
CHAPTER 11

The Bernoulli Equation & Crocco’s Theorem

We start this chapter on the Bernouilli equation by defining a new quantity,
called the pressure potential:

h̃ ≡

∫ P

0

dP

ρ

Note that this pressure potential is only well defined for a barotropic EoS;
P = P (ρ). After all, if P = P (ρ,Q), where Q is some other thermodynamic
quantity, then the integral in the above equation depends on the trajectory
along the Q-‘coordinate’. Using that h̃ =

∫

dh̃ we have that dh̃ = dP/ρ,

from which it is clear that h̃ = h̃(P ) [which, in the case of a barotropic EoS,
can also be written in the form h̃(ρ)]. This in turn implies that
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ρ

To see this, use that
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Finally, we note that for an incompressible fluid (∇ρ = 0) we have that

h̃ =

∫ P

0

dP

ρ
=

1

ρ

∫ P

0

dP =
P

ρ
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Enthalphy: The enthalpy, H , is a measure for the total energy of a ther-
modynamic system, which includes the internal energy, U , and the amount
of energy required to make room for it by displacing its environment and
establishing its volume and pressure:

H = U + PV

The associated specific enthalpy is given by

h ≡
H

m
= ε+

P

ρ

with ε the specific energy. The differential of the enthalpy can be written as

dH = TdS + V dP

where we have used that dU = dQ + dW = TdS − PdV . Hence, for the
specific enthalphy, h, we have that

dh = Tds+
dP

ρ

where s ≡ S/m is the specific entropy. We thus see that

dh = dh̃+ T ds

Hence, for an isentropic flow (ds = 0), we have that the pressure potential is
equal to the specific enthalpy up to an integration constant.

Intermezzo: isentropic vs. adiabatic

According to second law of thermodynamics: TdS ≥ dQ.
The equality only holds for a reversible process.

dS = 0 ⇒ isentropic
dQ = 0 ⇒ adiabatic

Note that a reversible isentropic process is adiabatic.
An irreversible, adiabatic process, however, can still create entropy.
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Consider our momentum equations (ignoring bulk viscosity)

∂~u

∂t
+ (~u · ∇)~u = −

∇P

ρ
−∇Φ+ ν

[

∇
2~u+

1

3
∇(∇ · ~u)

]

Now consider a steady, inviscid flow. Steady implies that ∂(everything)/∂t =
0, while inviscid implies that ν = 0. The latter implies that there is no fric-
tion, and hence no energy dissipation within the fluid. In the absence of
radiative processes, this implies that the flow is isentropic (i.e., ds = 0). For
our steady, inviscid fluid, the above momentum equations reduce to

(~u · ∇)~u = −
∇P

ρ
−∇Φ = −∇(h̃ + Φ)

Now we use the vector identity

(~u · ∇)~u = ∇

(

u2

2

)

+ (∇× ~u)× ~u = ∇

(

u2

2

)

+ ~w × ~u

to rewrite the momentum equations as

~u× ~w = ∇

[

u2

2
+ Φ + h̃

]

≡ ∇B

where we have introduced Bernoulli constant B = 1

2
u2 + Φ + h̃. This

is sometimes called Crocco’s equation, and shows that in a steady, in-
viscid, irrotational flow (i.e., no vorticity), there are no spatial gradients in
Bernoulli’s constant (∇B = 0). This also implies that any mechanism that
can create gradients in B, can create vorticity. Note that in astrophysics
one rarely has solid boundaries, which can create vorticity in their boundary
layers due to viscosity. As we have seen in the previous chapter, the only
way to create vorticity in the absence of viscosity is via the baroclinic pro-
cess. This suggest that one can not create vorticity in an inviscid, barotropic
fluid. However, vorticity can be created in such fluids when they pass a
curved shock. This is known as Crocco’s theorem. A fluid with ∇B = 0
that passes through a curved shock, typically will have a non-zero gradient
in Bernoulli’s constant downstream from the shock, indicating that passing
a curved shock can create vorticity. This is one of the main mechanisms in
astrophysics for creating (large-scale) vorticity.
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Taking the dot-product with ~u on both sides of the above equation, and using
that ~u · (~u × ~w) = 0, which follows from the fact that the cross product be-
tween two vectors is perpendicular to both vectors, we obtain the Bernoulli

equation:

~u · ∇B = 0

which states that the gradients in B are perpendicular to ~u. Hence, B is
conserved along streamlines. And since we made the assumption of a steady
flow, B will also be conserved along particle paths. Note that B is a kind
of energy measure: u2/2 represents kinetic energy, Φ represents the gravita-
tional potential energy, and h̃ =

∫

dP/ρ is a measure for the energy stored
in the pressure (i.e., in the form of the random motions of the particles).

The Bernoulli equation states that in a steady, inviscid flow, the ‘energy’
B is conserved along streamlines (particle paths). However, along those
streamlines ordered motion (~u) can be converted into random motion (P ),
and vice versa. Kinetic energy can also be converted into potential energy,
and vice versa. Applications of Bernoulli’s equation discussed in class are
the shower curtain which moves inwards when the shower is on, and the lift
experienced by an airplane wing (but be aware of the Equal Transit Time
Fallacy). Another application is the venturi meter (see problem set 4).
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