
CHAPTER 26

Radiative Transfer

Consider an incoming signal of specific intensity Iν,0 passing through a
cloud (i.e., any gaseous region). As the radiation transits a small path length
dr through the cloud, its specific intensity changes by dIν = dIν,loss+dIν,gain.
The loss-term describes the combined effect of scattering and absorption,
which remove photons from the line-of-sight, while the gain-term describes
all processes that add photons to the line-of-sight; these include all emis-
sion processes from the gas itself, as well as scattering of photons from any
direction into the line-of-sight.

In what follows we ignore the contribution of scattering to dIν,gain, as this
term makes solving the equation of radiative transfer much more complicated.
We will briefly comments on that below, but for now the only process that
is assumed to contribute to dIν,gain are emission processes from the gas.

It is useful to define the following two coefficients:

• Absorption coefficient, αν = nσν = ρ κν , which has units [αν ] = cm−1.

• Emission coefficient, jν , defined as the energy emitted per unit time, per
unit volume, per unit frequency, per unit solid angle (i.e., dE = jν dt dV dν dΩ,
and thus [jν ] = erg s−1 cm−3Hz−1 sr−1).

In terms of these two coefficients, the equation of radiative transfer can
be written in either of the following forms

dIν
dr

= −αν Iν + jν (form I)

dIν
dτν

= −Iν + Sν (form II)

where Sν ≡ jν/αν is called the source function, and has units of specific
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intensity (i.e., [Sν ] = erg s−1 cm−2Hz−1 sr−1). In order to derive form II from
form I, recall that dτν = αν dr (see Chapter 24).

NOTE: we use the convention of τν increasing from the source towards the
observer. Some textbooks (e.g., Irwin) adopt the opposite convention, which
results in some sign differences.

To get some insight, we will now consider a number of different cases:

Case A No Cloud

In this case, there is no absorption (αν = 0) or emission (jν = 0), other than
the emission from the background source. Hence, we have that

dIν
dr

= 0 ⇒ Iν = Iν,0

which expresses that intensity is a conserved quantity in vacuum.

Case B Absorption Only

In this case, the cloud absorps background radiation, but does not emit
anything (jν = Sν = 0). Hence,

dIν
dτν

= −Iν

which is easily solved to yield

Iν = Iν,0 e
−τν

which is the expected result (see Chapter 25).

Case C Emission Only

If the cloud does not absorb (αν = 0) but does emit we have

dIν
dr

= jν ⇒ Iν = Iν,0 +

∫ l

0

jν(r) dr
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where l is the size of the cloud along the line-of-sight. This equation simply
expresses that the increase of intensity is equal to the emission coefficient
integrated along the line-of-sight.

Case D Cloud in Thermal Equilibrium w/o Background Source

Consider a cloud in TE, i.e., specified by a single temperature T (kinetic
temperature is equal to radiation temperature). Since in a system in TE
there can be no net transport of energy, we have that

dIν
dr

= −αν Iν + jν = 0 ⇒ Iν =
jν
αν

= Sν

Since the observer must see a black body of temperature T , we also have
that Iν = Bν(T ) (i.e., the intensity is given by a Planck curve corresponding
to the temperature of the cloud), and we thus have that

Iν = Sν = Bν(T )

jν = αν Bν(T )

The latter of these equivalent relations is sometimes called Kirchoff’s law,
and simply expresses that a black body needs to establish a balance between
emission and absorption (i.e., Bν(T ) = jν/αν).

Case E Emission & Absorption (formal solution)

Consider the general case with both emission and absorption (but where we
ignore the fact that scattering can scatter photons into my line of sight).
Starting from form II of the equation of radiative transfer, multiplying both
sides with eτν , we obtain that

dĨν
dτν

= −S̃ν

where Ĩν ≡ Iν e
τν and S̃ν ≡ Sν e

τν . We can rewrite the above differential
equation as

∫ Iν

Ĩν,0

dĨν =

∫ τν

0

S̃ν dτν
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Using that Ĩν,0 = Iν,0 e
0 = Iν,0 the solution to this simple integral equation is

Iν = Iν,0 e
−τν +

∫ τν

0

Sν(τ
′

ν) e
−(τν−τ ′

ν
) dτ ′ν

where τν is the total optical depth along the line of sight (i.e., through the
cloud). The above is the formal solution, which, under the simplifying as-
sumption that the source function is constant along the line of sight reduces
to

Iν = Iν,0 e
−τν + Sν

(

1− e−τν
)

The first term expresses the attenuation of the background signal, the sec-
ond term expresses the added signal due to the emission from the cloud, while
the third term describes the cloud’s self-absorption.

Using the above formal solution to the equation of radiative transfer, we have
the following two extremes:

τν ≫ 1 ⇒ Iν = Sν

τν ≪ 1 ⇒ Iν = Iν,0 (1− τν) + Sν τν

where, for the latter case, we have used the Taylor series expansion for the
exponential. In the high optical depth case, the observer just ‘sees’ the outer
layers of the cloud, and therefore the observed intensity is simply the source
function of the cloud (the observed signal contains no contribution from the
background source). In the small optical depth limit, the contribution from
the cloud is suppressed by a factor τν , while that from the background source
is attenuated by a factor (1− τν).

To get some further insight into the source function and radiative transfer
in general, consider form II of the radiate transfer equation. If Iν > Sν then
dIν/dτν < 0, so that the specific intensity decreases along the line of sight.
If, on the other hand, Iν < Sν then dIν/dτν > 0, indicating that the specific
intensity increases along the line of sight. Hence, Iν tends towards Sν . If
the optical depth of the cloud is sufficiently large than this ‘tendency’ will
succeed, and Iν = Sν .
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An important special case of the general solution derived above is if the cloud
is in local thermal equilibrium (LTE). This is very often the case, since over
the mean free path of the photons, every system will tend to be in LTE,
unless it was recently disturbed and has yet been able to equilibrate. In the
case of LTE, we have that, over a patch smaller than or equal to the mean
free path of the photons, we have that Sν ≡ jν/αν = Bν(T ), where T is the
kinetic temperature (= radiation temperature) of the patch.

The solution to the equation of radiative transfer now is

Iν = Iν,0 e
−τν +Bν(T )

[

1− e−τν
]

Note that Iν is not constant throughout the cloud, as was the case for a
cloud in TE. In the case of LTE, however, there can be a non-zero gradient
dIν/dr.

Before we interpret this result in detail, it is important to distinguish

Blackbody Radiation: Iν = Bν(T )

Thermal Radiation: Sν = Bν(T )

NOTE: thermal radiation is radiation emitted by matter in thermal equilib-
rium.

Keeping this difference in mind, we now look at the solution to our equation
of radiative transfer for a cloud in LTE at its two extremes:

τν ≫ 1 ⇒ Iν = Bν(T )

τν ≪ 1 ⇒ Iν = Iν,0 (1− τν) +Bν(T ) τν

The former expresses that an optically thick cloud in LTE emits black body

radiation. This is characterized by the fact that (i) if there is a background
source, you can’t see it, (ii) you can look into the source only for about
one mean free path of the photons (which is much smaller than the size
of the source), and (iii) the only information available to an observer is
the temperature of the cloud (the observed intensity is a Planck curve of
temperature T ).
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A good example of gas clouds in LTE are stars!

In the optically thin limit, the observed intensity depends on the background
source (if present), and depends on both the temperature (sets source func-
tion) and density (sets optical depth) of the cloud (recall that τν ∝ κν ρ l).

In the case without background source we have that

Iν =

{

Bν(T ) if τν ≫ 1
τν Bν(T ) if τν ≪ 1

Note that this is different from case D, in which we considered a cloud in
TE without background source. In that case we obtained that Iν = Bν(T )
independent of τν . In the case of LTE, however, there are radial gradients,
which are responsible for diminishing the intensity by the optical depth in
the case where τν ≪ 1. This may seem somewhat ‘counter-intuitive’, as it
indicates that a cloud of larger optical depth is more intense!!!

Based on the above, we have that, in the case of a cloud in LTE without
background source, Iν ≤ Bν(T ), where T is the temperature of the cloud. If
we express the intensity in terms of the brightness temperature we have
that TB,ν ≤ T . Hence, for a cloud in LTE without background source the
observed brightness temperature is a lower limit on the kinetic temperature
of the cloud.

What about scattering? In the most general case, any element in the
cloud receives radiation coming from all 4π sterradian, and a certain fraction
of that radiation will be scattered into the line-of-sight of an observer.

In general, the scattering can (will) be non-isotropic (e.g., Thomson scat-
tering) and incoherent (e.g., Compton scattering or resonant scattering),
and the final equation of radiative transfer can only be solved numerically.

In the simplified case of isotropic, coherent scattering the corresponding
emission coeffient can be found by simply equating the power absorbed per
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unit volume to that emitted (for each frequency);

jν,scat = αν,scat Jν

where αν,scat is the absorption coefficient of the scattering processes, while

Jν =
1

4π

∫

Iν dΩ

is the mean intensity, averaged over all 4π sterradian.

The source function due to scattering is then simply

Sν ≡
jν,scat
αν,scat

= Jν =
1

4π

∫

Iν dΩ

Hence, the source function due to isotropic, coherent scattering is simply
the mean intensity.

The radiative transfer equation for pure scattering (no background source,
and no emission) is

dIν
dr

= −αν,scat (Iν − Jν)

Even this oversimplified case of pure isotropic, coherent scattering is not
easily solved. Since Jν involves an integration (over all 4π sterradian), the
above equation is an integro-differential equation, which are extremely dif-
ficult to solve in general; one typically has to resort to numerical methods
(see Rybicki & Lightmann 1979 for more details).

Observability of Emission & Absorption Lines: Consider a cloud in
front of some background source. Assume the cloud is in LTE at temperature
T . Assume that αν is only non-zero at a specific frequency, ν1, correspond-
ing to some electron transition. Given that resonant scattering is typically
orders of magnitude more efficient than other scattering mechanisms, this is
a reasonable approximation. The intensity observed is

Iν = Iν,0 e
−τν +Bν(T )

[

1− e−τν
]
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At all frequencies other than ν1 we have τν = 0, and thus Iν = Iν,0. Now
assume that the observer sees an absorption line at ν = ν1. This implies
that

Iν1 = Iν1,0 e
−τν1 +Bν1(T )

[

1− e−τν1
]

< Iν1,0

while in the case of an emission line

Iν1 = Iν1,0 e
−τν1 +Bν1(T )

[

1− e−τν1
]

> Iν1,0

Rearranging, we then have that

Absorption Line: Bν(T ) < Iν,0 T < TB,ν

Emission Line: Bν(T ) > Iν,0 T > TB,ν

where T is the (kinetic) temperature of the cloud, and TB,ν is the brightness
temperature of the background source, at the frequency of the line. Hence,
if the cloud is colder (hotter) than the source, an absorption (emission) line
will arise. In the case of no background source, we effectively have that
TB,ν = 0, and the cloud will thus reveal an emission line. In the case where
T = TB,ν no line will be visible, independent of the optical depth of the cloud!
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