
ASTR 320: Solutions to Problem Set 1

Problem 1: Vector Field Gymnastics

Let ~A(~x) = (x2 + y, 2x3 + y3z, x+ 3z2).

a) Compute ∇ · ~A.

SOLUTION:

∇ · ~A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
= 2x+ 3y2z + 6z

b) Compute ∇× ~A.

SOLUTION:

∇× ~A =

(

∂Az

∂y
− ∂Ay

∂z

)

~ex +

(

∂Ax

∂z
− ∂Az

∂x

)

~ey +

(

∂Ay

∂x
− ∂Ax

∂y

)

~ez

= (0− y3)~ex + (0− 1)~ey + (6x2 − 1)~ez

= (−y3,−1, 6x2 − 1)

c) Compute ∇2 ~A.

SOLUTION:

∇2 ~A = (∇ · ∇) ~A

=

(

∂2Ax

∂x2
+

∂2Ax

∂y2
+

∂2Ax

∂z2

)

~ex

+

(

∂2Ay

∂x2
+

∂2Ay

∂y2
+

∂2Ay

∂z2

)

~ey
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+

(

∂2Az

∂x2
+

∂2Az

∂y2
+

∂2Az

∂z2

)

~ez

= (2 + 0 + 0)~ex + (12x+ 6yz + 0)~ey + (0 + 0 + 6)~ez

= (2, 12x+ 6yz, 6)

d) Compute ∇× (∇× ~A)

SOLUTION:

∇×(∇× ~A) = ∇×(−y3,−1, 6x2−1) = (0−0)~ex+(0−12x)~ey+(0+3y2)~ez = (0,−12x, 3y2)

e) Compute ∇ (∇ · ~A) and verify that ∇× (∇× ~A) = ∇ (∇ · ~A)−∇2 ~A

SOLUTION:

∇ (∇ · ~A) = ∇(2x+ 3y2z + 6z)

=

(

∂(2x+ 3y2z + 6z)

∂x
,
∂(2x+ 3y2z + 6z)

∂y
,
∂(2x + 3y2z + 6z)

∂z

)

= (2, 6yz, 3y2 + 6)

Thus, we see that ∇× (∇× ~A) = ∇ (∇ · ~A)−∇2 ~A as required.
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Problem 2: A Simple Scalar Field

Consider the scalar field ρ(~x) = ρ(x, y, z) = x2 + 2xy − z, and the spherical
coordinate system (r, θ, φ).

a) What is ∂ρ/∂r at (x, y, z) = (2,−2, 1)?

SOLUTION: Using the chain rule, you have that

∂ρ

∂r
=

∂ρ

∂x

∂x

∂r
+

∂ρ

∂y

∂y

∂r
+

∂ρ

∂z

∂z

∂r

Using the transformation rules between (x, y, z) and (r, θ, φ), we have that

∂x

∂r
= sin θ cosφ =

x

r
∂y

∂r
= sin θ sinφ =

y

r
∂z

∂r
= cos θ =

z

r

Substituting in the above chain rule, and using the partial derivatives of ρ,
we obtain that

∂ρ

∂r
= (2x+ 2y)

x

r
+ 2x

y

r
− z

r
=

2x2 + 4xy − z√
x2 + y2 + z2

Now we can substitute (x, y, z) = (2,−2, 1), which yields that ∂ρ/∂r =
−9/

√
9 = −3.

NOTE: it is NOT correct to write ∂x/∂r = 1/(∂r/∂x) = 1/(x/r) = r/x
With partial derivatives this doesn’t work (i.e., ∂x/∂r means ‘keeping θ and
φ fixed’, while ∂r/∂x means ‘keeping y and z fixed’).
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b) What is ∂ρ/∂r at the origin?

SOLUTION: It is easiest to first express the above expression for ∂ρ/∂r in
spherical coordinates, which yields

∂ρ

∂r
=

2r2 sin2 θ cos2 φ+ 4r2 sin2 θ cosφ sinφ− r cos θ

r

= 2r sin2 θ
[

cos2 φ+ sin 2φ
]

− cos θ

At the origin, r = 0, we thus have that ∂ρ/∂r = − cos θ. Hence, the partial
derivative of ρ with respect to radius depends on θ. Since the latter is not
defined, we can’t specify ∂ρ/∂r, and without any further information, it is
basically undefined.

c) What is the derivative of ρ at (x, y, z) = (2,−2, 1) in the direction of
~w = (3, 1,−2)?

SOLUTION: The derivative of ρ in the direction of a vector ~w is given by

Dw ρ = ∇ρ · ~w

|~w|

Using that |~w| =
√
32 + 12 + 22 =

√
14 and that∇ρ = (∂ρ/∂x, ∂ρ/∂y, ∂ρ/∂z),

we have that Dw = (2x+ 2y, 2x,−1) · (3/
√
14, 1/

√
14,−2/

√
14) = 6/

√
14.
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Problem 3: Conservative Force Fields

Consider a force field ~F (~x) = (Fx, Fy, Fz) = (axy, x2 + z3, byz2 − 4z3), with
a and b two constants and ~x = (x, y, z) Cartesian coordinates.

a) For what a and b is ~F (~x) conservative?

SOLUTION: A conservative vector field is curl-free. Hence, we need to
determine for which (a, b) we have that ∇× ~F = 0. Using that

∇× ~F =

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z
Fx Fy Fz

∣

∣

∣

∣

∣

∣

∣

=

(

∂Fz

∂y
− ∂Fy

∂z

)

x̂+

(

∂Fx

∂z
− ∂Fz

∂x

)

ŷ +

(

∂Fy

∂x
− ∂Fx

∂y

)

ẑ

= (bz2 − 3z2) x̂+ (0− 0) ŷ + (2x− ax) ẑ

Demanding that each component is equal to zero, we see that (a, b) = (2, 3).

b) Derive the corresponding scalar potential field, Φ(~x).

SOLUTION: The scalar potential field is defined by ~F = ∇Φ, or, in index
form Fi = ∂Φ/∂xi. Starting with the x-component, and making our way
forward, we obtain that

Fx =
∂Φ

∂x
⇒ 2xy =

∂Φ

∂x
⇒ Φ(~x) = x2y + g(y, z)

Fy =
∂Φ

∂y
= x2 +

∂g

∂y
⇒ x2 + z3 = x2 +

∂g

∂y
⇒ Φ(~x) = x2y + z3y + f(z)

Fz =
∂Φ

∂z
= 3z2y +

∂f

∂z
⇒ 3yz2 − 4z3 = 3z2y +

∂f

∂z

⇒ Φ(~x) = x2y + yz3 − z4 + C

where C is an integration constant.
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c) Let Fr, Fθ and Fφ be the components of ~F in the spherical coordinate
system. Write down expressions of Fr, Fθ and Fφ in terms of Fx, Fy and Fz.
Show your derivation.

SOLUTION: To transform ~F from the Cartesian basis, C = (~ex, ~ey, ~ez) to
the basis B = (~er, ~eθ, ~eφ) we use that

[~F ]B = T−1 [~F ]C

where T is the ”transformation of basis matrix”, whose column vectors are
the unit direction vectors of the B-basis. Using that the inverse of T is equal
to its transpose (i.e., T is an orthogonal matrix), we have that

T−1 =







sin θ cos φ sin θ sin φ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sin φ cosφ 0







which implies that

Fr = Fx sin θ cos φ+ Fy sin θ sinφ+ Fz cos θ

Fθ = Fx cos θ cosφ+ Fy cos θ sin φ− Fz sin θ

Fφ = −Fx sinφ+ Fy cosφ
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Problem 4: Solenoidal Vector Fields

Consider the 2D solenoidal vector field ~F = −y x̂ + x ŷ and the two points
x0 = (1, 2) and x1 = (3, 4). Consider two different paths from x0 to x1:

Path 1: (1, 2) → (1, 4) → (3, 4)

Path 2: (1, 2) → (1, 0) → (3, 0) → (3, 4)

a) Compute
∫ x1

x0

~F · d~l along both paths 1 and 2.

SOLUTION: Note that
∫ ~F · d~l = ∫

(Fx dx+ Fy dy) =
∫

Fx dx +
∫

Fy dy =
− ∫ y dx+

∫

x dy. Hence, when integrating along Path 1, we get

∫

~F · d~l =
∫ 4

2
1 dy −

∫ 3

1
4 dx = 2− 8 = −6

Similarly, for Path 2 we get

∫

~F · d~l =
∫ 0

2
1 dy −

∫ 3

1
0 dx+

∫ 4

0
3 dy = −2− 0 + 12 = 10

b) Paths 1 and 2 combined make up a closed curve c. What is
∮

c
~F · d~l?

SOLUTION: By convention, the closed path has to be traced in the counter-
clockwise direction. Hence, we obtain that

∮

c

~F · d~l =
∫

path2

~F · d~l −
∫

path1

~F · d~l = 10− (−6) = 16

c) Show that Green’s Theorem holds by computing
∫ ∫

A ∇× ~F dA where A
is the region enclosed by c.

SOLUTION: Green’s Theorem, which holds in two-dimensions, states that
∮

c

~F · d~l =
∫ ∫

A
∇× ~F · n̂dA

where A is the area bounded by c, whose normal direction vector is n̂. Using
that
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∇× ~F =

(

∂Fy

∂x
− ∂Fx

∂y

)

~ez = (1 + 1)~ez = 2~ez ,

that n̂ = ~ez, and that ~ez · ~ez = 1, we obtain that

∫ ∫

A
∇× ~F · n̂ dA = 2

∫ ∫

A
dA = 2A = 2

∫ 3

1
dx
∫ 4

0
dy = 16

which demonstrates that Green’s Theorem indeed holds.
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