
CHAPTER 16

Hydrostatic Equilibrium & Stellar Structure

Hydrostatic Equilibrium: A fluid is said to be in hydrostatic equilibrium
(HE) when it is at rest. This occurs when external forces such as gravity are
balanced by the forces that arise due to pressure gradient.

Starting from the Navier-Stokes equation (see Chapter 7)

∂~u

∂t
+ ~u · ∇ ~u = −

∇P

ρ
−∇Φ + ν

[

∇2~u+
1

3
∇(∇ · ~u)

]

we see that ~u = 0 implies that

∇P = −ρ∇Φ

which is the equation of hydrostatic equilibrium.

Stellar Structure: stars are gaseous spheres in hydrostatic equilibrium
(except for radial pulsations, which may be considered perturbations away
from HE). The structure of stars is therefore largely governed by the above
equation. If we assume spherical symmetry (a fairly accurate assumption in
the absence of rotation), we have that ∇P = dP/dr and ∇Φ = dΦ/dr =
GM(r)/r2, where M(r) is the mass enclosed within radius r. The equation
of HE therefore can be written as

dP

dr
= −

GM(r) ρ(r)

r2

In addition, we also have that

dM

dr
= 4πρ(r) r2
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These are two differential equations with three unknowns; P , ρ andM . If the
equation of state is barotropic, i.e., P = P (ρ), then our set of equations
is closed, and the density profile of the star can be solved for (given proper
boundary conditions).

However, in general the equation of state is of the form P = P (ρ, T, {Xi}),
where {Xi} is the set of the abundances of all emements i. The tempera-
ture structure of a star and its abundance ratios are governed by nuclear

physics (which provides the source of energy) and the various heat trans-

port mechanisms.

Polytropic Spheres: A barotropic equation of state of the form P ∝ ρΓ is
called a polytropic equation of state, and Γ is called the polytropic index.
Note that Γ = 1 and Γ = γ for an isothermal and adiabatic equations of
state, respectively. A spherically symmetric, polytropic fluid in HE is called
a polytropic sphere.

Lane-Emden equation: Upon substituting the polytropic EoS in the
equation of hydrostatic equilibrium and using thePoisson equation, one
obtains a single differential equation that completely describes the structure
of the polytropic sphere, known as the Lane-Emden equation:

1

ξ2
d

dξ

(

ξ2
dθ

dξ

)

= −θn

Here n = 1/(Γ − 1) is related to the polytropic index (in fact, confusingly,
some texts refer to n as the polytropic index),

ξ =

(

4πGρc
Φ0 − Φc

)1/2

r

is a dimensionless radius,

θ =

(

Φ0 − Φ(r)

Φ0 − Φc

)

with Φc and Φ0 the values of the gravitational potential at the center (r = 0)
and at the surface of the star (where ρ = 0), respectively. The density is
related to θ according to ρ = ρcθ

n with ρc the central density.
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Solutions to the Lane-Emden equation are called polytropes of index n.
In general, the Lane-Emden equation has to be solved numerically subject to
the boundary conditions θ = 1 and dθ/dξ = 0 at ξ = 0. Analytical solutions
exist, however, for n = 0, 1, and 5. Examples of polytropes are stars that
are supported by degeneracy pressure. For example, a non-relativistic,
degenerate equation of state has P ∝ ρ5/3 and is therefore describes by a
polytrope of index n = 3/2. In the relativistic case P ∝ ρ4/3 which results
in a polytrope of index n = 3.

Another polytrope that is often encountered in astrophysics is the isother-

mal sphere, which has P ∝ ρ and thus n = ∞. It has ρ ∝ r−2 at large
radii, which implies an infinite total mass. If one truncates the isothermal
sphere at some radius and embeds it in a medium with external pressure (to
prevent the sphere from expanding), it is called a Bonnor-Ebert sphere,
which is a structure that is frequently used to describe molecular clouds.

Heat transport in stars: Typically, ignoring abundance gradients, stars
have an equation of state P = P (ρ, T ). The equations of stellar structure,
equations (2) and (3), are therefore complemented by a third equation

dT

dr
= F (r)

Since T is a measure of the internal energy, the rhs of this equation describes
the heat flux, F (r).

The main heat transport mechanisms in a star are:

• conduction

• convection

• radiation

Note that the fouth heat transport mechanism, advection, is not present in
the case of hydrostatic equilibrium, because ~u = 0.
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Recall that the thermal conductivity K ∝ l vth, where l is the mean free
path of the fluid particles, and vth is the thermal (microscopic) velocity (see
Chapter 14). Since radiative heat transport in a star is basically the con-
duction of photons, and since c ≫ ve and lphoton ≫ le (where ‘e’ refers to
electrons), we have that in stars radiation is a far more efficient heat

transport mechanism than conduction.

Convection: convection only occurs if the Schwarzschild Stability Cri-

terion is violated, which happens when the temperature gradient dT/dr be-
comes too large (i.e., larger than the temperature gradient that would exist if
the star was adiabatic; see Chapter 19). If that is the case, convection always
dominates over radiation as the most efficient heat transport mechanism. In
general, more massive stars are more radiative and less convective.

Trivia: On average it takes ∼ 200.000 years for a photon created at the core
of the Sun in nuclear burning to make its way to the Sun’s photosphere; from
there it only takes ∼ 8 minutes to travel to the Earth.

Hydrostatic Mass Estimates: Consider once more the case of an ideal
gas with EoS

P =
kBT

µmp

ρ

We have that
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+

d lnT

d ln r

]

Substitution of this equation in the equation for Hydrostatic equilibrium
(HE) yields

M(r) = −
kB T (r) r

µmpG

[

d ln ρ

d ln r
+

d lnT

d ln r

]
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This equation is often used to measure the ‘hydrostatic’ mass of a galaxy
cluster; X-ray measurements can be used to infer ρ(r) and T (r) (after de-
projection, which is analytical in the case of spherical symmetry). Substitu-
tion of these two radial dependencies in the above equation then yields and
estimate for the cluster’s mass profile, M(r). Note, though, that this mass
estimate is based on three crucial assumptions: (i) sphericity, (ii) hydrostatic
equilibrium, and (iii) an ideal-gas EoS. Clusters typically are not spherical,
often are turbulent (such that ~u 6= 0, violating the assumption of HE), and
can have significant contributions from non-thermal pressure due to magnetic
fields, cosmic rays and/or turbulence. Including these non-thermal pressure
sources the above equation becomes

M(r) = −
kB T (r) r

µmpG

[

d ln ρ

d ln r
+

d lnT

d ln r
+

Pnt

Pth

d lnPnt

d ln r

]

were Pnt and Pth are the non-thermal and thermal contributions to the total
gas pressure. Unfortunately, it is extremely difficult, if not impossible, to
properly measure Pnt, which is therefore often ignored. This may result in
systematic biases of the inferred cluster mass.
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