
CHAPTER 17

Sound Waves

If a (compressible) fluid in equilibrium is perturbed, and the perturbation
is sufficiently small, the perturbation will propagate through the fluid as a
sound wave, which is a mechanical, longitudinal wave.

Let (ρ0, P0, ~u0) be a uniform, equilibrium solution of the Euler fluid
equations (i.e., ignore viscosity). Also, in what follows we will ignore gravity
(i.e., ∇Φ = 0).

Uniformity implies that ∇ρ0 = ∇P0 = ∇~u0 = 0. In addition, since the only
allowed motion is uniform motion of the entire system, we can always use a
Galilean coordinate transformation so that ~u0 = 0, which is what we adopt
in what follows.

Substitution in the continuity and momentum equations, one obtains that
∂ρ0/∂t = ∂~u0/∂t = 0, indicative of an equilibrium solution.

Perturbation Analysis: Consider a small perturbation away from the
above equilibrium solution:

ρ0 → ρ0 + ρ1

P0 → P0 + P1

~u0 → ~u0 + ~u1 = ~u1

where |ρ1/ρ0| ≪ 1, |P1/P0| ≪ 1 and ~u1 is small (compared to the sound
speed, to be derived below).
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Substitution in the continuity and momentum equations yields

∂(ρ0 + ρ1)

∂t
+∇(ρ0 + ρ1)~u1 = 0

∂~u1

∂t
+ ~u1 · ∇~u1 = −

∇(P0 + P1)

(ρ0 + ρ1)

which, using that ∇ρ0 = ∇P0 = ∇~u0 = 0 reduces to

∂ρ1
∂t

+ ρ0∇~u1 +∇(ρ1~u1) = 0

∂~u1

∂t
+

ρ1
ρ0

∂~u1

∂t
+ ~u1 · ∇~u1 +

ρ1
ρ0

~u1 · ∇~u1 = −
∇P1

ρ0

The latter follows from first multiplying the momentum equations with (ρ0+
ρ1)/ρ0. Next we linearize these equations, which means we use that the
perturbed values are all small such that terms that contain products of two
or more of these quantities are always negligible compared to those that
contain only one such quantity. Hence, the above equations reduce to

∂ρ1
∂t

+ ρ0∇~u1 = 0

∂~u1

∂t
+

∇P1

ρ0
= 0

These equations describe the evolution of perturbations in an ideal, inviscid
and uniform fluid. As always, these equations need an additional equation
for closure. In what follows we assume a barotropic equation of state,
P = P (ρ).

Using Taylor series expansion, we then have that

P (ρ0 + ρ1) = P (ρ0) +

(

∂P

∂ρ

)

0

ρ1 +O(ρ21)

where we have used (∂P/∂ρ)0 as shorthand for the partial derivative of P (ρ)
at ρ = ρ0. Using that P (ρ0) = P0 and P (ρ0 + ρ1) = P0 + P1, we find that,
when linearized,

P1 =

(

∂P

∂ρ

)

0

ρ1

102



Note that P1 6= P (ρ1); rather P1 is the perturbation in pressure associated
with the perturbation ρ1 in the density.

Substitution in the fluid equations of our perturbed quantities yields

∂ρ1
∂t

+ ρ0∇~u1 = 0

∂~u1

∂t
+

(

∂P

∂ρ

)

0

∇ρ1
ρ0

= 0

Taking the partial time derivative of the above continuity equation, and
substituting the above momentum equation, ultimately yields

∂2ρ1
∂t2

−

(

∂P

∂ρ

)

0

∇2ρ1 = 0

which we recognize as a wave equation, whose solution is a plane wave:

ρ1 ∝ ei(
~k·~x−ωt)

with ~k the wavevector, k = |~k| = 2π/λ the wavenumber, λ the wave-

length, ω = 2πν the angular frequency, and ν the frequency.

To gain some insight, consider the 1D case: ρ1 ∝ ei(kx−ωt) ∝ eik(x−vpt), where
we have defined the phase velocity vp ≡ ω/k. This is the velocity with
which the wave pattern propagates through space. For our perturbation
of a compressible fluid, this phase velocity is called the sound speed, cs.
Substituting the solution ρ1 ∝ ei(kx−ωt) into the wave equation, we see that

cs =
ω

k
=

√

(

∂P

∂ρ

)

0

Hence, for a barotropic fluid, the sound speed is entirely determined by
the equation of state. In particular, for a polytropic equation of state,
which is a barotropic EoS of the form P ∝ ρΓ, with Γ the polytropic index,
we have that

cs =

√

Γ
P

ρ
=

√

Γ
kBT

µmp
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Thus, the sound speed increases with temperature, and is higher for a stiffer
EoS (i.e., a larger value of Γ). Note also that, for our barotropic fluid, the
sound speed is independent of ω. This implies that all waves move equally
fast; the shape of a wave packet is preserved as it moves. We say that an
ideal (inviscid) fluid with a barotropic EoS is a non-dispersive medium.

To gain further insight, let us look once more at the (1D) solution for our
perturbation:

ρ1 ∝ ei(kx−ωt) ∝ eikx e−iωt

Recalling Euler’s formula (eiθ = cos θ + i sin θ), we see that:

• The eikx part describes a periodic, spatial oscillation with wavelength
λ = 2π/k.

• The e−iωt part describes the time evolution:

– If ω is real, then the solution describes a sound wave which
propagates through space with a sound speed cs.

– If ω is imaginary then the perturation is either exponentially grow-
ing (‘unstable’) or decaying (‘damped’) with time.

We will return to this in Chapter 19, when we discuss the Jeans stability

criterion.
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