
CHAPTER 27

Continuum Emission Mechanisms

Continuum radiation is any radiation that forms a continuous spectrum and
is not restricted to a narrow frequency range. In what follows we briefly
describe five continuum emission mechanisms:

• Thermal (Black Body) Radiation

• Bremsstrahlung (free-free emission)

• Recombination (free-bound emission)

• Two-Photon emission

• Synchrotron emission

In general, the way to proceed is to ‘derive’ the emission coeffient, jν , the
absorption coefficient, αν , and then use the equation of radiative transfer
to compute the specific intensity, Iν , (i.e., the ‘spectrum’), for a cloud of gas
emitting continuum radiation using any one of those mechanisms.

First some general remarks: when talking about continuum processes it is
important to distinguish thermal emission, in which the radiation is gen-
erated by the thermal motion of charged particles and in which the intensity
therefore depends (at least) on temperature, i.e., Iν = Iν(T, ..), from non-
thermal emission, which is everything else.

Examples of thermal continuum emission are black body radiation and
(thermal) bremsstrahlung, while synchrotron radiation is an example of non-
thermal emission. Another non-thermal continuum mechanism is inverse
compton radiation. However, since this is basically an incoherent photon-
scattering mechanism, rather than a photon-production mechanism, we will
not discuss IC scattering any further here (see Chapter 22 instead).
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Characteristics of Thermal Continuum Emission:

• Low Brightness Temperatures: Since one rarely encouters gases with
kinetic temperatures T > 107 − 108K, and since TB ≤ T (see Chapter 25), if
the brightness temperature of the radiation exceeds ∼ 108K it is most likely
non-thermal in origin (or has experienced IC scattering).

• No Polarization: Since these is no particular directionality to the thermal
motion of particles, thermal emission is essentially unpolarized. In other
words, if emission is found to be polarized, it is either non-thermal, or the
signal became polarized after it was emitted (i.e., via Thomson scattering).

Thermal Radiation & Black Body Radiation: Thermal radiation is the
continuum emission arising from particles colliding, which causes acceleration
of charges (atoms typically have electric or magnetic dipole moments, and
colliding those results in the emission of photons). This thermal radiation
tries to establish thermal equilibrium with the matter that produces it via
photon-matter interactions. If thermal equilibrium is established (locally),
then the source function Sν ≡ jν/αν = Bν(T ) (Kirchoff’s law).
As we have seen in Chapter 25;

Iν =

{

Bν(T ) if τν ≫ 1
τν Bν(T ) if τν ≪ 1

where τν = αν l is the optical depth through the cloud, which has a dimen-
sion l along the line-of-sight.

Free-free emission (Bremsstrahlung): Bremsstrahlung (German for ‘brak-
ing radiation’) arises when a charged particle (i.e., an electron) is accelerated
though the Coulomb interaction with another charged particle (i.e., an ion
of charge Ze). Effectively what happens is that the two charges make up an
electric dipole which, due to the motion of the charges, is time variable. A
variable dipole is basically an antenna, and emits electromagnetic waves. The
energy in these EM waves (photons) emitted is lost to the electron, which
therefore loses (kinetic) energy (the electron is ‘braking’).
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It is fairly straightforward to compute the amount of energy radiated by a
single electron moving with velocity v when experiencing a Coulomb interac-
tion with a charge Ze over an impact parameter b (see Rybicki & Lightmann

1979 for a detailed derivation).

The next step is to integrate over all possible impact parameters. This are
all impact parameters b > bmin, where from a classical perspective bmin is set
by the requirement that the kinetic energy of the electron, Ek = 1

2
me v

2, is
larger than the binding energy, Eb = Ze2/b (otherwise we are in the regime
of recombination; see below). However, there are some quantum mechani-
cal corrections one needs to make to this bmin which arise from Heisenberg’s
Uncertainty Principle (∆x∆p ≥ h̄/2). This correction factor is called the
free-free Gaunt factor, gff(ν, Te), which is close to unity, and has only
a weak frequency dependence. The final step in obtaining the emission co-
effient is the integration over the Maxwellian velocity distribution of the
electrons, characterized by Te. The result (in erg s−1 cm−3Hz−1 sr−1) is:

jν = 5.44× 10−39

(

Z2

T
1/2
e

)

ne ni gff(ν, Te) e
−hν/kBTe

In the case of a pure (ionized) hydrogen gas, Z = 1 and ni = ne. Upon
inspection, it is clear that free-free emission has a flat spectrum jν ∝ να with
α ∼ 0 (controlled by the weak frequency dependence of the Gaunt factor)
with an exponential cut-off for h ν > kBTe (the maximum photon energy is
set by the temperature of the electrons). This reveals that a measurement
of the exponential cut-off is a direct measure of the electron temperature.

The above emission coefficient tells us the emissive behavior of a pocket
of gas without allowance for the internal absorption. Accounting for the
latter requires radiative transfer. Since Bremsstrahlung arises from collisions,
we may use the LTE approximation. Hence, Kirchoff’s law tells us that
αν = jν/Bν(T ), which allows us to compute the absorption coefficent, and
thus the optical depth τν = αν l. Substitution of Bν(T ), with T = Te, yields

τν ≃ 3.7× 108 Z2 T−1/2
e ν−3 [1− e−hν/kBTe ] gff(ν, Te) E

where

E ≡

∫

n2
e dl ≃ n2

e l
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is called the emission measure, and we have assumed that ne = ni. Upon
inspection, one notices that τν ∝ ν−2 (for hν ≪ kBTe), indicating that the
opacity of the cloud increases with decreasing frequency. The opacity arises
from free-free absorption, which is simply the inverse process of free-free
emission; a photon is absorbed by an electron that is experiencing a Coulomb
interaction.

If we now substitute our results in the equation of radiative transfer
(without background source),

Iν = Bν(T )
[

1− e−τν
]

then we obtain that

Iν =

{

Bν(Te) if τν ≫ 1
τν Bν(T ) = jν l if τν ≪ 1

Fig. 25 shows an illustration of a typical free-free emission spectrum: at low
frequency the gas is optically thick, and one probes the Rayleigh-Jeans part
of the Planck curve corresponding to the electron temperature (Iν ∝ ν2Te).
At intermediate frequencies, where the cloud is optically thin, the spectrum
is flat (Iν ∝ ET

−1/2
e ), and at the high-frequency end there is an exponential

cut-off (Iν ∝ exp[−hν/kBTe]).

Free-Bound emission (Recombination): this involves the capture of a
free electron by a nucleus into a quantized bound state. Hence, this requires
the medium to be ionized, similar to free-free emission, and in general both
will occur (complicating the picture). Free-bound emission is basically the
same as free-free emission (they have the same emission coefficient, jν), except
that they involve different integration ranges for the impact parameter b, and
therefore different Gaunt factors; the free-bound Gaunt factor gfb(ν, Te)
has a different temperature dependence than gff(ν, Te), and also has more
‘structure’ in its frequency dependence; in the limit where the bound state
has a large quantum number (i.e., the electron is weakly bound), we have
that gfb ∼ gff . However, for more bound states the frequency dependence of
gfb reveals sharp ‘edges’ associated with the discrete bound states.
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Figure 25: Specific intensity of free-free emission (Bremssstrahlung), includ-
ing the effect of free-free self absorption at low frequencies, where the optical
depth exceeds unity. At low frequencies, one probes the Rayleigh-Jeans part of
the Planck curve corresponding to the electron temperature. At intermediate
frequencies, where the cloud is optically thin, the spectrum is flat, followed
by an exponential cut-off at the high-frequency end.

When h ν ≪ kB Te recombination is negligible (electrons are moving too fast
to become bound), and the emission is dominated by the free-free process.
At higher frequencies (or, equivalently, lower electron temperatures), recom-
bination becomes more and more important, and often will dominate over
bremsstrahlung.

Two-Photon Emission: two photon emission occurs between bound states
in an atom, but it produces continuum emission rather than line emission.

Two photon emission occurs when an electron finds itself in a quantum
level for which any downward transition would violate quantum mechani-
cal selection rules. Each transition is therefore highly forbidden. However,
there is a chance that the electron decays exponentially under the emis-
sion of two, rather than one, photons. Energy conservation guarantees that
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ν1 + ν2 = νtr = ∆Etr/h, where ∆Etr is the energy difference associated
with the transition. The most probable configuration is the one in which
ν1 = ν2 = νtr/2, but all configurations that satisfy the above energy conser-
vation are possible; they become less likely the larger |ν1−νtr/2|, resulting in
a ‘continuum’ emission that appears as an extremely broad ‘emission line’. In
fact, whereas the number of photons with 0 < ν < νtr/2 is equal to that with
νtr/2 < ν < νtr, the latter have more energy (i.e., Eγ = hν). Consequently,
the spectral energy distribution, Lν (erg s−1 Hz−1) is skewed towards higher
frequency.

For two photon emission to occur, we require that spontaneous emission hap-
pens before collisional de-excitation has a chance. Consequently, two-photon
emission occurs in low density ionized gas. The strength of the two photon
emission depends on the number of particles in the excited states. This in
turn depends on the recombination rate; although two-photon emission is
quantum-mechanical in nature, it can still be throught of as ‘thermal emis-
sion’, and the density dependence is the same as for free-free and free-bound
emission (i.e., jν ∝ n2

e).

An important example of two-photon emission is associated with the Lyα
recombination line, which results from a de-excitation of an electron from
the n = 2 to n = 1 energy level in a Hydrogen atom. As it turns out,
the n = 2 quantum level consists of both 2s and 2p states. The transition
2p → 1s is a permitted transition with A2p→1s = 6.27×108s−1. However, the
2s → 1s transition is highly forbidden, and has a two-photon-emission rate
coefficient of A2s→1s = 8.2s−1. Although this is orders of magnitude lower
than for the 2p → 1s transition, the two photon emission is still important
in low-density nebulae (n <

∼ 104cm−3).

Synchrotron & Cyclotron Emission: A free electron moving in a mag-
netic field experiences a Lorentz force:

~Fe = e

(

~v

c
× ~B

)

=
e v

c
B sinφ =

e v

c
B⊥ =

e v⊥
c

B

where φ is the pitch angle between ~v and ~B. If φ = 0 the particle moves along
the magnetic field, and the Lorentz force is zero. If φ = 90o the particle will
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move in a circle around the magnetic field line, while for 0o < φ < 90o

the electron will spiral (‘cork-screw’) around the magnetic field line. In the
latter two cases, the electron is being accelerated, which causes the emission
of photons. Note that this applies to both electrons and ions. However, since
the cyclotron (synchrotron) emission from ions is negligble compared to that
from electrons, we will focus on the latter.

If the particle is non-relativistic, then the emission is called cyclotron emis-
sion. If, on the other hand, the particles are relativistic, the emission is called
synchrotron emission. We will first focus on the former.

Cyclotron emission: the gyrating electron emits dipolar emission that (i)
has the frequency of gyration, and (ii) is highly polarized. Depending on
the viewing angle the observer can see circular polarization (if line-of-sight

is alined with ~B), linear polarization, if line of sight is perpendicular to ~B,
or elliptical polarization (for any other orientation).

The gyration frequency can be obtained by equating the Lorentz force with
the centripetal force:

Fe =
e v⊥
c

B =
me v

2
⊥

r0

where v⊥ = v sinφ, which results in

r0 =
me v⊥ c

eB

where B = | ~B|. This is called the gyration radius (or gyro-radius). The
period of gyration is T = 2πr0/v⊥, which implies a gyration frequency
(i.e., the frequency of the emitted photons) of

ν0 =
1

T
=

eB

2πme c

Note that this frequency is independent of the velocity of the electron! It only
depends on the magnetic field strength B;

ν0
MHz

= 2.8
| ~B|

Gauss
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Figure 26: Illustration of how the Lorentz transformation from the electron
rest frame to the lab frame introduce relativistic beaming with an opening
angle θ = 1/γ. Note that in the electron rest frame, the synchrotron emission
is dipole emission.

We thus see that cyclotron emission really is line emission, rather than
continuum emission. The nature of this line emission is very different though,
from ‘normal’ spectral lines which result from quantum transitions within
atoms or molecules. Note, though, that if the ‘source’ has a smoothly varying
magnetic field, then the variance in B will result in a ‘broadening’ of the line,
which, if sufficiently large, may appear as ‘continuum emission’.

In principle, observing cyclotron emission immediately yields the magnetic
field strength. However, unless B is extremely large, the frequency of the
cyclotron emission is extremely low; typical magnetic field strengths in the
IGM are of the order of several µG, which implies cyclotron frequencies in
the few Hz regime. The problem is that such low frequency radiation will
not be able to travel through an astrophysical plasma, because the frequency
is lower than the plasma frequency, which is the natural frequency of a
plasma (see Appendix E of Irwin). In addition, the Earth’s ionosphere blocks
radiation with a frequency ν <

∼ 10MHz, so that we can only observe cyclotron
emission from the Earth’s surface if it originates from objects with B >

∼ 3.5G.
For this reason, cyclotron emission is rarely observed, with the exception of
the Sun, some of the planets in our Solar System, and an occasional pulsar.
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Synchrotron Emission: this is the same as cyclotron emission, but in the
limit in which the electrons are relativistic. As we demonstrate below, this
has two important effects: it makes the gyration frequency dependent on
the energy (velocity) of the electron, and it causes strong beaming of the
electron’s dipole emission.

In the relativistic regime, the electron energy becomes Ee = γ me c
2, where

γ = (1− v2/c2)−1/2 is the Lorentz factor. This boosts the gyration radius
by a factor γ, and reduces the gyration frequency by 1/γ:

r0 =
γ me v⊥ c

eB
≃

γ me c
2

eB

ν0 =
eB

2π γ me c

Note that now the gyration frequency does depend on the velocity (energy)
of the (relativistic) electrons, which in principle implies that because the
electrons will have a distribution in energies, the synchrotron emission is
going to be continuum emission. However, you can also see that the gyration
frequency is even lower than in the case of cyclotron emission, by a factor
1/γ. For the record, Lorentz factors of up to ∼ 1011 have been measured,
indicating that γ can be extremely large! Hence, if the photon emission were
to be at the gyration frequency, we would never be able to see it, because of
the plasme-frequency-shielding.

However, the gyration frequency is not the only frequency in this problem.
Because of the relativistic motion, the dipole emission from the electron,
as seen from the observer’s frame, is highly beamed (see Fig. 26), with an
opening angle ∼ 1/γ (which can thus be tiny). Consequently, the observer
does not have a continuous view of the electron, but only sees EM radiation
when the beam sweeps over the line-of-sight. The width of these ‘pulses’ are
a factor 1/γ3 shorter than the gyration period. The corresponding frequency,
called the critical frequency, is given by

νcrit =
3 e

4 πme c
γ2B⊥
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which translates into
νcrit
MHz

= 4.2 γ2 B⊥

Gauss

So although the gyration frequency will be small, the critical frequency can
be extremely large. This critical frequency corresponds to the shortest time
period (the pulse duration), and therefore represents the largest frequency,
above which the emission is negligble. The longest time period, which is
related to the gyration period, determines the fundamental frequency

νf
MHz

=
2.8

γ sin2 φ

| ~B|

Gauss

The emission spectrum due to synchrotron radiation will contain this fun-
damental frequency plus all its harmonics up to νcrit. Since these harmonics
are extremely closely spaced (after all, the gyration frequency is extremely
small), the synchrotron spectrum for one value of γ looks essentially contin-
uum. When taking the γ-distribution into account (which is related to the
energy distribution of the relativistic electrons), the distribution becomes
trully continuum, and the critical and fundamental frequencies no longer can
be discerned (because they depend on γ).

After integrating over the energy distribution of the relativistic electrons,
which typically has a power-law distribution N(E) ∝ E−Γ one obtains the
following emission and absorption coefficients:

jν ∝ B
(Γ+1)/2
⊥

ν−(Γ−1)/2

αν ∝ B
(Γ+2)/2
⊥

ν−(Γ+4)/2

Note that αν describes synchrotron self-absorption. The resulting source
function and optical depth are

Sν =
jν
αν

∝ B
−1/2
⊥

ν5/2

τν = αν l ∝ B
(Γ+2)/2
⊥

ν−(Γ+4)/2l

Using that typically Γ > 0, we have that τν ∝ νa with a < 0; synchrotron
self-absorption becomes more important at lower frequencies.
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Figure 27: Specific intensity of synchrotron emission, including the effect of
synchrotron self absorption at low frequencies, where the optical depth exceeds
unity.

Application of the equation of radiative transfer, Iν = Sν (1− e−τν ), yields

Iν =

{

Sν ∝ ν5/2 if τν ≫ 1
jνl ∝ να if τν ≪ 1

where α ≡ −Γ−1
2
. Fig. 27 shown an illustration of a typical synchrotron

spectrum: at low frequencies, where τν ≫ 1, we have that Iν ∝ ν5/2, which
transits to Iν ∝ ν−(Γ−1)/2 once the emitting medium becomes optically thin
for synchroton self-absorption. Note that there is no cut-off related to the
critical frequency, since νcrit = νcrit(E).
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