
CHAPTER 13

Equations of State

Closure: The continuity and momentum (Euler) equations are 4 equations
with 6 unknowns (ρ, ~u, P , and Φ). With the Poisson equation, which
relates ρ and Φ, we are still one equation short for closure. This equation can
either be an equation of state (but only if it is barotropic, i.e., P = P (ρ)),
or the energy equation (see Chapter 14).

Equation of State (EoS): a thermodynamic equation describing the state
of matter under a given set of physical conditions. In what follows we will
always write our EoS in the form P = P (ρ, T ). Other commonly used forms
are P = P (ρ, ε) or P = P (ρ, S).

Ideal Gas: a hypothetical gas that consists of identical point particles (i.e.
of zero volume) that undergo perfectly elastic collisions and for which inter-
particle forces can be neglected.

An ideal gas obeys the ideal gas law: P V = N kB T .

Here N is the total number of particles, kB is Boltzmann’s constant, and V
is the volume occupied by the fluid. Using that ρ = N µmp/V , where µ is
the mean molecular weight in units of the proton mass mp, we have that
the EoS for an ideal gas is given by

P =
kB T

µmp

ρ

NOTE: astrophysical gases are often well described by the ideal gas law. Even
for a fully ionized gas, the interparticle forces (Coulomb force) can typically
be neglected (i.e., the potential energies involved are typically < 10% of the
kinetic energies). Ideal gas law brakes down for dense, and cool gases, such
as those present in gaseous planets.
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Maxwell-Boltzmann Distribution: the distribution of particle momenta,
~p = m~v, of an ideal gas follows the Maxwell-Boltzmann distribution.

P(~p) d3~p =

(

1

2πmkBT

)3/2

exp

(

−
p2

2mkBT

)

d3~p

where p2 = ~p · ~p. This distribution follows from maximizing entropy under
the following assumptions:

1. all magnitudes of velocity are a priori equally likely

2. all directions are equally likely (isotropy)

3. total energy is constrained at a fixed value

4. total number of particles is constrained at a fixed value

Using that E = p2/2m we thus see that P(~p) ∝ e−E/kBT .

Pressure: pressure arises from (elastic) collisions of particles. A particle
hitting a wall head on with momentum p = mv results in a transfer of
momentum to the wall of 2mv. Using this concept, and assuming isotropy
for the particle momenta, it is fairly straightforward to show that

P = ζ n 〈E〉

where ζ = 2/3 (ζ = 1/3) in the case of a non-relativistic (relativistic) fluid,
and

〈E〉 =

∫

∞

0

E P(E) dE

is the average, translational energy of the particles. In the case of our ideal
(non-relativistic) fluid,

〈E〉 =

〈

p2

2m

〉

=

∫

∞

0

p2

2m
P(p) dp =

3

2
kBT
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Hence, we find that the EoS for an ideal gas is indeed given by

P =
2

3
n 〈E〉 = n kB T =

kBT

µmp

ρ

Specific Internal Energy: the internal energy per unit mass for an ideal
gas is

ε =
〈E〉

µmp

=
3

2

kBT

µmp

Actually, the above derivation is only valid for a true ‘ideal gas’, in which
the particles are point particles. More generally,

ε =
1

γ − 1

kBT

µmp

where γ is the adiabatic index, which for an ideal gas is equal to γ =
(q + 5)/(q + 3), with q the internal degrees of freedom of the fluid particles:
q = 0 for point particles (resulting in γ = 5/3), while diatomic particles have
q = 2 (at sufficiently low temperatures, such that they only have rotational,
and no vibrational degrees of freedom). The fact that q = 2 in that case
arises from the fact that a diatomic molecule only has two relevant rotation
axes; the third axis is the symmetry axis of the molecule, along which the
molecule has negligible (zero in case of point particles) moment of inertia.
Consequently, rotation around this symmetry axis carries no energy.

Photon gas: Having discussed the EoS of an ideal gas, we now focus on a gas
of photons. Photons have energy E = hν and momentum p = E/c = hν/c,
with h the Planck constant.

Black Body: an idealized physical body that absorbs all incident radiation.
A black body (BB) in thermal equilibrium emits electro-magnetic radiation
called black body radiation.

The spectral number density distribution of BB photons is given by

nγ(ν, T ) =
8πν2

c3
1

ehν/kBT − 1
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which implies a spectral energy distribution

u(ν, T ) = nγ(ν, T ) hν =
8πhν3

c3
1

ehν/kBT − 1

and thus an energy density of

u(T ) =

∫

∞

0

u(ν, T ) dν =
4σSB

c
T 4 ≡ ar T

4

where

σSB =
2π5k4

B

15h3c2

is the Stefan-Boltzmann constant and ar ≃ 7.6 × 10−15erg cm−3K−4 is
called the radiation constant.

Radiation Pressure: when the photons are reflected off a wall, or when
they are absorbed and subsequently remitted by that wall, they transfer
twice their momentum in the normal direction to that wall. Since photons
are relativistic, we have that the EoS for a photon gas is given by

P =
1

3
n 〈E〉 =

1

3
nγ 〈hν〉 =

1

3
u(T ) =

aT 4

3

where we have used that u(T ) = nγ 〈E〉.

Quantum Statistics: according to quantum statistics, a collection of many
indistinguishable elementary particles in thermal equilibrium has a momen-
tum distribution given by

f(~p) d3~p =
g

h3

[

exp

(

E(p)− µ

kBT

)

± 1

]−1

d3~p

where the signature ± takes the positive sign for fermions (which have half-
integer spin), in which case the distribution is called the Fermi-Dirac dis-
tribution, and the negative sign for bosons (particles with zero or integer
spin), in which case the distribution is called the Bose-Einstein distribu-
tion. The factor g is the spin degeneracy factor, which expresses the
number of spin states the particles can have (g = 1 for neutrinos, g = 2 for
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photons and charged leptons, and g = 6 for quarks). Finally, µ is called the
chemical potential, and is a form of potential energy that is related (in a
complicated way) to the number density and temperature of the particles.

Classical limit: In the limit where the mean interparticle separation is
much larger than the de Broglie wavelength of the particles, so that quantum
effects (e.g., Heisenberg’s uncertainty principle) can be ignored, the above
distribution function of momenta can be accurately approximated by the
Maxwell-Boltzmann distribution.

Heisenberg’s Uncertainty Principle: ∆x ∆px > h (where h = 6.63 ×
10−27g cm2 s−1 is Planck’s constant). One interpretation of this quantum
principle is that phase-space is quantized; no particle can be localized in a
phase-space element smaller than the fundamental element

∆x ∆y ∆z ∆px ∆py ∆pz = h3

Pauli Exclusion Principle: no more than one fermion of a given spin state
can occupy a given phase-space element h3. Hence, for electrons, which have
g = 2, the maximum phase-space density is 2/h3.

Degeneracy: When compressing and/or cooling a fermionic gas, at some
point all possible low momentum states are occupied. Any further com-
pression therefore results in particles occupying high (but the lowest avail-
able) momentum states. Since particle momentum is ultimately responsible
for pressure, this degeneracy manifests itself as an extremely high pressure,
known as degeneracy pressure.

Fermi Momentum: Consider a fully degenerate gas of electrons of electron
density ne. It will have fully occupied the part of phase-space with momenta
p ≤ pF. Here pF is the maximum momentum of the particles, and is called
the Fermi momentum. The energy corresponding to the Fermi momentum
is called the Fermi energy, EF and is equal to p2F/2m in the case of a non-
relativistic gas, and pFc in the case of a relativistic gas.
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Let Vx be the volume occupied in configuration space, and Vp = 4
3
πp3F the

volume occupied in momentum space. If the total number of particles is N ,
and the gas is fully degenerate, then

Vx Vp =
N

2
h3

Using that ne = N/Vx, we find that

pF =

(

3

8π
ne

)1/3

h

EoS of Non-Relativistic, Degenerate Gas: Using the information above,
it is straightforward to compute the EoS for a fully degenerate gas. Using
that for a non-relativistic fluid E = p2/2m and P = 2

3
n 〈E〉, while degeneracy

implies that

〈E〉 =
1

N

∫ Ef

0

E N(E) dE =
1

N

∫ pF

0

p2

2m

2

h3
Vx 4πp

2 dp =
3

5

p2F
2m

we obtain that

P =
1

20

(

3

π

)2/3
h2

m8/3
ρ5/3

EoS of Relativistic, Degenerate Gas: In the case of a relativistic, de-
generate gas, we use the same procedure as above. However, this time we
have that P = 1

3
n 〈E〉 while E = p c, which results in

P =
1

8

(

3

π

)1/3
c h

m4/3
ρ4/3
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White Dwarfs and the Chandrasekhar limit: White dwarfs are the
end-states of stars with mass low enough that they don’t form a neutron
star. When the pressure support from nuclear fusion in a star comes to a
halt, the core will start to contract until degeneracy pressure kicks in. The
star consists of a fully ionized plasme. Assume for simplicity that the plasma
consists purely of hydrogen, so that the number density of protons is equal
to that of electrons: np = ne. Because of equipartition

p2p
2mp

=
p2e
2me

Sincemp >> me we have also that pp >> pe (in fact pp/pe =
√

mp/me ≃ 43).
Consequently, when cooling or compressing the core of a star, the electrons
will become degenerate well before the protons do. Hence, white dwarfs are
held up against collapse by the degeneracy pressure from electrons.
Since the electrons are typically non-relativistic, the EoS of the white dwarf
is: P ∝ ρ5/3. If the white dwarf becomes more and more massive (i.e.,
because it is accreting mass from a companion star), the Pauli-exclusion
principle causes the Fermi momentum, pF, to increase to relativistic values.
This softens the EoS towards P ∝ ρ4/3. Such an equation of state is too soft
to stabilize the white dwarf against gravitational collapse; the white dwarf
collapses until it becomes a neutron star, at which stage it is supported
against further collapse by the degeneracy pressure from neutrons. This
happens when the mass of the white dwarf reaches Mlim ≃ 1.44M⊙, the
so-called Chandrasekhar limit.
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