
CHAPTER 21

Radiation Essentials

Spectral Energy Distribution: the radiation from a source may be char-
acterized by its spectral energy distribution (SED), Lν dν, or, equivalently,
Lλ dλ. Some texts refer to the SEDs as the spectral luminosity or the spectral
power. The SED is the total energy emitted by photons in the frequency
interval [ν, ν + dν], and is related to the total luminosity, L ≡ dE/dt,
according to

L =

∫

Lν dν =

∫

Lλ dλ

Note that [Lν ] = erg s−1Hz−1, while [L] = erg s−1.

Flux: The flux, f , of a source is the radiation energy per unit time passing
through a unit area

dL = f dA [f ] = erg s−1 cm−2

where A is the area. Similarly, we can also define the spectral flux density

(or simply ‘flux density’), as the flux per unit spectral bandwidth:

dLν = fν dA [fν ] = erg s−1 cm−2Hz−1

In radio astronomy, one typically expresses fν in Jansky, where 1Jy =
10−23 erg s−1 cm−2Hz−1. As with the SEDs, one may also express spectral
flux densities as fλ. Using that λ = c/ν, and using that fνdν = fλdλ one
has that

fν =
λ2

c
fλ , fλ =

ν2

c
fν

Luminosity and flux are related according to

L = 4 π r2 f

where r is the distance from the source.
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Figure 16: Diagrams showing intensity and its dependence on direction and
solid angle. Fig. (a) depicts the ‘observational view’, where dA represents an
element of a detector. The arrows show incoming rays from the center of the
source. Fig. (b) depicts the ‘emission view’, where dA represents the surface
of a star. At each point on the surface, photons leave in all directions away
from the surface.

Intensity: The intensity, I, also called surface brightness is the flux emit-
ted in, or observed from, a solid angle dΩ. The intensity is related to the
flux via

df = I cos θ dΩ

where θ is the angle between the normal of the surface area through which
the flux is measured and the direction of the solid angle. The unit of intensity
is [I] = erg s−1 cm−2 sr−1. Here ‘sr’ is a steradian, which is the unit of solid
angle measure (there are 4π steradians in a complete sphere). As with the
flux and luminosity, one can also define a specific intensity, Iν , which is
the intensity per unit spectral bandwidth ([Iν ] = erg s−1 cm−2Hz−1 sr−1).

The flux emerging from the surface of a star with luminosity L and radius
R∗ is

F ≡
L

4πR2
∗

=

∫

half sphere

I cos θ dΩ =

∫ 2π

0

dφ

∫ π/2

0

dθ I cos θ sin θ = π I

where we have used that dΩ = sin θ dθ dφ, and the fact that the integration
over the solid angle Ω is only to be performed over half a sphere. Note that
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an observer can only measure the surface brightness of resolved objects; if
unresolved, the observer can only measure the objects flux.

Consider a resolved object (i.e., a galaxy), whose surface brightness distribu-
tion on the sky is given by I(Ω). If the objects extents a solid angle ΩS on
the sky, its flux is given by

f =

∫

ΩS

I(Ω) cos θ dΩ ≃

∫

I(Ω) dΩ ≡ 〈I〉ΩS

where we have assumed that ΩS is small, so that variations of cos θ across
the object can be neglected. Since both f ∝ r−2 and ΩS ∝ r−2, where r
is the object’s distance, we see that the average surface brightness 〈I〉 is
independent of distance.

Energy density: the energy density, u, is a measure of the radiative energy
per unit volume (i.e., [u] = erg cm−3). If the radiation intensity as seen from
some specific location in space is given by I(Ω), then the energy density at
that location is

u =
1

c

∫

I dΩ ≡
4π

c
J

where

J ≡
1

4π

∫

I dΩ

is the mean intensity (i.e., average over 4π sterradian). If the radiation
is isotropic (i.e., the center of a star, or, to good approximation, a random
location in the early Universe), then J = I. If the radiation intensity is due to
the summed intensity from a number of individual sources, then u = 1

c

∑

i fi,
where fi is the flux due to source i.

Recall from Chapter 13 that the number density of photons emerging from
a Black Body of temperature T is given by

nγ(ν, T ) dν =
8π ν2

c3
dν

ehν/kBT − 1
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Hence, we have that

u(ν, T ) dν = nγ(ν, T ) hν dν =
8π h ν3

c3
dν

ehν/kBT − 1

Using that u(ν, T ) = (4π/c)Jν(T ) we have that themean specific intensity

from a black body [for which one typically uses the symbol Bν(T )] is given
by

Bν(T ) dν =
2 h ν3

c2
dν

ehν/kBT − 1

which is called the Planck curve (or ‘formula’). Integrating over frequency
yields the total, mean intensity emitted from the surface of a Black Body

J = J(T ) =

∫

∞

0

Bν(T ) dν =
σSB

π
T 4

where σSB is the Stefan-Boltzmann constant. This implies an energy
density

u = u(T ) =
4π

c
J =

4σSB

c
T 4 ≡ ar T

4

where ar ≃ 7.6 × 10−15 erg cm−3K−4 is called the radiation constant (see
also Chapter 13).
Wien’s Displacement Law: When the temperature of a Black Body emit-
ter increases, the overall radiated energy increases and the peak of the ra-
diation curve moves to shorter wavelengths. It is straightforward to show
that the product of the temperature and the wavelength at which the Planck
curve peaks is a constant, given by

λmaxT = 0.29

where T is the absolute temperature, expressed in degrees Kelvin, and λmax

is expressed in cm. This relation is called Wien’s Displacement Law.

Stefan-Boltzmann Law: The flux emitted by a Black Body is

FBB = π I(T ) = σSBT
4

which is known as the Stefan-Boltzmann law. This law is used to define
the effective temperature of an emitter.
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Figure 17: Various Planck curves for different temperatures, illustrating
Wien’s displacement law. Note how the Planck curve for a black body with the
temperature of the Sun peaks at the visible wavelengths, where the sensitivity
of our eyes is maximal

Effective Temperature: The temperature an emitter of flux F would have
if it where a Black Body; using the Stefan-Boltzmann law we have that
Teff = (F/σSB)

1/4. We can also use the effective temperature to express the
emitter’s luminosity;

L = 4 π R2 σSB T 4
eff

where R is the emitter’s radius. The effective temperature is sometimes
also called the radiation temperature, as a measure for the temperature
associated with the radiation field.

Brightness Temperature: the brightness temperature, TB(ν), of a source
at frequency ν is defined as the temperature which, when put into the Planck
formula, yields the specific intensity actually measured at that frequency.
Hence, for a Black Body TB(ν) is simply equal to the temperature of the
Black Body. If TB(ν) depends on frequency, then the emitter is not a Black
Body. The brightness temperature is a frequency-dependent version of the
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effective, or radiation, temperature.

Wavebands: Astronomers typically measure an object’s flux through some
filter (waveband). The measured flux in ‘band’ X is, fX , is related to the
spectral flux density, fλ, of the object according to

fX =

∫

fλ FX(λ)R(λ) T (λ) dλ

Here FX(λ) describes the transmission of the filter that defines waveband X ,
R(λ) is the transmission efficiency of the telescope + instrument, and T (λ)
describes the transmission of the atmosphere. The combined effect of FX , R,
and T is typically ‘calibrated’ using standard stars with known fλ.

Magnitudes: For historical reasons, the flux of an astronomical object in
waveband X is usually quoted in terms of apparent magnitude:

mX = −2.5 log

(

fX
fX,0

)

where the flux zero-point fX,0 has traditionally been taken as the flux in the
X band of the bright star Vega. In recent years it has become more common
to use ‘AB-magnitudes’, for which

fX,0 = 3.6308× 10−20 erg s−1cm−2Hz−1

∫

FX(c/ν) dν

Similarly, the luminosities of objects (in waveband X) are often quoted as
an absolute magnitude:

MX = −2.5 log(LX) + CX

where CX is a zero point. It is usually convenient to write LX in units of the
solar luminosity in the same band, L⊙X , so that

MX = −2.5 log

(

LX

L⊙X

)

+M⊙X ,

where M⊙X is the absolute magnitude of the Sun in the waveband in consid-
eration. Using the relation between luminosity and flux we have that

mX −MX = 5 log(r/r0)
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where r0 is a fiducial distance at which mX and MX are defined to have the
same value. Conventionally, r0 is chosen to be 10 pc.

Distance modulus: the distance modulus of an object is defined as mX −
MX .
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