi in phase-space that are used in the Hamiltonian for-
malism and that satisfy the canonical commutation relations:

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij

Often qi are Cartesian coordinates in configuration space and pi is the cor-
responding linear momentum. However, when using curvi-linear coordinates
and qi is an angle, then the corresponding pi is an angular momentum. Hence,
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pi is therefore not always equal to mq̇i!!! To avoid confusion, pi is called the
conjugate momentum.

Poison Brackets Given two functions A(qi, pi) and B(qi, pi) of the phase-
space coordinates qi and pi, the Poison bracket of A and B is defined as

{A,B} =

3N
∑

i=1

(

∂A

∂qi

∂B

∂pi
−

∂A

∂pi

∂B

∂qi

)

In vector notation,

{A,B} =

N
∑

i=1

(

∂A

∂~qi
·
∂B

∂~pi
−

∂A

∂~pi
·
∂B

∂~qi

)

where ~qi = (qi1, qi2, qi3) and ~pi = (pi1, pi2, pi3) and i now indicates a particular
particle (i = 1, 2, ..., N).

Let N be the number of constituent particles in our fluid. In all cases of
interests, N will be a huge number; N ≫ 1020. How do you (classically)
describe such a system? To completely describe a fluid of N particles, you
need to specify for each particle the following quantities:

position ~q = (x1, x2, x3)
conjugate momenta ~p = (v1, v2, v3)

internal degrees of freedom ~s = (s1, s2, ...., sK)

Examples of internal degrees of freedom are electrical charge (in case of a
plasma), or the rotation or vibrational modes for molecules, etc. The number
of degrees of freedom in the above example is ndof = N(6 + K). In what
follows we will only consider particles with zero internal dof (i.e., K = 0 so
that ndof = 6N). Such particles are sometimes called monoatoms, and can
be treated as point particles. The microstate of a system composed of N
monoatoms is completely described by

~Γ = (~q1, ~q2, ..., ~qN , ~p1, ~p2, ..., ~pN)

which corresponds to a single point in our 6N -dimensional phase-space.
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The dynamics of our fluid of N monoatoms is described by its Hamiltonian

H(~qi, ~pi, t) ≡ H(~q1, ~q2, ..., ~qN , ~p1, ~p2, ..., ~pN , t) =

N
∑

i=1

~pi · ~̇qi − L(~qi, ~̇qi, t)

where L(~qi, ~̇qi, t) is the system’s Lagrangian, and ~̇qi = d~qi/dt.

The corresponding equations of motion are:

~̇qi =
∂H

∂~pi
; ~̇pi = −

∂H

∂~qi

Thus, given ~qi and ~pi at any given time t, one can compute the Hamiltonian
and solve for the equations of motion to obtain ~qi(t) and ~pi(t). They specify

a unique trajectory ~Γ(t) in this phase-space. Note that no two tracjectories
~Γ1(t) and ~Γ2(t) are allowed to cross each other. If that were the case, it
would be a violation of the deterministic character of classical physics. The
Hamiltonian formalism described above basically is a complete treatment of
fluid dynamics. In practice, though, it is utterly useless, simply because N
is HUGE, making it impossible to specify the complete set of initial condi-
tions. We neither have (nor want) the detailed information that is required
to specify a microstate. We are only concerned with (interested in) the av-
erage behavior of the macroscopic properties of the system, such as density,
temperature, pressure, etc. With each such macrostate corresponds a huge
number of microstates, called a statistical ensemble.

The ensemble is described statistically by the N -body distribution function

f (N)(~qi, ~pi) ≡ f (N)(~q1, ~q2, ..., ~qN , ~p1, ~p2, ..., ~pN)

which expresses the ensemble’s probability distribution, i.e., f (N)(~qi, ~pi) dV

is the probability that the actual microstate is given by ~Γ(~qi, ~pi), where dV =
∏N

i=1 d
3~qi d

3~pi. This implies the following normalizion condition

∫

dV f (N)(~qi, ~pi) = 1
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In our statistical approach, we seek to describe the evolution of the N -
body distribution function, f (N)(~qi, ~pi, t), rather than that of a particular

microstate, which instead is given by ~Γ(~qi, ~pi, t). Since probability is locally
conserved, it must obey a continuity equation; any change of probability in
one part of phase-space must be compensated by a flow of probability into
or out of neighboring regions. As we have seen in Chapter 5, the continuity
equation of a (continuum) density field, ρ(~x), is given by

∂ρ

∂t
+∇(ρ~v) = 0

which expresses that the local change in the mass enclosed in some volume
is balanced by the divergence of the flow out of that volume. In the case
of our probability distribution f (N) we have that ∇ is in 6N -dimensional
phase-space, and includes ∂/∂~qi and ∂/∂~pi while the ‘velocity vector’ is given
by (~̇qi, ~̇pi). Hence, the continuity equation for f (N), which is known as the
Liouville equation, can be written in any of the following three forms:

∂f (N)

∂t
+

N
∑

i=1

(

~̇qi ·
∂f (N)

∂~qi
+ ~̇pi ·

∂f (N)

∂~pi

)

= 0

∂f (N)

∂t
+ {f (N),H} = 0

df (N)

dt
= 0

The Liouville equation (which is actually due to Gibbs) expresses the Liou-

ville Theorem that the flow of Γ-points through phase-space is incompress-
ible. If you follow some region of phase-space under Hamiltonian evolution,
then its shape can change, but not its volume.

Although we have moved away from trying to describe the evolution of single
microstates, ~Γ(t), by considering instead the evolution of the N -body DF
f (N)(~qi, ~pi), this hasn’t really made life any easier. After all, f (N)) is still a
function of 6N variables, which is utterly unmanageable. In order to proceed,
we first simplify notation by defining
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~wi ≡ (~qi, ~pi)

Next we define the reduced or K-body DF, which is obtained by integrating

the N -body DF, f (N), over N − K six-vectors ~wi. Since f (N) is symmetric
in ~wi, without loss of generality we may choose the integration variables to
be ~wK+1, ~wK+2, ..., ~wN :

f (K)(~w1, ~w2, ..., ~wK, t) ≡
N !

(N −K)!

∫ N
∏

i=K+1

d6 ~wi f
(N)(~w1, ~w2, ..., ~wN , t)

where the choice of the prefactor will become clear in what follows.

In particular, the 1-particle distribution function is

f (1)(~w1, t) ≡ N

∫ N
∏

i=2

d6 ~wi f
(N)(~w1, ~w2, ..., ~wN , t)

Because of the prefactor, we now have that

∫

d6 ~w f (1)(~w, t) =

∫

d3~q

∫

d3~p f (1)(~q, ~p, t) = N

Hence, f (1)(~q, ~p, t) = dN/d3~q d3~p is the number of particles in the phase-space
volume d3~q d3~p centered on (~q, ~p).

That f (1)(~w, t) is an important, relevant DF is evident from the following.
Consider an observable Q(~w) that involves only quantities that depend ad-
ditively on the phase-space coordinates of single, individual particles. Ex-

amples are velocity, kinetic energy, or any other velocity moment vk. The
expectation value, 〈Q〉, can be written as

〈Q〉 =

∫

d6 ~w1...d
6 ~wNf

(N)(~w1, ~w2, ..., ~wN)

N
∑

i=1

Qi

Since all particles are statistically identical, f (N) is a symmetric function of
~wi, which implies that

f (N)(..., ~wi, ..., ~wj, ...) = f (N)(..., ~wj, ..., ~wi, ...) ∀(i, j)
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In words; if you flip the indices of any two particles, nothing changes. This
allows us to write that

〈Q〉 =

∫

d6 ~w1Q(~w1) f
(1)(~w1)

Hence, computing the expectation value for any observable Q(~w) only re-
quires knowledge of the one-particle DF.

For the time evolution of each reduced DF we can write

∂f (K))

∂t
=

N !

(N −K)!

∫ N
∏

i=K+1

d6 ~wi

∂f (N)

∂t
(~w1, ~w2, ..., ~wN)

=
N !

(N −K)!

∫ N
∏

i=K+1

d6 ~wi {H, f (N)}

Now we substitute the Hamiltonian. To do so, we adopt that ~wi = (~ri, ~pi),
with ~ri the Cartesian position vector of particle i, and ~pi = m~vi the corre-
sponding linear momentum. This allows us to write

H(~ri, ~pi, t) = H(~r1, ~r2, ..., ~rN , ~p1, ~p2, ..., ~pN)

=

N
∑

i=1

~p 2
i

2m
+

N
∑

i=1

V (~ri) +
∑

i<j

U(~ri − ~rj)

Note that the Hamiltonian contains three terms; a kinetic energy term, a
term describing the potential energy due to an external force ~F = −∇V
that acts equally on all particles, and the potential energy U(~ri −~rj) related
to two-body interactions between particles i and j. Examples of the latter
are the VanderWaals force in the case of a liquid, the Coulomb force in the
case of a plasma, and the gravitational force in the case of dark matter halo.
Without derivation (see any good textbook on kinetic theory), substituting
this Hamiltonian into the evolution equation for the one-particle DF yields

∂f (1)

∂t
= N

∫ N
∏

i=2

d6 ~wi {H, f (N)} = {H(1), f (1)}+

(

∂f (1)

∂t

)

coll
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where H(1) = ~p 2
i /(2m) + V (~r) is the one-particle Hamiltonian, and

(

∂f (1)

∂t

)

coll

=

∫

d3~r2 d
3~p2

∂U(~r − ~r2)

∂~r
·
∂f (2)

~p

Using the convective derivative, the above can be written in concise form as

df (1)

dt
=

(

∂f (1)

∂t

)

coll

which expresses that the 1-particle DF at the location of any particle only
changes in time due to collisions which scatter particles into or out of phase-
space. Note that the collision term depends on the two-particle DF, f (2).
In fact, you can write a similar equation for ∂f (2)/∂t, but will find that it
depends on f (3), etc. The resulting set of N coupled equations is known
as the BBGKY hierarchy (after Bogoliubov, Born, Green, Kirkwood and
Yvon, who discovered the equations independently between 1935 and 1946).

We started with the Liouville equation, governing a complicated function of
N variable, and it looks like all we have achieved is to replace it with a set
of N coupled equations. However, the BBKGY hierarchy is useful since it
allows us to make some simplifying assumptions (which will be sufficiently
accurate under certain conditions), that truncates the series. The simplest
and most useful of these truncations is the Boltzmann equation, which is
a closed equation for f (1) alone given by

df (1)

dt
=

(

∂f (1)

∂t

)

coll

= I[f (1)]

where I[f (1)] is called the collision integral.
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The Boltzmann equation is valid uder the following conditions:

• dilute gas; density is sufficiently low so that only binary collisions need
to be considered

• ”molecular chaos”: velocities of colliding particles are uncorrelated

• spatial dependence of gas properties is sufficiently slow so that DF is
constant over the interaction region.

• collisions can be thought of as instantaneous.

The first and fourth assumptions imply that the collision timescale is much
shorter than the timescale between collisions. The third and fourth im-
ply that the interaction potential U(r) must be such that ∂U/∂r 6= 0 only
over a small region (short-range force). A good example of the latter is the
vanderWaals force, for which F ∝ 1/r6. For a plasma the collision potential
is the Coulomb potential, for which F ∝ 1/r2. However, Debye shielding
assures that the interaction force remains short-ranged (under certain condi-
tions). In the case of a gravitational system, we again have that F ∝ 1/r2,
but this times there is no shielding. However, as we will see, in a gravitational
N -body system the rate of collisions is typically so low that (∂f/∂t)coll ≈ 0,
and the Boltzmann equation becomes the collisionless Boltmann equation
(CBE), df/dt = 0.

Finally, a word about Molecular chaos. Introduced by Boltzmann (who
called it Stosszahlansatz, which translates to collision number hypothesis),
molecular chaos implies that

f (2)(~r, ~r, ~p1, ~p2) = f (1)(~r, ~p1) f
(1)(~r, ~p2)

In words, it assumes that the collision, which occurs at location ~r, is between
particles with uncorrelated velocities. However, after the collision, the mo-
menta (let’s call them ~p

′

1 and ~p
′

2) are correlated by momentum and energy
conservation. So in the limit of many collisions, the ansatz of ‘molecular
chaos’ simply cannot be correct. Most importantly, the ansatz of molecular
chaos introduces an element of time-asymmetry, which gives rise to the ther-
modynamic arrow of time (i.e., the increase of entropy). For comparison,
the Liouville equation, which has no underlying assumptions, is perfectly
time-reversible!
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