
CHAPTER 7

The Navier-Stokes Equation

In Chapter 5 we ignored shear stresses, which resulted in the following mo-
mentum equations (in Lagrangian index form):
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In the previous chapter, we showed that (for a Newtonian fluid) the stress
tensor can be written as
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We now incorporate this stress tensor in the momentum equations. Using
that ∂P/∂xi = δij ∂P/∂xj we can rewrite the above form as
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In order to take the shear into account, all we need to do now is to replace
−Pδij with the stress tensor (effectively this means, adding a term that is
the gradient of the viscous stress tensor, τij). The result can be written as
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These momentum equations are called the Navier-Stokes equations. It is
more common, and more useful, to rewrite this by writing out the viscous
stress tensor, which yields
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These are the Navier-Stokes equations (in Lagragian index form) in all their
glory, containing both the shear viscosity term and the bulk viscosity term
(the latter is often ignored).
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Note that µ and η are usually functions of density and temperature so that
they have spatial variations. However, it is common to assume that these are
suficiently small so that µ and η can be treated as constants, in which case
they can be taken outside the differentials. In what follows we will make this
assumption as well.

The Navier-Stokes equations in Lagrangian vector form are
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If we ignore the bulk viscosity (η = 0) then this reduces to
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where we have introduced the kinetic viscosity ν ≡ µ/ρ. Note that these
equations reduce to the Euler equations in the limit ν → 0.

As a final aside, it is often useful to use the vector calculus identity

~u · ∇~u = ∇

(
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2

)

+ (∇× ~u)× ~u

to write the Navier-Stokes equation in yet another form. Note that ~u · ∇~u =
1

2
∇u2, where u ≡ |~u|, for an irrotational flow.
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