
CHAPTER 4

Basics of Fluid Dynamics

What is a fluid?

A fluid is a substance that can flow, has no fixed shape, and offers little
resistance to an external stress

• In a fluid the constituent particles (atoms, ions, molecules, stars) can
‘freely’ move past one another.

• Fluids take on the shape of their container.

• A fluid changes its shape at a steady rate when acted upon by a stress
force.

Different types of Fluids:

We distinguish collisional fluids (liquids and gases) from collisionless fluids
(galaxies and dark matter halos). The latter are very important in astro-
physics, but are rarely discussed in physics textbooks.

The main difference between liquids and gases is that the former are (to
good approximation) incompressible, which means that a given mass of liquid
occupies a given volume (i.e., Dρ/Dt = 0). A gas, on the other hand, will
completely fill the volume that is available to it.

Examples of Fluids in Astrophysics:

• Stars: stars are spheres of gas in hydrostatic equilibrium (i.e., grav-
itational force is balanced by pressure gradients). Densities and tem-
peratures in a given star cover many orders of magnitude. To good
approximation, its equation of state is that of an ideal gas.
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• Giant (gaseous) planets: Similar to stars, gaseous planets are large
spheres of gas, albeit with a rocky core. Contrary to stars, though, the
gas is typically so dense and cold that it can no longer be described
with the equation of state of an ideal gas.

• Planet atmospheres: The atmospheres of planets are stratified, gaseous
fluids retained by the planet’s gravity.

• White Dwarfs & Neutron stars: These objects (stellar remnants)
can be described as fluids with a degenerate equation of state.

• Proto-planetary disks: the dense disks of gas and dust surrounding
newly formed stars out of which planetary systems form.

• Inter-Stellar Medium (ISM): The gas in between the stars in a
galaxy. The ISM is typically extremely complicated, and roughly has
a three-phase structure: it consists of a dense, cold (∼ 10K) molecular
phase, a warm (∼ 104K) phase, and a dilute, hot (∼ 106K) phase.
Stars form out of the dense molecular phase, while the hot phase is
(shock) heated by supernova explosions. The reason for this three
phase medium is associated with the various cooling mechanisms. At
high temperature when all gas is ionized, the main cooling channel is
Bremmstrahlung (acceleration of free electrons by positively charged
ions). At low temperatures (< 104K), the main cooling channel is
molecular cooling (or cooling through hyperfine transitions in metals).

• Inter-Galactic Medium (IGM): The gas in between galaxies. This
gas is typically very, very dilute (low density). It is continuously ‘ex-
posed’ to adiabatic cooling due to the expansion of the Universe, but
also is heated by radiation from stars (galaxies) and AGN (active galac-
tic nuclei). The latter, called ‘reionization’, assures that the typical
temperature of the IGM is ∼ 104K.

• Intra-Cluster Medium (ICM): The hot gas in clusters of galaxies.
This is gas that has been shock heated when it fell into the cluster;
typically gas passes through an accretion shock when it falls into a
dark matter halo, converting its infall velocity into thermal motion.
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• Accretion disks: Accretion disks are gaseous, viscous disks in which
the viscosity (enhanced due to turbulence) causes a net rate of radial
matter towards the center of the disk, while angular momentum is being
transported outwards (accretion)

• Galaxies (stellar component): as we will see later, the stellar com-
ponent of galaxies is a collisionless fluid; to very, very good approxima-
tion, two stars in a galaxy will never collide with other.

• Dark matter halos: Another example of a collisionless fluid (at least,
we assume that dark matter is collisionless)...

Fluid Dynamics: The Microscopic Approach

In the microscopic approach a fluid is treated as a collection of a HUGE
number of particles that interact via collisions. Using kinetic theory and
statistical mechanics, one uses the Liouville equation to derive the Boltzmann
equation via the BBGKY hierarchy. The zeroth, first and second moment
equations of the Boltzmann equation ultimately give rise to the continuity
equation, the momentum equations, and the energy equation, respectively.
These are called the Navier-Stokes equations for a collisional fluid, and the
Jeans equations for a collisionless fluid. If the viscosity and conductivity
of the (collisional) fluid can be ignored, the Navier-Stokes equations reduce
to the Euler equations. The derivation of the fluid equations based on this
microscopic approach is presented in Chapters 8 and 9.

Fluid Dynamics: The Macroscopic Approach:

In the macroscopic approach, the fluid is treated as a continuum, that is
‘made up’ of fluid elements (FE). These are small fluid volumes that never-
theless contain many particles, that are significantly larger than the mean-
free path of the particles, and for which one can define local hydro-dynamical
variables such as density, pressure and temperature. The requirements are:

1. the FE needs to be much smaller than the characteristic scale in the
problem, which is the scale over which the hydrodynamical quantities
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Q change by an order of magnitude, i.e.

lFE ≪ lscale ∼
Q

∇Q

2. the FE needs to be sufficiently large that fluctuations due to the finite
number of particles (‘discreteness noise’) can be neglected, i.e.,

n l3
FE

≫ 1

where n is the number density of particles.

3. the FE needs to be sufficiently large that it ‘knows’ about the local
conditions through collisions among the constituent particles, i.e.,

lFE ≫ λ

where λ is the mean-free path of the fluid particles.

Note that no fluid element can be defined for a collisionless fluid. The im-
plications are that one cannot use the macroscopic approach to derive the
equations that govern a collisionless fluid.

Fluid Dynamics: closure:

In general, a fluid element is characterized by the following six hydro-dynamical
variables:

mass density ρ [g/cm3]
fluid velocity ~u [cm/s] (3 components)

pressure P [erg/cm3]
specific internal energy ε [erg/g]

Note that ~u is the velocity of the fluid element, not to be confused with the
velocity ~v of individual fluid particles, used in the Boltzmann distribution
function. Rather, ~u is (roughly) a vector sum of all particles velocities ~v that
make up the fluid element.
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If we can ignore viscosity and conductivity then these variable are related
via the Euler equations:

1 continuum equation relating ρ and ~u
3 momentum equations relating ρ, ~u and P

1 energy equation relating ρ, ~u, P and ε

Thus we have a total of 5 equations for 6 unknowns. One can solve the set
(‘close it’) by using a constitutive relation. In almost all cases, this is the
equation of state (EoS) P = P (ρ, ε).

• Sometimes the EoS is expressed as P = P (ρ, T ). In that case another
constitution relation is needed, typically ε = ε(ρ, T ).

• If the EoS is barotropic, i.e., if P = P (ρ), then the energy equation is not
needed to close the set of equations. There are two barotropic EoS that are
encountered frequently in astrophysics: the isothermal EoS, which describes
a fluid for which cooling and heating always balance each other to maintain a
constant temperature, and the adiabatic EoS, in which there is no net heating
or cooling (other than adiabatic heating or cooling due to the compression
or expansion of volume, i.e., the P dV work). We will discuss these cases in
more detail later in the course.

• No EoS exists for a collisionless fluid. Consequently, for a collisionless fluid
one can never close the set of fluid equations, unless one makes a number of
simplifying assumptions (i.e., one postulates various symmetries)

• In the case the fluid is exposed to an external force (i.e., a gravitational or
electrical field), the momentum and energy equations contain an extra force
term.

• In the case the fluid is self-gravitating (i.e., in the case of stars or galaxies)
there is an additional unknown, the gravitational potential Φ. However, there
is also an additional equation, the Poison equation relating Φ to ρ, so that
the set of equations remains closed.
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Fluid Dynamics: Eulerian vs. Lagrangian Formalism:

One distinguishes two different formalisms for treating fluid dynamics:

• Eulerian Formalism: in this formalism one solves the fluid equations
‘at fixed positions’: the evolution of a quantity Q is described by the
local (or partial, or Eulerian) derivative ∂Q/∂t. An Eulerian hydrody-
namics code is a ‘grid-based code’, which solves the hydro equations on
a fixed grid, or using an adaptive grid, which refines resolution where
needed. The latter is called Adaptive Mesh Refinement (AMR).

• Lagrangian Formalism: in this formalism one solves the fluid equa-
tions ‘comoving with the fluid’, i.e., either at a fixed particle (collision-
less fluid) or at a fixed fluid element (collisional fluid). The evolution of
a quantity Q is described by the substantial (or Lagrangian) derivative
dQ/dt (sometimes written as DQ/Dt). A Lagrangian hydrodynamics
code is a ‘particle-based code’, which solves the hydro equations per
simulation particle. Since it needs to smooth over neighboring parti-
cles in order to compute quantities such as the fluid density, it is called
Smoothed Particle Hydrodynamics (SPH).

In order to derive an expression for the substantial derivative dQ/dt, realize
that Q = Q(t, x, y, z). When the fluid element moves, the scalar quantity Q
experiences a change

dQ =
∂Q

∂t
dt +

∂Q

∂x
dx +

∂Q

∂y
dy +

∂Q

∂z
dz

Dividing by dt yields

dQ

dt
=

∂Q

∂t
+

∂Q

∂x
ux +

∂Q

∂y
uy +

∂Q

∂z
uz

where we have used that dx/dt = ux, which is the x-component of the fluid
velocity ~u, etc. Hence we have that

dQ

dt
=

∂Q

∂t
+ ~u · ∇Q
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Using a similar derivation, but now for a vector quantity ~A(~x, t), it is straight-
forward to show that

d ~A

dt
=

∂ ~A

∂t
+ (~u · ∇) ~A

which, in index-notation, is written as

dAi

dt
=

∂Ai

∂t
+ uj

∂Ai

∂xj

Another way to derive the above relation between the Eulerian and La-
grangian derivatives, is to think of dQ/dt as

dQ

dt
= lim

δt→0

[

Q(~x + δ~x, t + δt) − Q(~x, t)

δt

]

Using that

~u = lim
δt→0

[

~x(t + δt) − ~x(t)

δt

]

=
δ~x

δt

and

∇Q = lim
δ~x→0

[

Q(~x + δ~x, t) − Q(~x, t)

δ~x

]

it is straightforward to show that this results in the same expression for the
substantial derivative as above.
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Kinematic Concepts: Streamlines, Streaklines and Particle Paths:

In fluid dynamics it is often useful to distinguish the following kinematic
constructs:

• Streamlines: curves that are instantaneously tangent to the velocity
vector of the flow. Streamlines show the direction a massless fluid
element will travel in at any point in time.

• Streaklines: the locus of points of all the fluid particles that have
passed continuously through a particular spatial point in the past. Dye
steadily injected into the fluid at a fixed point extends along a streak-
line.

• Particle paths: (aka pathlines) are the trajectories that individual
fluid elements follow. The direction the path takes is determined by
the streamlines of the fluid at each moment in time.

Only if the flow is steady, which means that all partial time derivatives vanish
(i.e., ∂~u/∂t = ∂ρ/∂t = ∂P/∂t), will streamlines be identical to streaklines be
identical to particle paths. For a non-steady flow, they will differ from each
other.
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