
CHAPTER 14

The Energy Equation

Heat Transfer: In order to close the fluid equations, we need to add an
equation that describes how the internal energy (heat) of a fluid element
changes as function of time. There are four fundamental modes of heat
transfer:

• Radiation: the transfer of energy to and from a fluid element by means
of absorption or emission of electro-magnetic radiation.

• Advection: the transfer of energy from one location to another as a
side effect of physically moving a fluid element containing that energy.

• Conduction: the transfer of energy between fluid elements that are
in physical contact due to microscopic diffusion (requires temperature
gradients).

• Convection: the transfer of energy between a fluid element and its
environment due to bulk motion plus diffusion (i.e., convection is sim-
ply a combination of advection and conduction). Convection occurs
whenever the temperature gradient becomes too large (Schwarzschild’s
stability criterion; see Chapter 19).

Another mode of energy transfer that is relevant for astronomy is the heat-
ing due to cosmic rays, which are energetic elementary particles (mainly
protons) that have been accelerated to relativistic speeds by shocks from su-
pernova etc. In what follows, we will treat cosmic ray heating as a component
of radiative heating.

Energy Density: The energy density, E, of a fluid consists of three com-
ponents: kinetic energy, potential energy, and internal energy:

E = ρ

(

1

2
u2 + Φ+ ε

)

where ε is the specific internal energy of the fluid. Note that E as defined
here is the energy per unit volume.
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Energy equation: The Lagrangian derivate of the energy density is given
by

dE

dt
=

E

ρ

dρ

dt
+ ρ~u ·

d~u

dt
+ ρ

dΦ

dt
+ ρ

dε

dt

which simply follows from applying the chain rule to E = ρ
(

1

2
u2 + Φ + ε

)

.

We now treat each of these four terms in turn:

1st term: Using the continuity equation we have that

E

ρ

dρ

dt
= −E∇ · ~u

2nd term: Using the (Euler) momentum equation we have that

ρ~u ·
d~u

dt
= ~u · ρ

d~u

dt
= −~u · (∇P + ρ∇Φ)

3rd term: Using the expression for the substantial (Lagrangian) deriva-
tive we have that

ρ
dΦ

dt
= ρ

∂Φ

∂t
+ ρ~u · ∇Φ

4th term: Using the first law of thermodynamics, dε = dQ−dW , where
dQ is the specific heat absorbed and dW = Pd(1/ρ) is the specific work
done by the fluid, we have that

ρ
dε

dt
= ρ

dQ

dt
+

P

ρ

dρ

dt
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Combining all the above, and using that

dE

dt
=

∂E

∂t
+ ~u · ∇E

we finally obtain the energy equation for an inviscid fluid:

∂E

∂t
+∇ · [(E + P )~u] = −L + ρ

∂Φ

∂t

where we have defined the net heating rate per unit volume

L ≡ ρ
dQ

dt
≡ C −H

where C and H are the volumetric cooling and heating rates, respectively,
which express heat transfer due to the emission and/or absorption of radia-
tion (and cosmic rays).

Note that the external (gravitational) potential only enters with a partial
time-derivative. Hence, only when the external potential varies with time,
does it have an impact on the evolution of the total energy density of fluid
elements. If the potential is steady (i.e., ∂Φ/∂t = 0, then the presence of
the gravitational potential can cause the convertion of kinetic energy into
potential energy (and vice versa), but it does not change the total energy
density. Changes in the energy of individual fluid elements due to a time-
variable gravitational potential is called violent relaxation, and is the main
relaxation mechanisms for collisionless systems.

Using that E = ρ
(

1

2
u2 + Φ + ε

)

, the energy equation can also be written as:

∂

∂t

[

ρ

(

u2

2
+ ε

)]

+
∂

∂xk

[

ρ

(

u2

2
+ ε

)

uk + P δjk uj

]

= −L − ρ uk
∂Φ

∂xk

In deriving the above form of the energy equation we have used that
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ρ
∂Φ

∂t
−

∂ρΦ

∂t
−

∂ρΦuk

∂xk
= −Φ

∂ρ

∂t
−∇ · (ρΦ~u)

= −Φ
∂ρ

∂t
− Φ∇ · ρ~u− ρ~u∇Φ

= −Φ

[

∂ρ

∂t
+∇ · ρ~u

]

− ρ~u∇Φ == −ρ~u∇Φ

where, in the final step, we have used the continuity equation. One of the
advantages of this index-form, is that it is easier to incorporate the effects of
viscosity. By replacing −P δij with the stress tensor σij = −P δij+τij , and
adding a term describing conduction, we obtain the fully general energy
equation for a viscous fluid:

∂

∂t

[

ρ

(

u2

2
+ ε

)]

=

−
∂

∂xk

[

ρ

(

u2

2
+ ε

)

uk + (P δjk − τjk) uj + Fcond,k

]

− L− ρ uk
∂Φ

∂xk

The ρ
(

u2

2
+ ε

)

uk term on the rhs describes advection, the P δjk uj term

describes the work done, the τjk uj term describes viscous dissipation
(i.e., the convertion of ordered bulk motion into disordered random motion),
Fcond,k is the conduction flux in the k-direction, L describes the change in
(internal) energy due to the absorption or emission of radiation (or cosmic
rays), and the last term on the rhs describes the change of energy due to
motion in a gravitational potential.

Conduction: to first order in the ratio of the mean free path l of the particles
and the length scale L of the physical system, the conduction heat flux
can be written as

~Fcond = −K∇T

whereK is called the thermal conductivity and has units of erg s−1 cm−1K−1.
It is roughly given by K ∼ 3

2
kB n vth l, where vth ∝ T 1/2 is the thermal (micro-

scopic) velocity of the particles. Using that the mean free path l = (nσ)−1,
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with σ the collision cross section, we thus see that K ∝ T 1/2/σ. As expected,
conduction increases with temperature (particles move faster) and decreases
with increasing cross section (particles move less far).

To see another ‘representation’ of the conductivity, which links it directly
to the microscopic motion of the fluid particles, we now (for the sake of
completeness) derive the above energy equation starting from the master
moment equation

∂

∂t
[n〈Q〉] +

∂

∂xk

[n〈vkQ〉] + n
∂Φ

∂xk

〈

∂Q

∂vk

〉

= 0

derived in Lecture 9 from the Boltzmann equation. For the energy equa-
tion, we need to set

Q =
1

2
mv2 =

m

2
vivi =

m

2
(ui + wi)(ui + wi) =

m

2
(u2 + 2uiwi + w2)

Hence, we have that 〈Q〉 = 1

2
mu2+ 1

2
m〈w2〉 where we have used that 〈u〉 = u

and 〈w〉 = 0. Using that ρ = mn, the first term in the master moment
equation thus becomes

∂

∂t
[n〈Q〉] =

∂

∂t

[

ρ
u2

2
+ ρε

]

where we have used that the specific internal energy ε = 1

2
〈w2〉. For the

second term, we use that

n〈vkQ〉 =
ρ

2
〈(uk + wk)(u

2 + 2uiwi + w2)〉

=
ρ

2
〈u2uk + 2uiukwi + w2uk + u2wk + 2uiwiwk + w2wk〉

=
ρ

2

[

u2uk + uk〈w
2〉+ 2ui〈wiwk〉+ 〈w2wk〉

]

= ρ
u2

2
uk + ρεuk + ρui〈wiwk〉+ Fcond,k

Here we have defined the conductivity

Fcond,k ≡ ρ〈wk
1

2
w2〉 = 〈ρεwk〉
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This makes it clear that conduction describes how internal energy is dispersed
due to the randommotion of the fluid particles. Using that ρ〈wiwk〉 = −σik =
Pδik − τik, the second term of the master moment equation becomes

∂

∂xk
[n〈vkQ〉] =

∂

∂xk

[

ρ
u2

2
uk + ρεuk + (Pδik − τik) + Fcond,k

]

Finally, for the third term we use that

∂Q

∂vk
=

m

2

∂v2

∂vk
= mvk

To understand the last step, note that in Cartesian coordinates v2 = v2x +
v2y + v2z . Hence, we have that

n
∂Φ

∂xk

〈

∂Q

∂vk

〉

= ρ
∂Φ

∂xk
〈vk〉 = ρ

∂Φ

∂xk
uk

Combining the three terms in the master moment equation, we finally obtain
the following energy equation:

∂

∂t

[

ρ

(

u2

2
+ ε

)]

=

−
∂

∂xk

[

ρ

(

u2

2
+ ε

)

uk + (P δjk − τjk) uj + Fcond,k

]

− ρ uk
∂Φ

∂xk

which is exactly the same as that derived above, except for the −L term,
which is absent from the derivation based on the Boltzmann equation, since
the later does not include the effects of radiation.

The final task of this lecture on the energy equation is to derive an equation
that describes the evolution of the internal energy. This is obtained by
subtracting ui times the Navier-Stokes equation in conservative, Eulerian
form from the energy equation derived above.
The Navier-Stokes equation in Eulerian index form is

∂ui

∂t
+ uk

∂ui

∂xk

=
1

ρ

∂σik

∂xk

−
∂Φ

∂xi
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Using the continuity equation, this can be rewritten in the so-called con-
servation form as

∂ρui

∂t
+

∂

∂xk
[ρuiuk − σik] = −ρ

∂Φ

∂xi

Next we multiply this equation with ui. Using that

ui
∂ρui

∂t
=

∂ρu2

∂t
− ρui

∂ui

∂t
=

∂

∂t

[

ρ
u2

2

]

+
∂

∂t

[

ρ
u2

2

]

− ρui
∂ui

∂t

=
∂

∂t

[

ρ
u2

2

]

+
ρ

2

∂u2

∂t
+

u2

2

∂ρ

∂t
− ρui

∂ui

∂t

=
∂

∂t

[

ρ
u2

2

]

+
u2

2

∂ρ

∂t

where we have used that ∂u2/∂t = 2ui∂ui/∂t. Similarly, we have that

ui
∂

∂xk
=

∂

∂xk

[

ρ
u2

2
uk

]

+
∂

∂xk

[

ρ
u2

2
uk

]

− ρuiuk
∂ui

∂xk

=
∂

∂xk

[

ρ
u2

2
uk

]

+
ρ

2
uk

∂u2

∂xk
+

u2

2

∂ρuk

∂xk
− ρuiuk

∂ui

∂xk

=
∂

∂xk

[

ρ
u2

2
uk

]

+
u2

2

∂ρuk

∂xk

Combining the above two terms, and using the continuity equation to ex-
pose of the two terms containing the factor u2/2, the Navier-Stokes equation
in conservation form multiplied by ui becomes

∂

∂t

[

ρ
u2

2

]

+
∂

∂xk

[

ρ
u2

2
uk

]

= ui
∂σik

∂xk
− ρui

∂Φ

∂xi

Subtracting this from the energy equation ultimately yields the internal
energy equation in Eulerian index form:

∂

∂t
(ρε) +

∂

∂xk
(ρεuk) = −P

∂uk

∂xk
+ V −

∂Fcond,k

∂xk
− L

where
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V ≡ πik
∂ui

∂xk

is the rate of viscous dissipation which describes the rate at which the
work done against viscous forces is irreversibly converted into internal en-
ergy. In words, the internal energy equation states that the internal energy
at some fixed location in space changes due to advection, (described by
the ∂ρεuk/∂xk term), due to the work done (described by the P (∂uk/∂xk)
term), due to radiation (described by the −L term), due to conduction
(described by the ∂Fcond,k/∂xk term) and due to viscous dissipation (de-
scribed by the V term). The latter term describes the rate at which heat is
added to the internal energy budget via viscous conversion of ordered energy
in differential fluid motions to disordered energy in random particle motions.
Finally, we mention that the Lagrangian vector form of the internal energy
equation is given by

ρ
dε

dt
= −P ∇ · ~u−∇ · ~Fcond −L+ V

Note that in this Lagrangian form, there is no term describing advection;
after all, we are moving with the fluid.
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