
CHAPTER 15

Gravity: Poisson Equation & Virial Theorem

Gravity in Astrophysical Fluids: Many of the fluids encountered in as-
trophysics are self-gravitating, which means that the gravitational force due
to the fluid itself exceeds the gravitational force from the external mass dis-
tribution. Arguably the most important example of self-gravitating, astro-
physical fluids are stars. But Cold Dark Matter halos are also examples of
self-gravitating fluids (albeit collisionless). The interstellar medium (ISM)
can and cannot be self-gravitating, depending on the conditions. The intra-
cluster medium (ICM) is generally not self-gravitating; rather the gravitating
potential is dominated by the dark matter.

Gravitational Potential: Gravity is a conservative force, which means that
it can be written as the gradient of a scalar field. Newton’s gravitational
potential, Φ(~x), is defined such that the gravitational force per unit mass

~Fg = −∇Φ

Note that the absolute normalization of Φ has no physical relevance; only
the gradients of Φ matter.

Consider a density distribution ρ(~x). What is the gravitational force ~Fg

acting on a particle of mass m at location ~x ? We can sum the small constri-
butions δ ~Fg from different regions ~x ′ ± d3~x ′, given by

δ ~Fg(~x) = G
mδm(~x ′)

|~x ′ − ~x|2
~x ′ − ~x

|~x ′ − ~x|
= Gm

~x ′ − ~x

|~x ′ − ~x|3
ρ(~x ′)d3~x ′

Adding up all the small contributions yields ~Fg(~x) =
∫

δ ~Fg(~x) ≡ m~g(~x),
where

~g(~x) = G

∫

d3~x ′ ~x ′ − ~x

|~x ′ − ~x|3
ρ(~x ′)
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is the gravitational field (i.e., the force per unit mass). Using that

~x ′ − ~x

|~x ′ − ~x|3
= ∇x

(

1

|~x ′ − ~x|

)

we can rewrite g(~x) as

~g(~x) = G

∫

d3~x ′∇x

(

1

|~x ′ − ~x|

)

ρ(~x ′) = ∇x

∫

d3~x ′ Gρ(~x ′)

|~x ′ − ~x|
≡ −∇xΦ

where in the last step we have defined the gravitational potential

Φ(~x) = −G

∫

d3~x ′ ρ(~x ′)

|~x ′ − ~x|

Poisson Equation: It can be shown that the gravitational potential obeys
the Poisson equation:

∇2Φ = 4πGρ

For a derivation, see Section 3.2 of Astrophysical Fluid Dynamics by
Clarke & Carswell, or Section 2.1 of Galactic Dynamics by Binney & Tremaine.

In general, it is extremely complicated to solve the Poisson equation for
Φ(~x) given ρ(~x) [see Chapter 2 of Galactic Dynamics by Binney & Tremaine
for a detailed discussion]. However, under certain symmetries, solutions to
the Poisson equation are fairly straightforward. In particular, under spher-
ical symmetry the general solution to the Poisson equation is

Φ(r) = −4πG

[

1

r

∫ r

0

ρ(r′) r′2 dr′ +

∫ ∞

r

ρ(r′) r′ dr′
]

Note that the potential at r depends on the mass distribution outside of r.
However, if we now compute the gravitational force per unit mass

~Fg(r) = −
dΦ

dr
êr = −

GM(r)

r2
êr

where

M(r) ≡ 4π

∫ r

0

ρ(r′) r′2 dr
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is the enclosed mass within r. This shows that the gravitational force does
not depend on the mass distribution outside of r.

Newton’s first theorem: a body that is inside a spherical shell of matter
experiences no net gravitational force from that shell. The equivalent in
general relativity is called Birkhoff’s theorem.

This is easily understood from the fact that the solid angles that extent from
a point inside a sphere to opposing directions have areas on the sphere that
scale as r2 (where r is the distance from the point to the sphere), while
the gravitational force per unit mass scales as r−2. Hence, the gravitational
forces from the two opposing areas exactly cancel.

Circular velocity: the velocity of a particle or fluid element on a circular
orbit. For a spherical mass distribution

Vcirc(r) =

√

r
dΦ

dr
=

√

GM(r)

r

In the case of an axisymmetric mass distribution, the cicular velocity in the
equatorial plane (z = 0, where z is one of the three cylindrical coordinates
(R, φ, z)) is given by

Vcirc(R) =

√

R
dΦ

dR
6=

√

GM(R)

R

Escape velocity: the velocity needed for a particle or fluid element to
escape to infinity. Since E = v2/2 + Φ(~x), and escape requires E > 0, the
escape velocity is

Vesc(~x) =
√

2 |Φ(~x)|

independent of the symmetry (or lack thereof) of the mass distribution.

Since gas cannot be on self-intersecting orbits, gas in disk galaxies generally
orbits on circular orbits. The measured rotation velocities therefore reflect
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the circular velocities, which can be used to infer the enclosed mass as func-
tion of radius. This method is generaly used to infer the presence of dark
matter haloes surrounding disk galaxies.

Consider a gravitational system consisting of N particles (e.g., stars, fluid
elements). The total energy of the system is E = K +W , where

Total Kinetic Energy: K =
N
∑

i=1

1
2
mi v

2
i

Total Potential Energy: W = −1
2

N
∑

i=1

∑

j 6=i

Gmimj

|~ri−~rj |

The latter follows from the fact that gravitational binding energy between a
pair of masses is proportional to the product of their masses, and inversely
proportional to their separation. The factor 1/2 corrects for double counting
the number of pairs.

Potential Energy in Continuum Limit: To infer an expression for the
gravitational potential energy in the continuum limit, it is useful to rewrite
the above expression as

W =
1

2

N
∑

i=1

mi Φi

where

Φi = −

N
∑

j=1

Gmj

rij

where rij = |~ri − ~rj|. In the continuum limit this simply becomes

W =
1

2

∫

ρ(~x) Φ(~x) d3~x

One can show (see e.g., Galactic Dynamics) that this is equal to the trace
of the Chandrasekhar Potential Energy Tensor

Wij ≡ −

∫

ρ(~x) xi

∂Φ

∂xj

d3~x
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In particular,

W = Tr(Wij) =

3
∑

i=1

Wii = −

∫

ρ(~x) ~x · ∇Φd3~x

which is another, equally valid, expression for the gravitational potential
energy in the continuum limit.

Virial Theorem: A stationary, gravitational system obeys

2K +W = 0

Actually, the correct virial equation is 2K + W + Σ = 0, where Σ is the surface

pressure. In many, but certainly not all, applications in astrophysics this term can

be ignored. Many textbooks don’t even mention the surface pressure term.

Combining the virial equation with the expression for the total energy,
E = K +W , we see that for a system that obeys the virial theorem

E = −K = W/2
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Example: Consider a cluster consisting of N galaxies. If the cluster is in
virial equilibrium then

2

N
∑

i=1

1

2
mv2i −

1

2

N
∑

i=1

∑

j 6=i

Gmimj

rij
= 0

If we assume, for simplicity, that all galaxies have equal mass then we can
rewrite this as

N m
1

N

N
∑

i=1

v2i −
G (Nm)2

2

1

N2

N
∑

i=1

∑

j 6=i

1

rij
= 0

Using that M = N m and N(N − 1) ≃ N2 for large N , this yields

M =
2 〈v2〉

G 〈1/r〉

with

〈1/r〉 =
1

N(N − 1)

N
∑

i=1

∑

j 6=i

1

rij

It is useful to define the gravitational radius rg such that

W = −
GM2

rg

Using the relations above, it is clear that rg = 2/〈1/r〉. We can now rewrite
the above equation for M in the form

M =
rg〈v

2〉

G

Hence, one can infer the mass of our cluster of galaxies from its velocity
dispersion and its gravitation radius. In general, though, neither of these is
observable, and one uses instead

M = α
Reff〈v

2
los〉

G
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where vlos is the line-of-sight velocity, Reff is some measure for the ‘effective’
radius of the system in question, and α is a parameter of order unity that
depends on the radial distribution of the galaxies. Note that, under the
assumption of isotropy, 〈v2los〉 = 〈v2〉/3 and one can also infer the mean
reciprocal pair separation from the projected pair separations; in other words
under the assumption of isotropy one can infer α, and thus use the above
equation to compute the total, gravitational mass of the cluster. This method
was applied by Fritz Zwicky in 1933, who inferred that the total dynamical
mass in the Coma cluster is much larger than the sum of the masses of
its galaxies. This was the first observational evidence for dark matter,
although it took the astronomical community until the late 70’s to generally
accept this notion.

For a self-gravitating fluid

K =

N
∑

i=1

1

2
mi v

2
i =

1

2
N m 〈v2〉 =

3

2
N kB T

where the last step follows from what we have learned in Chapter 13 about
ideal gases of monoatomic particles. In fact, we can use the above equation
for any fluid (including a collisionless one), if we interpret T as an effective
temperature that measures the rms velocity of the constituent particles. If
the system is in virial equilibrium, then

E = −K = −
3

2
N kB T

which, as we show next, has some important implications...

Heat Capacity: the amount of heat required to increase the temperature
by one degree Kelvin (or Celsius). For a self-gravitating fluid this is

C ≡
dE

dT
= −

3

2
N kB

which is negative! This implies that by loosing energy, a gravitational

system gets hotter!! This is a very counter-intuitive result, that often
leads to confusion and wrong expectations. Below we give two examples of
implications of the negative heat capacity of gravitating systems,
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Example 1: Drag on satellites Consider a satellite orbiting Earth. When
it experiences friction against the (outer) atmosphere, it looses energy. This
causes the system to become more strongly bound, and the orbital radius to
shrink. Consequently, the energy loss results in the gravitational potential
energy, W , becoming more negative. In order for the satellite to re-establish
virial equilibrium (2K+W = 0), its kinetic energy needs to increase. Hence,
contrary to common intuition, friction causes the satellite to speed up, as it
moves to a lower orbit (where the circular velocity is higher).

Example 2: Stellar Evolution A star is a gaseous, self-gravitating sphere
that radiates energy from its surface at a luminosity L. Unless this energy is
replenished (i.e., via some energy production mechanism in the star’s inte-
rior), the star will react by shrinking (i.e., the energy loss implies an increase
in binding energy, and thus a potential energy that becomes more negative).
In order for the star to remain in virial equilibrium its kinetic energy, which
is proportional to temperature, has to increase; the star’s energy loss results

in an increase of its temperature.

In the Sun, hydrogren burning produces energy that replenishes the energy
loss from the surface. As a consequence, the system is in equilibrium, and
will not contract. However, once the Sun has used up all its hydrogren, it
will start to contract and heat up, because of the negative heat capacity.
This continues until the temperature in the core becomes sufficiently high
that helium can start to fuse into heavier elements, and the Sun settles in a
new equilibrium.

Example 3: Core Collapse a system with negative heat capacity in contact

with a heat bath is thermodynamically unstable. Consider a self-gravitating
fluid of ‘temperature’ T1, which is in contact with a heat bath of temperature
T2. Suppose the system is in thermal equilibrium, so that T1 = T2. If, due to
some small disturbance, a small amount of heat is tranferred from the system
to the heat bath, the negative heat capacity implies that this results in T1 >
T2. Since heat always flows from hot to cold, more heat will now flow from
the system to the heat bath, further increasing the temperature difference,
and T1 will continue to rise without limit. This run-away instability is called
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the gravothermal catastrophe. An example of this instability is the core
collapse of globular clusters: Suppose the formation of a gravitational
system results in the system having a declining velocity dispersion profile,
σ2(r) (i.e., σ decreases with increasing radius). This implies that the central
region is (dynamically) hotter than the outskirts. IF heat can flow from
the center to those outskirts, the gravothermal catastrophe kicks in, and σ
in the central regions will grow without limits. Since σ2 = GM(r)/r, the
central mass therefore gets compressed into a smaller and smaller region,
while the outer regions expand. This is called core collapse. Note that
this does NOT lead to the formation of a supermassive black hole, because
regions at smaller r always shrink faster than regions at somewhat larger
r. In dark matter haloes, and elliptical galaxies, the velocity dispersion
profile is often declining with radius. However, in those systems the two-
body relaxation time is soo long that there is basically no heat flow (which
requires two-body interactions). However, globular clusters, which consist of
N ∼ 104 stars, and have a crossing time of only tcross ∼ 5 × 106yr, have a
two-body relaxation time of only ∼ 5× 108yr. Hence, heat flow in globulars
is not negligible, and they can (and do) undergo core collapse. The collapse
does not proceed indefinitely, because of binaries (see Galactic Dynamics

by Binney & Tremaine for more details).
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