
CHAPTER 18

Shocks

When discussing sound waves (see Chapter 17), we considered small (linear)
perturbations. In this Chapter we consider the case in which the pertur-
bations are large (non-linear). Typically, a large disturbance results in an
abrupt discontinuity in the fluid, called a shock. Note: not all discontu-
inities are shocks, but all shocks are discontinuities.

Mach Number: if v is the flow speed of the fluid, and cs is the sound speed,
then the Mach number of the flow is defined as

M =
v

cs

Note: simply accelerating a flow to supersonic speeds does not necessarily

generate a shock. Shocks only arise when an obstruction in the flow causes a
deceleration of fluid moving at supersonic speeds. The reason is that distur-
bances cannot propagate upstream, so that the flow cannot ‘adjust itself’ to
the obstacle because there is no way of propagating a signal (which always
goes at the sound speed) in the upstream direction. Consequently, the flow
remains undisturbed until it hits the obstacle, resulting in a discontinuous
change in flow properties; a shock.

Structure of a Shock: Fig. 10 shows the structure of a planar shock.
The shock has a finite, non-zero width (typically a few mean-free paths of
the fluid particles), and separates the ‘up-stream’, pre-shocked gas, from the
‘down-stream’, shocked gas.

For reasons that will become clear in what follows, it is useful to split the
downstream region in two sub-regions; one in which the fluid is out of thermal
equilibrium, with net cooling L > 0, and, further away from the shock, a
region where the downstream gas is (once again) in thermal equilibrium (i.e.,
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Figure 10: Structure of a planar shock.

L = 0). If the transition between these two sub-regions falls well outside
the shock (i.e., if x3 ≫ x2) the shock is said to be adiabatic. In that
case, we can derive a relation between the upstream (pre-shocked) properties
(ρ1, P1, T1, u1) and the downstream (post-shocked) properties (ρ2, P2, T2, u2);
these relations are called the Rankine-Hugoniot jump conditions. Linking
the properties in region three (ρ3, P3, T3, u3) to those in the pre-shocked gas
is in general not possible, except in the case where T3 = T1. In this case one
may consider the shock to be isothermal.

Rankine-Hugoniot jump conditions: We now derive the relations be-
tween the up- and down-stream quantities, under the assumption that the
shock is adiabatic.
Consider a rectangular volume V that encloses part of the shock; it has a
thickness dx > (x2 − x1) and is centered in the x-direction on the middle of
shock. At fixed x the volume is bounded by an area A. If we ignore variations
in ρ and ~u in the y- and z-directions, the continuity equation becomes

∂ρ

∂t
+

∂

∂x
(ρ ux) = 0
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If we itegrate this equation over our volume V we obtain

∫ ∫ ∫

∂ρ

∂t
dx dy dz +

∫ ∫ ∫

∂

∂x
(ρux) dx dy dz = 0

⇔ A

∫

∂ρ

∂t
dx+ A

∫

∂

∂x
(ρux) dx = 0

⇔
∂

∂t

∫

ρ dx+

∫

d(ρux) = 0

Since ∂
∂t

∫

ρ dV = 0 (there is no mass accumulation in the shock), we have
that

ρux|+dx/2 = ρux|−dx/2

In terms of the upstream (index 1) and downstream (index 2) quantities:

ρ1 u1 = ρ2 u2

This equation describes mass conservation across shock.

The momentum equation in the x-direction, ignoring viscosity, is given by

∂

∂t
(ρ ux) = −

∂

∂x
(ρ ux ux + P )− ρ

∂Φ

∂x

Integrating this equation over V and ignoring any gradient in Φ across the
shock, we obtain

ρ1 u
2
1 + P1 = ρ2 u

2
2 + P2

This equation describes how the shock converts ram pressure into ther-
mal pressure.

Finally, applying the same to the energy equation under the assumption
that the shock is adiabatic (i.e., dQ/dt = 0), one finds that (E + P )u has to
be the same on both sides of the shock, i.e.,

[

1

2
u2 + Φ + ε+

P

ρ

]

ρ u = constant
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We have already seen that ρ u is constant. Hence, if we once more ignore
gradients in Φ across the shock, we obtain that

1

2
u2
1 + ε1 + P1/ρ1 =

1

2
u2
2 + ε2 + P2/ρ2

This equation describes how the shock converts kinetic energy into en-
thalpy. Qualitatively, a shock converts an ordered flow upstream into a
disordered (hot) flow downstream.

The three equations in the rectangular boxes are known as the Rankine-
Hugoniot (RH) jump conditions for an adiabatic shock. Using straight-
forward but tedious algebra, these RH jump conditions can be written in a
more useful form using the Mach number M1 of the upstream gas:

ρ2
ρ1

=
u1

u2

=

[

1

M2
1

+
γ − 1

γ + 1

(

1−
1

M2
1

)]

−1

P2

P1

=
2γ

γ + 1
M2

1 −
γ − 1

γ + 1

T2

T1

=
P2 ρ2
P1 ρ1

=
γ − 1

γ + 1

[

2

γ + 1

(

γM2
1 −

1

M2
1

)

+
4γ

γ − 1
−

γ − 1

γ + 1

]

Here we have used that for an ideal gas

P = (γ − 1) ρ ε =
kB T

µmp

ρ

Given that M1 > 1, we see that ρ2 > ρ1 (shocks compress), u2 < u1 (shocks
decelerate), P2 > P1 (shocks increase pressure), and T2 > T1 (shocks
heat). The latter may seem surprising, given that the shock is considered to
be adiabatic: although the process has been adiabatic, in that dQ/dt = 0,
the gas has changed its adiabat; its entropy has increased as a consequence of
the shock converting kinetic energy into thermal, internal energy. In general,
in the presence of viscosity, a change that is adiabatic does not imply that
the states before and after are simply linked by the relation P = K ργ, with
K some constant. Shocks are always viscous, which causes K to change
across the shock, such that the entropy increases; it is this aspect of the
shock that causes irreversibility, thus defining an ”arrow of time”.
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Back to the RH jump conditions: in the limit M1 ≫ 1 we have that

ρ2 =
γ + 1

γ − 1
ρ1 = 4 ρ1

where we have used that γ = 5/3 for a monoatomic gas. Thus, with an
adiabatic shock you can achieve a maximum compression in density of a
factor four! Physically, the reason why there is a maximal compression is that
the pressure and temperature of the downstream fluid diverge as M2

1. This
huge increase in downstream pressure inhibits the amount of compression
of the downstream gas. However, this is only true under the assumption
that the shock is adiabtic. The downstream, post-shocked gas is out of
thermal equilibrium, and in general will be cooling (i.e., L > 0). At a certain
distance past the shock (i.e., when x = x3 in Fig. 10), the fluid will re-
establish thermal equilibrium (i.e., L = 0). In some special cases, one can
obtain the properties of the fluid in the new equilibrium state; one such case
is the example of an isothermal shock, for which the downstream gas has
the same temperature as the upstream gas (i.e., T3 = T1).

In the case of an isothermal shock, the first two Rankine-Hugoniot
jump conditions are still valid, i.e.,

ρ1 u1 = ρ3 u3

ρ1 u
2
1 + P1 = ρ3 u

2
3 + P3

However, the third condition, which derives from the energy equation, is no
longer valid. After all, in deriving that one we had assumed that the shock
was adiabatic. In the case of an isothermal shock we have to replace the
third RH jump condition with T1 = T3. The latter implies that c2s = P3/ρ3 =
P1/ρ1, and allows us to rewrite the second RH condition as
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ρ1(u
2
1 + c2s) = ρ3(u

2
3 + c2s)

⇔ u2
1 −

ρ3
ρ1
u2
3 =

ρ3
ρ1
c2s − c2s

⇔ u2
1 − u1u3 = (u1

u3

− 1) c2s

⇔ u1u3(u1 − u3) = (u1 − u3) c
2
s

⇔ c2s = u1u3

Here the second step follows from using the first RH jump condition. If we
now substitute this result back into the first RH jump condition we obtain
that

ρ3
ρ1

=
u1

u3

=

(

u1

cs

)2

= M2
1

Hence, in the case of isothermal shock (or an adiabatic shock, but suffi-
ciently far behind the shock in the downstream fluid), we have that there is
no restriction to how much compression the shock can achieve; depending on
the Mach number of the shock, the compression can be huge.
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