ASTR 320: Solutions to Problem Set 1

Problem 1: Vector Field Gymnastics
Let A(%) = (2% +y, 22 + y32, x + 32%).

a) Compute V - A.

SOLUTION:
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b) Compute V x A.
SOLUTION:
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¢) Compute V2A.

SOLUTION:
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d) Compute V x (V x A)
SOLUTION:

Vx(VxA) = Vx(—y® —1,60°—1) = (0-0) &,+(0—122) &,+(0+3y°) &, = (0, =12z, 3¢°)

e) Compute V (V- A) and verify that V x (V x A) = V (V- A) — V24

SOLUTION:

V(V-A) = V(2r+3y*z+62)

02z + 3y*z + 62) 0(2x + 3y*z + 62) 0(2x + 3y*z + 62)
< Ox ’ Ay ’ 0z )
= (2,6yz,3y> +6)

Thus, we see that V x (V x A) = V (V- A) — V24 as required.



Problem 2: A Simple Scalar Field
Consider the scalar field p(Z) = p(x,y, z) = 2? + 2zy — 2, and the spherical
coordinate system (r, 6, ¢).

a) What is dp/0r at (z,y,z) = (2,—2,1)7?
SOLUTION: Using the chain rule, you have that

o0 _0p0r  Op 0y, 0po0
or  Ox Or Oy Or 0z Or

Using the transformation rules between (z,y, z) and (r, 0, ¢), we have that

8_x = sinf cos¢p = d
or r
@ = sinf sing = Y
or r
0z z
5 = COSG = ;

Substituting in the above chain rule, and using the partial derivatives of p,
we obtain that

dp x y oz 20 44wy — 2
L) VO V7)) YO A e S M Mg
or (2o + y)r+ Ty Va? +y? + 22

Now we can substitute (z,y,2) = (2,—2,1), which yields that dp/0r =
—9/y/9 = —3.

NOTE: it is NOT correct to write dz/0r = 1/(0r/0x) = 1/(x/r) = r/x
With partial derivatives this doesn’t work (i.e., dx/Jr means ‘keeping 6 and
¢ fixed’, while 0r/0x means ‘keeping y and z fixed’).




b) What is dp/0r at the origin?

SOLUTION: It is easiest to first express the above expression for dp/0r in
spherical coordinates, which yields

dp  2r?sin®6cos? ¢ + 4r?sin® f cos ¢ sin ¢ — 7 cos §

or r
= 2rsin?@ [(:os2 ¢ + sin 2¢} — cos 6

At the origin, 7 = 0, we thus have that dp/0r = — cos 6. Hence, the partial
derivative of p with respect to radius depends on 6. Since the latter is not
defined, we can’t specify dp/0r, and without any further information, it is
basically undefined.

c) What is the derivative of p at (z,y,2) = (2,—2,1) in the direction of
W= (3,1,-2)7

SOLUTION: The derivative of p in the direction of a vector  is given by

Using that |w] = /32 + 12 + 22 = /14 and that Vp = (0p/dz, Dp/dy, Op/0z),
we have that D, = (2 + 2y, 27, —1) - (3/+/14,1//14, —2/\/14) = 6//14.




Problem 3: Conservative Force Fields
Consider a force field F(Z) = (Fy, F, F,) = (azy,2* + 23, byz* — 42°), with
a and b two constants and ¥ = (z,y, z) Cartesian coordinates.

a) For what a and b is F(Z) conservative?

SOLUTION: A conservative vector field isqcurl—free. Hence, we need to
determine for which (a,b) we have that V x F' = 0. Using that

A ~ ~

By 0 2
VxF = |0/0x 0/0y 0/0z
F, F, F

_ (OF, 0L, i OF, OF, - OF, OF, 5
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= (b2 =322+ (0-0)§+ (22 — azx) 2

Demanding that each component is equal to zero, we see that (a,b) = (2, 3).

b) Derive the corresponding scalar potential field, ®(Z).
SOLUTION: The scalar potential field is defined by F= V&, or, in index

form F; = 0®/0z;. Starting with the x-component, and making our way
forward, we obtain that

o0 00 L

F, = %=x2+g—i = x2+z3=fﬁ2+g—§ = O(7) =2’y + 2%y + f(2)
o, of > 43 _ a2 Of

F, = 8z_3zy+82 = Jyz° — 4z _32y+8z

= O(F) =2’y +y? -+ C

where C' is an integration constant.




c) Let F,., Fy and F, be the components of F in the spherical coordinate
system. Write down expressions of F,., Fy and Fy in terms of Fy, F, and F.
Show your derivation.

SOLUTION: To transform F from the Cartesian basis, C = (€, €y, €) to
the basis B = (€, €y, €,) we use that

[Flg =T ' [Fle

where T is the ”transformation of basis matrix”, whose column vectors are
the unit direction vectors of the B-basis. Using that the inverse of T is equal
to its transpose (i.e., T is an orthogonal matrix), we have that

sinfcos¢ sinfsing cosd
T !'=| cosfcos¢p cosfsing —siné
—sin ¢ cos ¢ 0

which implies that

F, = F,sinfcos¢+ F,sinfsin¢ + F, cosf
Fy = F,cosfcos¢+ Fycosfsing — F,sinf
Fy = —F,sin¢+ F,cos¢




Problem 4: Solenoidal Vector Fields
Consider the 2D solenoidal vector field F' = —y & + x ¢ and the two points
zo = (1,2) and 21 = (3,4). Consider two different paths from zy to z:

Path 1: (1,2) — (1,4) — (3,4)
Path 2: (1,2) — (1,0) — (3,0) — (3,4)

a) Compute [ F - dl along both paths 1 and 2.

SOLUTION: Note that [ F-dl = [ (F,dz + F,dy) = [ Fydz + [ F,dy =
— [ydx + [ xdy. Hence, when integrating along Path 1, we get

/F-dl:/ 1dy—/ 4dz—=2—-8=—6
2 1

Similarly, for Path 2 we get

5 o 0 3 4
/F~dl:/ 1dy—/ de+/ 3dy = —2—0+12=10
2 1 0

b) Paths 1 and 2 combined make up a closed curve ¢. What is j?cﬁ -di?

SOLUTION: By convention, the closed path has to be traced in the counter-
clockwise direction. Hence, we obtain that

fﬁ-df: F-dl— [ F-dl'=10—(—6)=16
c path2

pathl

c) Show that Green’s Theorem holds by computing [ [, V X F dA where A
is the region enclosed by c.

SOLUTION: Green’s Theorem, which holds in two-dimensions, states that

fﬁdf://AvXﬁ-ﬁdA

where A is the area bounded by ¢, whose normal direction vector is n. Using
that
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F={—= _'z:]- 1_)z:2_'za
V x % 8y>6 (I+1)e e

that n = €,, and that €, - €, = 1, we obtain that

//AVxﬁ-ﬁdA:2//AdA:2A:2/13d9:/04dy:16

which demonstrates that Green’s Theorem indeed holds.




