This problem set consists of 4 problems and will NOT be graded It is intended as a voluntary test of required math skills This material is covered in Appendices A-C of the Lecture Notes

Problem 1: Vector Field Gymnastics

Let $\vec{A}(\vec{x}) = (x^2 + y, 2x^3 + y^3z, x + 3z^2).$

- **a**) Compute $\nabla \cdot \vec{A}$.
- **b**) Compute $\nabla \times \vec{A}$.
- c) Compute $\nabla^2 \vec{A}$.
- **d)** Compute $\nabla \times (\nabla \times \vec{A})$
- e) Compute $\nabla (\nabla \cdot \vec{A})$ and verify that $\nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \cdot \vec{A}) \nabla^2 \vec{A}$

Problem 2: A Simple Scalar Field

Consider the scalar field $\rho(\vec{x}) = \rho(x, y, z) = x^2 + 2xy - z$, and the spherical coordinate system (r, θ, ϕ) .

- **a)** What is $\partial \rho / \partial r$ at (x, y, z) = (2, -2, 1)?
- **b)** What is $\partial \rho / \partial r$ at the origin?

c) What is the derivative of ρ at (x, y, z) = (2, -2, 1) in the direction of $\vec{w} = (3, 1, -2)$?

Problem 3: Conservative Force Fields

Consider a force field $\vec{F}(\vec{x}) = (F_x, F_y, F_z) = (axy, x^2 + z^3, byz^2 - 4z^3)$, with a and b two constants and $\vec{x} = (x, y, z)$ Cartesian coordinates.

a) For what a and b is $\vec{F}(\vec{x})$ conservative?

b) Derive the corresponding scalar potential field, $\Phi(\vec{x})$.

c) Let F_r , F_{θ} and F_{ϕ} be the components of \vec{F} in the spherical coordinate system. Write down expressions of F_r , F_{θ} and F_{ϕ} in terms of F_x , F_y and F_z . Show your derivation.

HINT: Use the transformation of basis matrix (see App. C of Lecture Notes)

Problem 4: Solenoidal Vector Fields

Consider the 2D solenoidal vector field $\vec{F} = -y \hat{x} + x \hat{y}$ and the two points $x_0 = (1, 2)$ and $x_1 = (3, 4)$. Consider two different paths from x_0 to x_1 : Path 1: $(1, 2) \rightarrow (1, 4) \rightarrow (3, 4)$

Path 2: $(1,2) \rightarrow (1,0) \rightarrow (3,0) \rightarrow (3,4)$

a) Compute $\int_{x_0}^{x_1} \vec{F} \cdot d\vec{l}$ along both paths 1 and 2.

b) Paths 1 and 2 combined make up a closed curve c. What is $\oint_c \vec{F} \cdot d\vec{l}$?

c) Show that Green's Theorem holds by computing $\int \int_A \nabla \times \vec{F} \, dA$ where A is the region enclosed by c.