
CHAPTER 24

The Interaction of Light with Matter: II - Absorption

Absorption: The absorption of photons can have three effects:

• heating of the absorbing medium (heating of dust grains, or exci-
tation of gas followed by collisional de-excitation)

• acceleration of absorbing medium (radiation pressure)

• change of state of absorbing medium (ionization, sublimation or
dissociation)

Note that ionization (transition from neutral to ionized), sublimation (transi-
tion from solid to gas) and dissociation (transition from molecular to atomic)
can also occur as a consequence of particle collisions. Therefore one often
uses terms such as photo-ionization and collisional ionization to distinguish
between these.

Photoionization: Photoionization is the process in which an atom is ionized
by the absorption of a photon. For hydrogen, this is

HI + γ → p + e ,

where HI denotes a neutral hydrogen atom. The photoionization rate, Γγ,H,
is proportional to the number density of ionizing photons and to the pho-
toionization cross section, σpi(ν), according to:

Γγ,H =

∫

∞

νt

c σpi(ν)Nγ(ν) dν

where νt is the threshold frequency for ionization (corresponding to 13.6eV in
the case of hydrogen). Nγ(ν)dν in the above equation is the number density
of photons with frequencies in the range ν to ν + dν, and is related to the
energy flux of the radiation field, J(ν), by

Nγ(ν) =
4 π J(ν)

c h ν
.
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The photoionization cross sections can be obtained from quantum electrody-
namics by calculating the bound-free transition probability of an atom in a
radiation field (see e.g., Rybicki & Lightman 1979).

Recombination: Recombination is the process by which an ion recombines
with an electron. For hydrogen ions (i.e. protons), the process is

p + e → HI + γ .

For hydrogen (or a hydrogenic ion, i.e., an ion with a single electron), the re-
combination cross section to form an atom (or ion) at level n, σrec(v, n), is
related to the corresponding photoionization cross section by the Milne

relation:

σrec(v, n) =
gn
gn+1

(

h ν

me c v

)2

σpi(ν, n) ,

where gn = 2n2 is the statistical weight of energy level n and ν and v are
related by mev

2/2 = h(ν − νn), with hνn the threshold energy required to
ionize an atom whose electron sits in energy state n. The recombination

coefficient for a given level n is the product of the capture cross section
and velocity, σrec(v, n) v, averaged over the velocity distribution f(v). For an
optically thin gas where all photons produced by recombination can escape
without being absorbed, the total recombination coefficient is the sum over
all n:

αA =

∞
∑

n=1

αn =

∞
∑

n=1

∫

σrec(v, n) v f(v) dv

This is called the Case A recombination coefficient, to distinguish it
from the Case B recombination in an optically thick gas. In Case B, recom-
binations to the ground level generate ionizing photons that are absorbed
by the gas, so that they do not contribute to the overall ionization state of
the gas. It is easy to see that the Case B recombination coefficient is
αB = αA − α1.

Strömgren sphere: A sphere of ionized hydrogen (H II) around an ionizing
source (e.g., AGN, O or B star, etc.). Ionization of hydrogen (from the ground
state) requires a photon energy of at least 13.6eV, which implies UV photons.
In a (partially) ionized medium, electrons and nuclei recombine to produce
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neutral atoms. The region around an ionizing source will ultimately establish
ionization equilibrium in which the number of ionizations is equal to the
number of recombinations.

Consider an ionizing source in a uniform medium of pure hydrogen. Let Ṅion

be the number of ionizing photons produced per second. The corresponding
recombination rate is given by

Ṅrec = ne np αrec V = n2
e αB

4

3
πR3

s

where we have used that, for a pure hydrogen gas, ne = np, and Rs is the
radius of the Strömgren sphere (i.e., the radius of the sphere that is going
to be ionized), which can be written as

Rs =

(

3 Ṅion

4 π αB n2
e

)1/3

Using that the luminosity of the ionizing source, L∗, is related to its surface
intensity, I∗, according to

L∗ = 4 π R2
∗
F∗ = 4 π2R2

∗
I∗

where R∗ is the radius of the ionizing source (i.e., an O-star) and we have
used that F∗ = π I∗ (see Chapter 20). Hence, we have that

Ṅion = 4 π2R2
∗

∫

∞

νt

Bν(T )

h ν
dν =

π L∗

σSBT 4
eff

∫

∞

νt

Bν(T )

h ν
dν

where we have assumed that the ionizing source is a Black Body of temper-
ature T , and, in the second part, that L∗ = 4πR2

∗
σSBT

4
eff .

Thus, by measuring the luminosity and effective temperature of a star, and
the radius of its Strömgren sphere, one can infer the (electron) density of its
surroundings,
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