
CHAPTER 6

Viscosity & The Stress Tensor

In deriving the momentum equation, in the previous chapter, we made the
simplifying assumption that the force acting on a surface of fluid element is a
pure normal force (a force acting along the normal to the surface). However,
in general, this force per unit area, called the stress, can have any angle
wrt the normal. It is useful to decompose the stress in a normal stress,
which is the component of the stress along the normal to the surface, and a
shear stress, which is the component along the tangent to the surface.

Sign Convention: The stress ~Σ(~x, n̂) acting at location ~x on a surface with
normal n̂, is excerted by the fluid on the side of the surface to which the
normal points, on the fluid from which the normal points. Hence, in the case
of pure, normal pressure, we have that Σ = −P .

Stress Tensor: The stress tensor σij is defined such that Σi(n̂) = σij nj .
Here Σi(n̂) is the i-component of the stress acting on a surface with normal
n̂, whose j-component is given by nj . Note that if σij = σδij then there are
only normal stresses (shear stresses vanish).

Viscosity: a measure of a fluid’s resistance to deformation by shear stress.
For liquids, viscosity corresponds to the informal concept of ”thickness”. A
fluid with zero viscosity is called inviscid.

Microscopic Origin of Viscosity: In the presence of a velocity gradient,
∂ux/∂y, their will be momentum transfer in the y-direction because of the
microscopic motion of the fluid particles. In general, momentum will be
transferred from the faster moving layers to the slower moving layers. This
net transfer of momentum acts as a friction force in the direction of u (i.e.,
a resistance against shear) and gives rise to the concept of viscosity. From
this, it is clear that an inviscid fluid needs to have zero mean-free path. Such
a fluid is called an ideal fluid.
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Velocity of fluid particles: We can split the velocity, ~v, of a fluid particle
in a streaming velocity, ~u and a ‘random’ velocity, ~w:

~v = ~u+ ~w

where 〈~v〉 = ~u, 〈~w〉 = 0 and 〈.〉 indicates the average over a fluid element. If
we define vi as the velocity in the i-direction, we have that

〈vi vj〉 = ui uj + 〈wiwj〉

Using these definitions of velocities, we can define a number of important
tensors:

Total Stress Tensor: σij ≡ −ρ〈wi wj〉
Momentum Flux Density Tensor: Πij ≡ +ρ〈vi vj〉
Ram Pressure Tensor: Σij ≡ +ρuiuj

Viscous Stress Tensor: τij ≡ σij + P δij

Note: the viscous stress tensor is also known as the deviatoric stress tensor.
It is the component of the stress tensor, σij , that is responsible for shear,
which in turn gives rise to viscosity.

The following relations hold:

Πij = ρuiuj + Pδij − τij

σij = −Pδij + τij

= ρuiuj − Πij

As is manifest from σij = −ρ〈wiwj〉, the stress tensor is symmetric (σij =
σji), and has therefore 6 independent elements. By replacing the simple
isotropic pressure, P , with the more general stress tensor, σij , we have moved
from having one unknown to having 6 unknowns. This has a dramatic impact
on our ability to close our set of equations. We will need to find some
constitutive relations for the stress tensor. In what follows we do so, by
demonstrating that we can relate σij to the state of the fluid flow.
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In order to get insight into the form of τij , recall it describes the correlations
between random motions of particles in different directions. Such correlations
arise because of velocity shear, which causes a transport of momentum across
layers. Hence, τij , and thus also the stress tensor, σij , must be related to the
deformation tensor Tij = ∂ui/∂xj . It is useful to split the deformation
tensor in its symmetric and anti-symetric components:

∂ui

∂xj

= eij + ξij

where

eij =
1

2

[

∂ui

∂xj

+
∂uj

∂xi

]

ξij =
1

2

[

∂ui

∂xj

−
∂uj

∂xi

]

The symmetric part of the deformation tensor, eij, is called the rate of

strain tensor, while the anti-symmetric part, ξij, expresses the vorticity

~w ≡ ∇× ~u in the velocity field, i.e., ξij = −1

2
εijk wk. Note that

ekk =
1

2

[

∂uk

∂xk

+
∂uk

∂xk

]

=
∂uk

∂xk

= ∇ · ~u = div ~u

from which it is clear that the diagonal elements of the rate of strain tensor
describes the rate of stretching (called the strain) along the corresponding
axes. The off-diagonal elements represent the rate of shearing strain of the
fluid element. Note that one can always find a coordinate system for which
eij is diagonal. The axes of that coordinate frame indicate the eigendirections
of the strain (compression of stretching) on the fluid element. It also implies
that the motion of a fluid element consists of three, and only three, basic

parts: translation (expressed by ~u = 〈~v〉), pure strain (expressed by eij), and
rotation (expressed by ξij).
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In terms of the relation between the viscous stress tensor, τij, and the defor-
mation tensor, Tij, there are a number of properties that are important.

• Locality: the τij − Tij-relation is said to be local if the stress tensor
is only a function of the deformation tensor and thermodynamic state
functions like temperature.

• Homogeneity: the τij − Tij-relation is said to be homogeneous if is
everywhere the same. The viscous stress tensor may depend on location
~x only insofar as Tij or the thermodynamic state functions depend on
~x. This distinguishes a fluid from a solid, in which the stress tensor
depends on the stress itself.

• Isotropy: the τij − Tij-relation is said to be isotropic if it has no
preferred direction.

• Linearity: the τij − Tij-relation is said to be linear if the relation
between the stress and rate-of-strain if linear. This is equivalent to
saying that τij does not depend on ∇2~u or higher-order derivatives.

A fluid that is local, homogeneous and isotropic is called a Stokesian fluid.
A Stokesian fluid that is linear is called a Newtonian fluid. Experiments
have shown that most fluids are Newtonian to good approximation. Hence, in
what follows we will assume that our fluids are Newtonian, unless specifically
stated otherwise. For a Newtonian fluid one can write

τij = Aijkl

∂uk

∂xl

where Aijkl is a fourth-order proportionality tensor. Because of the require-
ments for homogeneity and isotropy, it can be shown that the most general
form of Aijkl is

Aijkl = λδijδkl + µ (δikδjl + δilδjk)

Hence, the most general form for the viscous stress tensor is

τij = 2µeij + λekkδij

where µ is called the coefficient of shear viscosity, λ is a scalar, δij is the
Kronecker delta function, and ekk = Tr(e) = ∂uk/∂xk = ∇ · ~u.
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Note that (in a Newtonian fluid) the viscous stress tensor depends only on
the symmetric component of the deformation tensor (the rate-of-strain tensor
eij), but not on the antisymmetric component which describes vorticity. You
can understand the fact that viscosity and vorticity are unrelated by consid-
ering a fluid disk in solid body rotation (i.e., ∇ · ~u = 0 and ∇× ~u = ~w 6= 0).
In such a fluid there is no ”slippage”, hence no shear, and therefore no man-
ifestation of viscosity.

From the expression for the viscous stress tensor, it is also clear that τij
vanishes for a fluid at rest (or with a homogeneous and steady velocity field).
Hence, a fluid at rest may be treated as inviscid.

Thus far we have derived that the stress tensor, σij , which in principle has
6 unknowns, can be reduced to a function of three unknowns only (P , µ,
λ) as long as the fluid is Newtonian. Note that these three scalars, in gen-
eral, are functions of temperature and density. We now focus on these three
scalars in more detail, starting with the pressure P . To be exact, P is the
thermodynamic equilibrium pressure, and is normally computed thermody-
namically from some equation of state, P = P (ρ, T ). It is related to the
translational kinetic energy of the particles when the fluid, in equilibrium,
has reached equipartition of energy among all its degrees of freedom, includ-
ing (in the case of molecules) rotational and vibrations degrees of freedom.

In addition to the thermodynamic equilibrium pressure, P , we can also de-
fine a mechanical pressure, Pm, which is purely related to the translational
motion of the particles, independent of whether the system has reached full
equipartition of energy. The mechanical pressure is simply the average nor-
mal stress and therefore follows from the stress tensor according to

Pm = −
1

3
Tr(σij) = −

1

3
(σ11 + σ22 + σ33)
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Using that

σij = −P δij + 2µ eij + λ ekk δij

we thus obtain the following relation between the two pressures:

Pm = P − η∇ · ~u

where

η =
2

3
µ+ λ =

P − Pm

∇ · ~u

is called the coefficient of bulk viscosity (aka the ‘second viscosity’) We can
now write the stress tensor as

σij = −Pδij + µ

[

∂ui

∂xj

+
∂uj

∂xi

−
2

3
δij

∂uk

∂xk

]

+ η δij
∂uk

∂xk

This is the full expression for the stress tensor in terms of the coefficients of
shear viscosity, µ, and bulk viscosity, η.

The bulk viscosity, η, is only non-zero if P 6= Pm. This can only happen if
the constituent particles of the fluid have degrees of freedom beyond position
and momentum (i.e., when they are molecules with rotational or vibrational
degrees of freedom). Hence, for a fluid of monoatoms, η = 0 and λ = −2µ/3.
From the fact that P = Pm+η∇·~u it is clear that for an incompressible fluid
P = Pm and the value of η is irrelevant; bulk viscosity plays no role in incom-

pressible fluids. The only time when Pm 6= P is when a fluid consisting of
molecules has just undergone a large volumetric change (i.e., during a shock).
In that case there may be a lag between the time the translational motions
reach equilibrium and the time when the system reaches full equipartition
in energy among all degrees of freedom. In astrophysics, bulk viscosity can
generally be ignored, but be aware that is may be important in shocks.
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