CHAPTER 7

The Navier-Stokes Equation

In Chapter 5 we ignored shear stresses, which resulted in the following mo-
mentum equations (in Lagrangian index form):
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In the previous chapter, we showed that (for a Newtonian fluid) the stress
tensor can be written as
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We now incorporate this stress tensor in the momentum equations. Using

that 0P/0x; = 0, OP/0x; we can rewrite the above form as
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In order to take the shear into account, all we need to do now is to replace

—P§;; with the stress tensor (effectively this means, adding a term that is
the gradient of the viscous stress tensor, 7;;). The result can be written as

These momentum equations are called the Navier-Stokes equations. It is

more common, and more useful, to rewrite this by writing out the viscous
stress tensor, which yields
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These are the Navier-Stokes equations (in Lagragian index form) in all their
glory, containing both the shear viscosity term and the bulk viscosity term
(the latter is often ignored).
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Note that p and n are usually functions of density and temperature so that
they have spatial variations. However, it is common to assume that these are
suficiently small so that p and 1 can be treated as constants, in which case
they can be taken outside the differentials. In what follows we will make this
assumption as well.

The Navier-Stokes equations in Lagrangian vector form are
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If we ignore the bulk viscosity (n = 0) then this reduces to
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where we have introduced the kinetic viscosity v = u/p. Note that these
equations reduce to the Euler equations in the limit v — 0.

As a final aside, it is often useful to use the vector calculus identity
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to write the Navier-Stokes equation in yet another form. Note that @ - Vi =
1Vu?, where u = i, for an irrotational flow.
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