CHAPTER 3

Curvi-Linear Coordinate Systems

In astrophysics, one often works in curvi-linear, rather than Cartesian co-
ordinate systems. The two most often encountered examples are the cylin-
drical (R, ¢, z) and spherical (7,0, ¢) coordinate systems.

In this chapter we describe how to handle vector calculus in non-Cartesian
coordinate systems (FEuclidean spaces only). After giving the ‘rules’ for ar-
bitrary coordinate systems, we apply them to cylindrical and spherical coor-
dinate systems, respectively.

Vector Calculus in an Arbitrary Coordinate System:

Let (g1, q2, g3) denote the coordinates of a point in an arbitrary coordinate
system, defined by the metric tensor h;;. The distance between (g1, g2, ¢3)
and (q1 +dqi, ¢2 + dgg, g3 + dgs) is

d82 = hij dq, dqj

In what follows, we will only consider orthogonal systems for which h;; = 0
if i # 7, so that ds® = h? dq? with

0g;
The differential vector is:
or 0T 0T
de = —dgy + — dg + —d
a1 q1 e q2 945 q3

The unit directional vectors are:
. 0%/ 0g; 1 07
€ =355 7= 7

so that dz =} h; dg; €; and d3% = hy hy hs dq; dgs dgs.
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Let B = {é}, &3, €5} be the basis in our (qi, ¢2, ¢3) coordinate system, and let
[d]s denote the vector @ in basis B. Similarly, [@]¢ denotes @ in the standard
Cartesian basis C = {é,, €, €, }. The relation between [d]z and [d]c is given
by

[ale = T [d]s, (@5 =T [dc

Here T is the transformation of basis matrix, whose columns are the unit-
direction vectors €, i.e., T;; = e;;. Since the columns of T are unit vectors
that are orthogonal to each other, the matric T is said to be orthogonal,
which implies that T~* = TT (the inverse is equal to the transpose), and
det(T") = 1.

Using the above, we have that the position and velocity vectors are given by

) 1 (0F .\
s =2 & (aq, :B) &
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and

[?7]622 h; g; €;

with & = (z,y, z) the position vector in Cartesian coordinates, and ¢; =
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Next we write out the gradient, the divergence, the curl and the Laplacian:

The gradient:

1oy
Vi = Ea—%’el
The divergence:
- 1 0 0 0
A= ——|=—(hoh3A —(hshi A —(h1ho A
\% Toihalis laCh( 2/3 1)+0q2( 31 2)+8q3< 112 3)1
The curl (only one component shown):
- 1 0 0
V x A)g= —(hoAs) — —(h A
(V% B = o | giads) = ()]

The Laplacian:

o 4 () () & (55

hihohs a—ql hy 8Q1 8q2 o 8q2 8C]3 hs 8%
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Vector Calculus in Cylindrical Coordinates:

For cylindrical coordinates (R, ¢, z) we have that
r = Rcos¢ y = Rsin ¢ z2=z
The scale factors of the metric therefore are:
hr=1 heg =R h,=1

and the position vector is ¥ = Regr + z€,.

Let A = Agre€r + Ay€y + A.€, an arbitrary vector, then

Arp = Aycosp— Ay, sing
Ay = —Aysing+ Aycos¢
A,

&
I

In cylindrical coordinates the velocity vector becomes:

7 = Rér+ Rér+:ié,
— Rér+Roés+ 26,

The Gradient:

. 19 1 04, 0A.
VA= g AR T 550 T 5

The Laplacian:

. 10 [ oy 18 oy
Vw———<R—>+ﬁw+@
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Vector Calculus in Spherical Coordinates:

For spherical coordinates (r, 6, ¢) we have that
r=rsinfcos¢p y=rsinfsing z=rcost
The scale factors of the metric therefore are:
h, =1 hg=r hg = rsind

and the position vector is T = ré,.

Let A = A€, + Agéy + Age, an arbitrary vector, then

A, = Agsinfcos¢+ Ay sinfsing + A, cosd
Ag = Agcosicos¢p + A,costsing — A, sind
Ay, = —Agsing+ A cos¢

In spherical coordinates the velocity vector becomes:

v = reé . +re,

= 7é +rlé+r sin@é%

The Gradient:

1 0 1 0Ay

Z (sinfA btk 4
rsin 6 Oﬁ(sm 9)+rsin9 0o

The Laplacian:

b L0 (a0 1 (L ae) 1 oy
V¢_r2 ar \" or +rzsin989 Sme@@ +rzsin2981/)2
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