
CHAPTER 3

Curvi-Linear Coordinate Systems

In astrophysics, one often works in curvi-linear, rather than Cartesian co-
ordinate systems. The two most often encountered examples are the cylin-

drical (R, φ, z) and spherical (r, θ, φ) coordinate systems.

In this chapter we describe how to handle vector calculus in non-Cartesian
coordinate systems (Euclidean spaces only). After giving the ‘rules’ for ar-
bitrary coordinate systems, we apply them to cylindrical and spherical coor-
dinate systems, respectively.

Vector Calculus in an Arbitrary Coordinate System:

Let (q1, q2, q3) denote the coordinates of a point in an arbitrary coordinate

system, defined by the metric tensor hij. The distance between (q1, q2, q3)
and (q1 + dq1, q2 + dq2, q3 + dq3) is

ds2 = hij dqi dqj

In what follows, we will only consider orthogonal systems for which hij = 0
if i 6= j, so that ds2 = h2i dq
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The differential vector is:

d~x =
∂~x

∂q1
dq1 +

∂~x

∂q2
dq2 +

∂~x

∂q3
dq3

The unit directional vectors are:

~ei =
∂~x/∂qi
|∂~x/∂qi|

=
1

hi

∂~x

∂qi

so that d~x =
∑

i
hi dqi ~ei and d3~x = h1 h2 h3 dq1 dq2 dq3.
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Let B = {~e1, ~e2, ~e3} be the basis in our (q1, q2, q3) coordinate system, and let
[~a]B denote the vector ~a in basis B. Similarly, [~a]C denotes ~a in the standard
Cartesian basis C = {~ex, ~ey, ~ez}. The relation between [~a]B and [~a]C is given
by

[~a]C = T [~a]B , [~a]B = T−1 [~a]C

Here T is the transformation of basis matrix, whose columns are the unit-
direction vectors ~ei, i.e., Tij = eij . Since the columns of T are unit vectors
that are orthogonal to each other, the matric T is said to be orthogonal,
which implies that T−1 = TT (the inverse is equal to the transpose), and
det(T ) = ±1.

Using the above, we have that the position and velocity vectors are given by

[~x]B =
∑

i

1

hi

(

∂~x

∂qi
· ~x

)

~ei

and
[~v]B =

∑

i

hi q̇i ~ei

with ~x = (x, y, z) the position vector in Cartesian coordinates, and q̇i =
dqi/dt.
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Next we write out the gradient, the divergence, the curl and the Laplacian:

The gradient:

∇ψ =
1

hi

∂ψ

∂qi
~ei

The divergence:

∇ · ~A =
1

h1h2h3

[

∂

∂q1
(h2h3A1) +

∂

∂q2
(h3h1A2) +

∂

∂q3
(h1h2A3)

]

The curl (only one component shown):

(∇× ~A)3 =
1

h1h2

[

∂

∂q1
(h2A2)−

∂

∂q2
(h1A1)

]

The Laplacian:

∇2ψ =
1

h1h2h3

[

∂

∂q1

(

h2h3
h1

∂ψ

∂q1

)

+
∂

∂q2

(
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∂ψ

∂q2

)

+
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∂q3

(

h1h2
h3

∂ψ

∂q3

)]
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Vector Calculus in Cylindrical Coordinates:

For cylindrical coordinates (R, φ, z) we have that

x = R cosφ y = R sinφ z = z

The scale factors of the metric therefore are:

hR = 1 hφ = R hz = 1

and the position vector is ~x = R~eR + z~ez .

Let ~A = AR~eR + Aφ~eφ + Az~ez an arbitrary vector, then

AR = Ax cosφ− Ay sinφ

Aφ = −Ax sinφ+ Ay cosφ

Az = Az

In cylindrical coordinates the velocity vector becomes:

~v = Ṙ ~eR +R~̇eR + ż ~ez

= Ṙ ~eR +R φ̇~eφ + ż ~ez

The Gradient:

∇ · ~A =
1

R

∂

∂R
(RAR) +

1

R

∂Aφ

∂φ
+
∂Az

∂z

The Laplacian:

∇2ψ =
1

R

∂

∂R

(

R
∂ψ

∂R

)

+
1

R2

∂2ψ

∂φ2
+
∂2ψ

∂z2
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Vector Calculus in Spherical Coordinates:

For spherical coordinates (r, θ, φ) we have that

x = r sin θ cos φ y = r sin θ sin φ z = r cos θ

The scale factors of the metric therefore are:

hr = 1 hθ = r hφ = r sin θ

and the position vector is ~x = r~er.

Let ~A = Ar~er + Aθ~eθ + Aφ~eφ an arbitrary vector, then

Ar = Ax sin θ cos φ+ Ay sin θ sinφ+ Az cos θ

Aθ = Ax cos θ cosφ+ Ay cos θ sin φ−Az sin θ

Aφ = −Ax sinφ+ Ay cosφ

In spherical coordinates the velocity vector becomes:

~v = ṙ ~er + r ~̇er

= ṙ ~er + r θ̇ ~eθ + r sin θ φ̇ ~eφ

The Gradient:

∇ · ~A =
1

r2
∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ

∂φ

The Laplacian:

∇2ψ =
1

r2
∂

∂r

(

r2
∂ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂φ

∂θ

)

+
1

r2 sin2 θ

∂2ψ

∂ψ2
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