
CHAPTER 19

Fluid Instabilities

In this Chapter we discuss the following instabilities:

• convective instability (Schwarzschild criterion)
• interface instabilities (Rayleight Taylor & Kelvin-Helmholtz)
• gravitational instability (Jeans criterion)
• thermal instability (Field criterion)

Convective Instability: In astrophysics we often need to consider fluids
heated from ”below” (e.g., stars, Earth’s atmosphere, where Sun heats sur-
face, etc.)1. This results in a temperature gradient: hot at the base, colder
further ”up”. Since warmer fluids are more buoyant (‘lighter’), they like to be
further up than colder (‘heavier’) fluids. The question we need to address is
under what conditions this adverse temperature gradient becomes unstable,
developing ”overturning” motions known as thermal convection.

Consider a blob with density ρb and pressure Pb embedded in an ambi-
ent medium of density ρ and pressure P . Suppose the blob is displaced
by a small distance δz upward. After the
displacement the blob will have conditions
(ρ∗b, P

∗

b ) and its new ambient medium is char-
acterized by (ρ′, P ′)c, where

ρ′ = ρ+
dρ

dz
δz P ′ = P +

dP

dz
δz

Initially the blob is assumed to be in me-

chanical and thermal equilibrium with
its ambient medium, so that ρb = ρ and
Pb = P . After the displacement the blob
needs to re-establish a new mechanical and
thermal equilibrium. In general, the time
scale on which it re-establishes mechanical

1Here and in what follows, ‘up’ refers to the direction opposite to that of gravity.
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(pressure) equilibrium is the sound crossing time, τs, while re-establishing
thermal equilibrium proceeds much slower, on the conduction time, τc. Given
that τs ≪ τc we can assume that P ∗

b = P ′, and treat the displacement as adi-
abatic. The latter implies that the process can be described by an adiabatic
EoS: P ∝ ργ . Hence, we have that

ρ∗b = ρb

(

P ∗

b

Pb

)1/γ

= ρb

(

P ′

P

)1/γ

= ρb

[

1 +
1

P

dP

dz
δz

]1/γ

where the last step follows from eq. (1). In the limit of small displacements
δz, we can use Taylor series expansion to show that, to first order,

ρ∗b = ρ+
ρ

γ P

dP

dz
δz

where we have used that initially ρb = ρ, and that the Taylor series expansion,
f(x) ≃ f(0)+ f ′(0)x+ 1

2
f ′′(0)x2 + ..., of f(x) = [1 + x]1/γ is given by f(x) ≃

1 + 1
γ
x + .... Suppose we have a stratified medium in which dρ/dz < 0 and

dP/dz < 0. In that case, if ρ∗b < ρ′ then the displacement has made the blob
more buoyant, resulting in instability. Hence, using that ρ′ = ρ+(dρ/dz) δz
we see that stability requires that

dρ

dz
<

ρ

γ P

dP

dz

This is called the Schwarzschild criterion for convective stability.

It is often convenient to rewrite this criterion in a form that contains the
temperature. Using that

ρ = ρ(P, T ) =
µmp

kBT
P

it is straightforward to show that

dρ

dz
=

ρ

P

dP

dz
− ρ

T

dT

dz

Substitution in ρ′ = ρ+ (dρ/dz) δz then yields that

ρ∗b − ρ′ =

[

−(1− 1

γ
)
ρ

P

dP

dz
+

ρ

T

dT

dz

]

δz
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Figure 11: Example of Rayleigh-Taylor instability in a hydro-dynamical sim-
ulation.

Since stability requires that ρ∗b − ρ′ > 0, and using that δz > 0, dP/dz < 0
and dT/dz < 0 we can rewrite the above Schwarzschild criterion for stability
as

∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

<

(

1− 1

γ

)

T

P

∣

∣

∣

∣

dP

dz

∣

∣

∣

∣

This shows that if the temperature gradient becomes too large the system
becomes convectively unstable: blobs will rise up until they start to loose
their thermal energy to the ambient medium, resulting in convective energy
transport that tries to “overturn” the hot (high entropy) and cold (low en-
tropy) material. In fact, without any proof we mention that in terms of the
specific entropy, s, one can also write the Schwarzschild criterion for convec-
tive stability as ds/dz > 0.

Rayleigh-Taylor Instability: The Rayleigh-Taylor (RT) instability is an
instability of an interface between two fluids of different densities that oc-
curs when one of the fluids is accelerated into the other. Examples include
supernova explosions in which expanding core gas is accelerated into denser
shell gas and the common terrestrial example of a denser fluid such as water
suspended above a lighter fluid such as oil in the Earth’s gravitational field.

It is easy to see where the RT instability comes from. Consider a fluid of
density ρ2 sitting on top of a fluid of density ρ1 < ρ2 in a gravitational field
that is pointing in the downward direction. Consider a small perturbation
in which the initially horizontal interface takes on a small amplitude, sinu-
soidal deformation. Since this implies moving a certain volume of denser
material down, and an equally large volume of the lighter material up, it is
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Figure 12: Illustration of onset of Kelvin-Helmholtz instability

immediately clear that the potential energy of this ‘perturbed’ configuration
is lower than that of the initial state, and therefore energetically favorable.
Simply put, the initial configuration is unstable to small deformations of the
interface.

Stability analysis (i.e., perturbation analysis of the fluid equations) shows
that the dispersion relation corresponding to the RT instability is given
by

ω = ±i k

√

g

k

ρ2 − ρ1
ρ2 + ρ1

where g is the gravitational acceleration, and the factor (ρ2 − ρ1)/(ρ2 + ρ1)
is called the Atwood number. Since the wavenumber of the perturbation
k > 0 we see that ω is imaginary, which implies that the perturbations will
grow exponentially (i.e., the system is unstable).

Kelvin-Helmholtz Instability: the Kelvin-Helmholtz (KH) instability is
an interface instability that arises when two fluids with different densities
have a velocity difference across their interface. Similar to the RT instability,
the KH instability manifests itself as a small wavy pattern in the interface
which develops into turbulence and which causes mixing. Examples where
KH instability plays a role are wind blowing over water, (astrophysical) jets,
the cloud bands on Jupiter (in particular the famous red spot), and clouds of
denser gas falling through the hot, low density intra-cluster medium (ICM).

If surface tension is negligble than in principle any velocity difference across
an interface is KH unstable. However, surface tension stabilizes the short
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wavelength modes so that typically KH instability kicks in above some
velocity treshold.

Stability analysis (i.e., perturbation analysis of the fluid equations) shows
that the dispersion relation corresponding to the KH instability is given
by

ω =
(ρh ρc)

1/2 v

ρh + ρc
k

where ρh and ρc are the densities of the hot and cold media respectively (with
ρh < ρc), and v is the interface velocity.

Consider a cold cloud of radius Rc falling into a cluster. If the cloud started
out at a large distance from the cluster with zero velocity, than at infall it
has a velocity v ∼ vesc ∼ cs,h, where the latter is the sound speed of the hot
ICM, which is assumed to be in hydrostatic equilibrium. Defining the cloud’s
overdensity δ = ρc/ρh − 1, we can write the dispersion relation as

ω =
ρh (ρc/ρh)

1/2

ρh[1 + (ρc/ρh)]
cs,h k =

(δ + 1)1/2

δ + 2
cs,h k

The mode that will destroy the cloud has k ∼ 1/Rc, so that the time-scale
for cloud destruction is

τKH ≃ 1

ω
≃ Rc

cs,h

δ + 2

(δ + 1)1/2

Assuming pressure equilibrium between cloud and ICM, and adopting the
EoS of an ideal gas, implies that ρh Th = ρc Tc, so that

cs,h
cs,c

=
T

1/2
h

T
1/2
c

=
ρ
1/2
c

ρ
1/2
h

= (δ + 1)1/2

Hence, one finds that Kelvin-Helmholtz time for cloud destruction is

τKH ≃ 1

ω
≃ Rc

cs,c

δ + 2

δ + 1

Note that τKH ∼ ζ(Rc/cs,c) = ζτs, with ζ = 1(2) for δ ≫ 1(≪ 1). Hence,
the Kelvin-Helmholtz instability will typically destroy clouds falling into
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a hot ”atmosphere” on a time scale between one and two sound crossing

times, τs, of the cloud. Note, though, that magnetic fields and/or radiative
cooling at the interface may stabilize the clouds.

Gravitational Instability: In our discussion of sound waves we used per-
turbation analysis to derive a dispersion relation ω2 = k2 c2s . In deriving that
equation we ignored gravity by setting ∇Φ = 0 (see Chapter 17). If you do
not ignore gravity, then you add one more perturbed quantity; Φ = Φ0 +Φ1

and one more equation, namely the Poisson equation ∇2Φ = 4πGρ.
It is straightforward to show that this results in a modified dispersion re-

lation:
ω2 = k2 c2s − 4πGρ0 = c2s

(

k2 − k2
J

)

where we have introduced the Jeans wavenumber

kJ =

√
4πGρ0
cs

to which we can also associate a Jeans length

λJ ≡
2π

kJ
=

√

π

Gρ0
cs

and a Jeans mass

MJ =
4

3
πρ0

(

λJ

2

)3

=
π

6
ρ0 λ

3
J

From the dispersion relation one immediately sees that the system is unsta-
ble (i.e., ω is imaginary) if k < kJ (or, equivalently, λ > λJ or M > MJ).
This is called the Jeans criterion for gravitational instability. It ex-
presses when pressure forces (which try to disperse matter) are no longer
able to overcome gravity (which tries to make matter collapse), resulting in
exponential gravitational collapse on a time scale

τff =

√

3 π

32Gρ

known as the free-fall time for gravitational collapse.
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The Jeans stability criterion is of utmost importance in astrophysics. It is
used to describes the formation of galaxies and large scale structure in an
expanding space-time (in this case the growth-rate is not exponential, but
only power-law), to describe the formation of stars in molecular clouds within
galaxies, and it may even play an important role in the formation of planets
in protoplanetary disks.

In deriving the Jeans Stability criterion you will encounter a somewhat puz-
zling issue. Consider the Poisson equation for the unperturbed medium
(which has density ρ0 and gravitational potential Φ0):

∇2Φ0 = 4πGρ0

Since the initial, unperturbed medium is supposed to be homogeneous there
can be no gravitational force; hence ∇Φ0 = 0 everywhere. The above Pois-
son equation then implies that ρ0 = 0. In other words, an unperturbed,
homogeneous density field of non-zero density does not seem to exist. Sir
James Jeans ‘ignored’ this ‘nuisance’ in his derivation, which has since be-
come known as the Jeans swindle. The problem arises because Newtonian
physics is not equipped to deal with systems of inifinite extent (a require-
ment for a perfectly homogeneous density distribution). See Kiessling (1999;
arXiv:9910247) for a detailed discussion, including an elegant demonstration
that the Jeans swindle is actually vindicated!

Thermal Instability: Let L = L(ρ, T ) = C −H be the net cooling rate. If
L = 0 the system is said to be in thermal equilibrium (TE), while L > 0
and L < 0 correspond to cooling and heating, respectively.

The condition L(ρ, T ) = 0 corresponds to a curve in the (ρ, T )-plane with
a shape similar to that shown in Fig. 11. It has flat parts at T ∼ 106K, at
T ∼ 104K, at T ∼ 10 − 100K. This can be understood from simple atomic
physics, and will be discussed in some detail in the lectures on radiative
processes (see § 8.5.1 of Mo, van den Bosch & White, 2010 for a detailed
discussion). Above the TE curve we have that L > 0 (net cooling), while
below it L < 0 (net heating). The dotted curve indicates a line of constant
pressure (T ∝ ρ−1). Consider a blob in thermal and mechanical (pressure)
equilibrium with its ambient medium, and with a pressure indicated by the
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Figure 13: The locus of ther-
mal equilibrium (L = 0) in
the (ρ, T ) plane, illustrating
the principle of thermal in-
stability. The dashed line
indicates a line of constant
pressure.

dashed line. There are five possible solutions for the density and temperature
of the blob, two of which are indicated by P1 and P2; here confusingly the P
refers to ‘point’ rather than ‘pressure’. Suppose I have a blob located at point
P2. If I heat the blob, displacing it from TE along the constant pressure curve
(i.e., the blob is assumed small enough that the sound crossing time, on which
the blob re-established mechanical equilibrium, is short). The blob now finds
itself in the region where L > 0 (i.e, net cooling), so that it will cool back to
its original location on the TE-curve; the blob is stable. For similar reasons,
it is easy to see that a blob located at point P1 is unstable. This instability
is called thermal instability, and it explains why the ISM is a three-

phase medium, with gas of three different temperatures (T ∼ 106K, 104K,
and ∼ 10 − 100K) coexisting in pressure equilibrium. Gas at any other
temperature but in pressure equilibrium is thermall unstable.

It is easy to see that the requirement for thermal instability translates into

(

∂L
∂T

)

P

< 0

which is known as the Field criterion for thermal instability (after
American astrophysicist George B. Field).
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