
CHAPTER 12

Reynold’s Number & Turbulence

Non-linearity: The Navier-Stokes equation is non-linear. This non-linearity
arises from the convective (material) derivative term

~u · ∇~u =
1

2
∇u2 − ~u× ~w

which describes the ”inertial acceleration” and is ultimately responsible for
the origin of the chaotic character of many flows and of turbulence.
Because of this non-linearity, we cannot say whether a solution to the Navier-
Stokes equation with nice and smooth initial conditions will remain nice and
smooth for all time (at least not in 3D).

Laminar flow: occurs when a fluid flows in parallel layers, without lat-
eral mixing (no cross currents perpendicular to the direction of flow). It is
characterized by high momentum diffusion and low momentum convection.

Turbulent flow: is characterized by chaotic and stochastic property changes.
This includes low momentum diffusion, high momentum convection, and
rapid variation of pressure and velocity in space and time.

The Reynold’s number: In order to gauge the importance of viscosity for
a fluid, it is useful to compare the ratio of the inertial acceleration (~u · ∇~u)
to the viscous acceleration (ν
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). This ratio is called the
Reynold’s number, R, and can be expressed in terms of the typical velocity
scale U ∼ |~u| and length scale L ∼ 1/∇ of the flow, as

R =

∣

∣

∣

∣

∣

~u · ∇~u

ν
[

∇2~u+ 1

3
∇(∇ · ~u)

]

∣

∣

∣

∣

∣

∼
U2/L

νU/L2
=

U L

ν

If R ≫ 1 then viscosity can be ignored (and one can use the Euler equations
to describe the flow). However, if R ≪ 1 then viscosity is important.
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Figure 6: Illustration of laminar vs. turbulent flow.

Similarity: Flows with the same Reynold’s number are similar. This is
evident from rewriting the Navier-Stokes equation in terms of the following
dimensionless variables

ũ =
~u

U
x̃ =

~x

L
t̃ = t

U

L
p̃ =

P

ρU2
Φ̃ =

Φ

U2
∇̃ = L∇

This yields (after multiplying the Navier-Stokes equation with L/U2):

∂ũ

∂t̃
+ ũ · ∇̃ũ+ ∇̃p̃ + ∇̃Φ̃ =

1

R
∇̃2ũ

which shows that the form of the solution depends only on R.
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Figure 7: Illustration of flows at different Reynolds number.

As a specific example, consider fluid flow past a cylinder of diameter L:

• R ≪ 1: ”creeping flow”. In this regime the flow is viscously domi-
nated and (nearly) symmetric upstream and downstream. The inertial
acceleration (~u · ∇~u) can be neglected, and the flow is (nearly) time-
reversible.

• R ∼ 1: Slight asymmetry develops

• 10 ≤ R ≤ 41: Separation occurs, resulting in two counter-rotating
votices in the wake of the cylinder. The flow is still steady and laminar,
though.

• 41 ≤ R ≤ 103: ”von Kármán vortex street”; unsteady laminar flow
with counter-rotating vortices shed periodically from the cylinder. Even
at this stage the flow is still ‘predictable’.

• R > 103: vortices are unstable, resulting in a turbulent wake behind
the cylinder that is ‘unpredictable’.
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Figure 8: The image shows the von Kármán Vortex street behind a 6.35
mm diameter circular cylinder in water at Reynolds number of 168. The
visualization was done using hydrogen bubble technique. Credit: Sanjay
Kumar & George Laughlin, Department of Engineering, The University of
Texas at Brownsville

The following movie shows a R = 250 flow past a cylinder. Initially one can
witness separation, and the creation of two counter-rotating vortices, which
then suddenly become ‘unstable’, resulting in the von Kármán vortex street:

http://www.youtube.com/watch?v=IDeGDFZSYo8
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Figure 9: Typical Reynolds numbers for various biological organisms.
Reynolds numbers are estimated using the length scales indicated, the rule-
of-thumb in the text, and material properties of water.

Locomotion at Low-Reynolds number: Low Reynolds number corre-
sponds to high kinetic visocisity for a given U and L. In this regime of
‘creeping flow’ the flow past an object is (nearly) time-reversible. Imagine
trying to move (swim) in a highly viscous fluid (take honey as an example).
If you try to do so by executing time-symmetric movements, you will not
move. Instead, you need to think of a symmetry-breaking solution. Na-
ture has found many solutions for this problem. If we make the simplifying
”rule-of-thumb” assumption that an animal of size L meters moves roughly
at a speed of U = L meters per second (yes, this is very, very rough, but
an ant does move close to 1 mm/s, and a human at roughly 1 m/s), then
we have that R = UL/ν ≃ L2/ν. Hence, with respect to a fixed substance
(say wayter, for which ν ∼ 10−2cm2/s), smaller organisms move at lower
Reynolds number (effectively in a fluid of higher viscosity). Scaling down
from a human to bacteria and single-cell organisms, the motion of the lat-
ter in water has R ∼ 10−5 − 10−2. Understanding the locomotion of these
organisms is a fascinating sub-branch of bio-physics.
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Boundary Layers: Even when R ≫ 1, viscosity always remains important
in thin boundary layers adjacent to any solid surface. This boundary layer
must exist in order to satisfy the no-slip boundary condition. If the Reynolds
number exceeds a critical value, the boundary layer becomes turbulent. Tur-
bulent layes and their associated turbulent wakes exert a much bigger drag
on moving bodies than their laminar counterparts.

Turbulence: Turbulence is still considered as one of the last ”unsolved
problems of classical physics” [Richard Feynman]. Indeed, it is an extremely
difficult subject. Salmon (1998) nicely sums up the challenge of defining
turbulence:

Every aspect of turbulence is controversial. Even the defini-
tion of fluid turbulence is a subject of disagreement. However,
nearly everyone would agree with some elements of the following
description:

• Turbulence requires the presence of vorticity; irrotational
flow is smooth and steady to the extent that the boundary
conditions permit.

• Turbulent flow has a complex structure, involving a broad
range of space and time scales.

• Turbulent flow fields exhibit a high degree of apparent ran-
domness and disorder. However, close inspection often re-
veals the presence of embedded cohererent flow structures

• Turbulent flows have a high rate of viscous energy dissipa-
tion.

• Advected tracers are rapidly mixed by turbulent flows.

However, one further property of turbulence seems to be more
fundamental that all of these because it largely explains why tur-
bulence demands a statistical treatment...turbulence is chaotic.
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The following is a brief, qualitative description of turbulence

Turbulence kicks in at sufficiently high Reyolds number (typically R >
103 − 104). Turbulent flow is characterized by irregular and seemingly ran-
dom motion. Large vortices (called eddies) are created. These contain a
large amount of kinetic energy. Due to vortex stretching these eddies
are stretched thin until they ‘brake up’ in smaller eddies. This results in a
cascade in which the turbulent energy is transported from large scales to
small scales. This cascade is largely inviscid, conserving the total turbulent
energy. However, once the length scale of the eddies becomes comparable
to the mean free path of the particles, the energy is dissipated; the kinetic
energy associated with the eddies is transformed into internal energy. The
scale at which this happens is called the Kolmogorov length scale.

Molecular clouds: an example of turbulence in astrophysics are molecu-
lar clouds. These are gas clouds of masses 105 − 106M⊙, densities nH ∼
100− 500 cm−3, and temperatures T ∼ 10K. They consist mainly of molecu-
lar hydrogen and are the main sites of star formation. Observations show
that their velocity linewidths are ∼ 6 − 10km/s, which is much higher than
their sound speed (cs ∼ 0.2km/s). Hence, they are supported against (grav-
itational) collapse by supersonic turbulence. On small scales, however,
the turbulent motions compress the gas to high enough densities that stars
can form. A numerical simulation of a molecular cloud with supersonic tur-
bulence is available here:

http://www.youtube.com/watch?v=3z9ZKAkbMhY
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