ASTR 320: Solutions to Problem Set 1

Problem 1: Vector Field Gymnastics Let $\vec{A}(\vec{x}) = (x^2 + y, 2x^3 + y^3z, x + 3z^2).$ a) Compute $\nabla \cdot \vec{A}$.

SOLUTION:

$$\nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = 2x + 3y^2 z + 6z$$

b) Compute $\nabla \times \vec{A}$.

SOLUTION:

$$\nabla \times \vec{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) \vec{e}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) \vec{e}_y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \vec{e}_z$$

= $(0 - y^3) \vec{e}_x + (0 - 1) \vec{e}_y + (6x^2 - 1) \vec{e}_z$
= $(-y^3, -1, 6x^2 - 1)$

c) Compute $\nabla^2 \vec{A}$.

SOLUTION:

$$\begin{split} \nabla^2 \vec{A} &= (\nabla \cdot \nabla) \vec{A} \\ &= \left(\frac{\partial^2 A_x}{\partial x^2} + \frac{\partial^2 A_x}{\partial y^2} + \frac{\partial^2 A_x}{\partial z^2} \right) \vec{e_x} \\ &+ \left(\frac{\partial^2 A_y}{\partial x^2} + \frac{\partial^2 A_y}{\partial y^2} + \frac{\partial^2 A_y}{\partial z^2} \right) \vec{e_y} \end{split}$$

$$+ \left(\frac{\partial^2 A_z}{\partial x^2} + \frac{\partial^2 A_z}{\partial y^2} + \frac{\partial^2 A_z}{\partial z^2}\right) \vec{e_z}$$

= $(2+0+0)\vec{e_x} + (12x+6yz+0)\vec{e_y} + (0+0+6)\vec{e_z}$
= $(2,12x+6yz,6)$

d) Compute $\nabla \times (\nabla \times \vec{A})$

SOLUTION:

 $\nabla \times (\nabla \times \vec{A}) = \nabla \times (-y^3, -1, 6x^2 - 1) = (0 - 0) \vec{e}_x + (0 - 12x) \vec{e}_y + (0 + 3y^2) \vec{e}_z = (0, -12x, 3y^2) \vec{e$

e) Compute $\nabla (\nabla \cdot \vec{A})$ and verify that $\nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$ SOLUTION:

$$\nabla (\nabla \cdot \vec{A}) = \nabla (2x + 3y^2 z + 6z)$$

= $\left(\frac{\partial (2x + 3y^2 z + 6z)}{\partial x}, \frac{\partial (2x + 3y^2 z + 6z)}{\partial y}, \frac{\partial (2x + 3y^2 z + 6z)}{\partial z}\right)$
= $(2, 6yz, 3y^2 + 6)$

Thus, we see that $\nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$ as required.

Problem 2: A Simple Scalar Field

Consider the scalar field $\rho(\vec{x}) = \rho(x, y, z) = x^2 + 2xy - z$, and the spherical coordinate system (r, θ, ϕ) .

a) What is $\partial \rho / \partial r$ at (x, y, z) = (2, -2, 1)?

SOLUTION: Using the chain rule, you have that

$$\frac{\partial \rho}{\partial r} = \frac{\partial \rho}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial \rho}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial \rho}{\partial z}\frac{\partial z}{\partial r}$$

Using the transformation rules between (x, y, z) and (r, θ, ϕ) , we have that

$$\frac{\partial x}{\partial r} = \sin \theta \cos \phi = \frac{x}{r}$$
$$\frac{\partial y}{\partial r} = \sin \theta \sin \phi = \frac{y}{r}$$
$$\frac{\partial z}{\partial r} = \cos \theta = \frac{z}{r}$$

Substituting in the above chain rule, and using the partial derivatives of ρ , we obtain that

$$\frac{\partial \rho}{\partial r} = (2x + 2y)\frac{x}{r} + 2x\frac{y}{r} - \frac{z}{r} = \frac{2x^2 + 4xy - z}{\sqrt{x^2 + y^2 + z^2}}$$

Now we can substitute (x, y, z) = (2, -2, 1), which yields that $\partial \rho / \partial r = -9/\sqrt{9} = -3$.

NOTE: it is NOT correct to write $\partial x/\partial r = 1/(\partial r/\partial x) = 1/(x/r) = r/x$ With partial derivatives this doesn't work (i.e., $\partial x/\partial r$ means 'keeping θ and ϕ fixed', while $\partial r/\partial x$ means 'keeping y and z fixed'). **b)** What is $\partial \rho / \partial r$ at the origin?

SOLUTION: It is easiest to first express the above expression for $\partial \rho / \partial r$ in spherical coordinates, which yields

$$\frac{\partial \rho}{\partial r} = \frac{2r^2 \sin^2 \theta \cos^2 \phi + 4r^2 \sin^2 \theta \cos \phi \sin \phi - r \cos \theta}{r}$$
$$= 2r \sin^2 \theta \left[\cos^2 \phi + \sin 2\phi \right] - \cos \theta$$

At the origin, r = 0, we thus have that $\partial \rho / \partial r = -\cos \theta$. Hence, the partial derivative of ρ with respect to radius depends on θ . Since the latter is not defined, we can't specify $\partial \rho / \partial r$, and without any further information, it is basically undefined.

c) What is the derivative of ρ at (x, y, z) = (2, -2, 1) in the direction of $\vec{w} = (3, 1, -2)$?

SOLUTION: The derivative of ρ in the direction of a vector \vec{w} is given by

$$D_w \rho = \nabla \rho \cdot \frac{\vec{w}}{|\vec{w}|}$$

Using that $|\vec{w}| = \sqrt{3^2 + 1^2 + 2^2} = \sqrt{14}$ and that $\nabla \rho = (\partial \rho / \partial x, \partial \rho / \partial y, \partial \rho / \partial z)$, we have that $D_w = (2x + 2y, 2x, -1) \cdot (3/\sqrt{14}, 1/\sqrt{14}, -2/\sqrt{14}) = 6/\sqrt{14}$.

Problem 3: Conservative Force Fields

Consider a force field $\vec{F}(\vec{x}) = (F_x, F_y, F_z) = (axy, x^2 + z^3, byz^2 - 4z^3)$, with a and b two constants and $\vec{x} = (x, y, z)$ Cartesian coordinates.

a) For what a and b is $\vec{F}(\vec{x})$ conservative?

SOLUTION: A conservative vector field is curl-free. Hence, we need to determine for which (a, b) we have that $\nabla \times \vec{F} = 0$. Using that

$$\nabla \times \vec{F} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ F_x & F_y & F_z \end{vmatrix}$$
$$= \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \hat{x} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \hat{y} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \hat{z}$$
$$= (bz^2 - 3z^2) \hat{x} + (0 - 0) \hat{y} + (2x - ax) \hat{z}$$

Demanding that each component is equal to zero, we see that (a, b) = (2, 3).

b) Derive the corresponding scalar potential field, $\Phi(\vec{x})$.

SOLUTION: The scalar potential field is defined by $\vec{F} = \nabla \Phi$, or, in index form $F_i = \partial \Phi / \partial x_i$. Starting with the *x*-component, and making our way forward, we obtain that

$$F_x = \frac{\partial \Phi}{\partial x} \Rightarrow 2xy = \frac{\partial \Phi}{\partial x} \Rightarrow \Phi(\vec{x}) = x^2y + g(y, z)$$

$$F_y = \frac{\partial \Phi}{\partial y} = x^2 + \frac{\partial g}{\partial y} \Rightarrow x^2 + z^3 = x^2 + \frac{\partial g}{\partial y} \Rightarrow \Phi(\vec{x}) = x^2y + z^3y + f(z)$$

$$F_z = \frac{\partial \Phi}{\partial z} = 3z^2y + \frac{\partial f}{\partial z} \Rightarrow 3yz^2 - 4z^3 = 3z^2y + \frac{\partial f}{\partial z}$$

$$\Rightarrow \Phi(\vec{x}) = x^2y + yz^3 - z^4 + C$$

where C is an integration constant.

c) Let F_r , F_{θ} and F_{ϕ} be the components of \vec{F} in the spherical coordinate system. Write down expressions of F_r , F_{θ} and F_{ϕ} in terms of F_x , F_y and F_z . Show your derivation.

SOLUTION: To transform \vec{F} from the Cartesian basis, $C = (\vec{e}_x, \vec{e}_y, \vec{e}_z)$ to the basis $\mathcal{B} = (\vec{e}_r, \vec{e}_\theta, \vec{e}_\phi)$ we use that

$$[\vec{F}]_{\mathcal{B}} = \mathbf{T}^{-1} \, [\vec{F}]_{\mathcal{C}}$$

where \mathbf{T} is the "transformation of basis matrix", whose column vectors are the unit direction vectors of the \mathcal{B} -basis. Using that the inverse of \mathbf{T} is equal to its transpose (i.e., \mathbf{T} is an orthogonal matrix), we have that

$$\mathbf{T}^{-1} = \begin{pmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta\\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta\\ -\sin\phi & \cos\phi & 0 \end{pmatrix}$$

which implies that

$$F_r = F_x \sin \theta \cos \phi + F_y \sin \theta \sin \phi + F_z \cos \theta$$

$$F_\theta = F_x \cos \theta \cos \phi + F_y \cos \theta \sin \phi - F_z \sin \theta$$

$$F_\phi = -F_x \sin \phi + F_y \cos \phi$$

Problem 4: Solenoidal Vector Fields

Consider the 2D solenoidal vector field $\vec{F} = -y \hat{x} + x \hat{y}$ and the two points $x_0 = (1, 2)$ and $x_1 = (3, 4)$. Consider two different paths from x_0 to x_1 :

Path 1:
$$(1, 2) \rightarrow (1, 4) \rightarrow (3, 4)$$

Path 2: $(1, 2) \rightarrow (1, 0) \rightarrow (3, 0) \rightarrow (3, 4)$

a) Compute $\int_{x_0}^{x_1} \vec{F} \cdot d\vec{l}$ along both paths 1 and 2.

SOLUTION: Note that $\int \vec{F} \cdot d\vec{l} = \int (F_x dx + F_y dy) = \int F_x dx + \int F_y dy = -\int y dx + \int x dy$. Hence, when integrating along Path 1, we get

$$\int \vec{F} \cdot d\vec{l} = \int_{2}^{4} 1 \, dy - \int_{1}^{3} 4 \, dx = 2 - 8 = -6$$

Similarly, for Path 2 we get

$$\int \vec{F} \cdot d\vec{l} = \int_2^0 1 \, dy - \int_1^3 0 \, dx + \int_0^4 3 \, dy = -2 - 0 + 12 = 10$$

b) Paths 1 and 2 combined make up a closed curve c. What is $\oint_c \vec{F} \cdot d\vec{l}$?

SOLUTION: By convention, the closed path has to be traced in the counterclockwise direction. Hence, we obtain that

$$\oint_c \vec{F} \cdot d\vec{l} = \int_{\text{path2}} \vec{F} \cdot d\vec{l} - \int_{\text{path1}} \vec{F} \cdot d\vec{l} = 10 - (-6) = 16$$

c) Show that Green's Theorem holds by computing $\int \int_A \nabla \times \vec{F} \, dA$ where A is the region enclosed by c.

SOLUTION: Green's Theorem, which holds in two-dimensions, states that

$$\oint_c \vec{F} \cdot d\vec{l} = \int \int_A \nabla \times \vec{F} \cdot \hat{n} \, dA$$

where A is the area bounded by c, whose normal direction vector is \hat{n} . Using that

$$\nabla \times \vec{F} = \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \vec{e}_z = (1+1)\vec{e}_z = 2\vec{e}_z,$$

that $\hat{n} = \vec{e}_z$, and that $\vec{e}_z \cdot \vec{e}_z = 1$, we obtain that

$$\int \int_A \nabla \times \vec{F} \cdot \hat{n} \, \mathrm{d}A = 2 \int \int_A \, \mathrm{d}A = 2A = 2 \int_1^3 \mathrm{d}x \int_0^4 \mathrm{d}y = 16$$

which demonstrates that Green's Theorem indeed holds.