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Introduction: Motivation & Goal

Our main goal is to study the Galaxy-Dark Matter connection;
i.e., what galaxy lives in what halo?

z To constrain the physics of Galaxy Formation i
i~ To constrain cosmological parameters B

e

Different Methods to Constrain Galaxy-Dark Matter Connection:

- . . . }
z Large Scale Structure Satellite Kinematics \

L Galaxy-Galaxy Lensing Abundance Matching R
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The Halo Model

The halo model describes the dark matter density distribution in ferms of its halo
building blocks, under the ansatz that all dark matter is partitioned over haloes.

|- the halo mass function (M) 7
Its ingredients are: | « the halo bias function b(M) "
'[ the halo density profiles p(r|M) = Mu(r|M) J’

All of these are (reasonably) well calibrated against humerical simulations.

In order to write the dark matter density field, p(Z) , in terms of these
ingredients, imagine that space is divided into many small volumes, AV;, which
are so small that none of them contain more than one halo center. Then,

T ~ )
1

- —

)
|
N

where N, ; is the occupation number of volume AV;. Note that \}, ; = J\/}ii =0 or 1
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The Halo Model

L{ p(Z) = ZNh,iMiu(f— fzu\;zﬂ

The ensemble average of the density at location = can be written as

. e & RS
(p(D)) = > (MyiMou(T — Z| M;))
Ry . Tl | = / dM M n(M) / P& w(® — F|M) = p sz idlom AES

7) 83+ 7)) = (p() p(7 + 7)) — 1
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The HQIO MOdel becom7:wolu'rion in real-space

1+ &(r ZZ (M iNu s My M (T — Z| M) w(Z — &, M)

et e

One typically splits this summation in two parts: ,

o the 1-halo term for which i = j ‘
® the 2-halo term for which i # j L

1-halo vs. 2-halo

Because of the convolution of the halo profiles, it is advantageous to work in Fourier
- space; r'a‘rher' ’rhan cor'r'ela’rlon func’rlon g(ga we compu’re the power spec’rr'um P(k) _
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The Halo Model

For the 1-halo term one obtains

' Plh(k) _ %/d]\l]\f2 n(M) |ﬂ(k|m

For the 2-halo term one obtains

———

00
wher'e (k‘|M1, MQ) = A5 / [ O fhh( |M1, Mz)] ]-C’I“ redr
‘ §_ W & rml,rf ‘ 2 3' ' ~‘;?7i_ r; g:j-'i; N Ry &
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halo exclusior\J
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The Galaxy-Galaxy Correlation Function

{Plh /dMM2 ) |@(k|M)|? i
{;h k) == /dM1 My n(My) (k|M1)/sz Ma n(Mz)u(k|Msz) Q(k|[Mi, M2) i

——

The above equations describe the non-linear matter power-spectrum.
It is straightforward to use same formalism o compute power spectrum of galaxies:
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The Halo-Halo Correlation Function

For the halo-halo correlation function one can write

T [monc N
‘ fhh(T‘Ml, Mg) _ { ( 1) ( 2) C(T) fmm(r) r Z T'min "
‘L —1~ = Ui j

Here b(M) is the (linear) bias for haloes of mass M , and ((r)is the " radial bias

factor' which descibes the deviation from the linear bias model in the quasi-
linear regime.

Under the assumption of ~ deterministic biasing’, one can write that

R T aon .
{3 (@M) = 8u(0) = Y- @) |
{ i I i & Gaztanaga (1993)

In the linear regime,§,, < 1, one has that §,, = b(M)é,,, where by (M) = b(M)

The radial bias,((r), captures the higher order moments. Attempts to compute ((r)
from first principles have thus far proven insufficiently accurate. We use the

" fitting function’ of Tinker et al (2005), which is calibrated against numerical
simulations: this is the main source of systematic error in our models (~10%)!
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The Halo-Halo Correlation Function

For the halo-halo correlation function one can write

,’ B b( M -b“M A—_»r mm (7 r > rmi:
ffhh(T\M1,M2) { (M7) b(Ms) (1) Emm(T) = )'
L —1~ 7 < Tmin j

— —

Here b(M) is the (linear) bias for haloes of mass M , and ((r)is the " radial bias

factor' which descibes the deviation from the linear bias model in the quasi-
linear regime.

Under the assumption that ((r) = 1, and ignoring halo exclusion, one has that

r —_— sl
“? PQh(k‘) = %/dMl M1 n(Ml)&(k|M1)/dM2 M2 n(Mg)ﬂ(k’MQ k’M]_,MQ x
| ‘ . }
r _: | D 2 T )
simplifies to + P?" (k) = [5 / dM M n(M) b(M)f&(k\M)] Pmm(k)}
L _ N

This is the approach most often adopted in the literature, but its accuracy is
poor (<30%) in the 1-halo/2-halo transition regime (0.5 - 2 Mpc/h)ll
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The Conditional Luminosity Function

The CLF ®(L|M) describes the average number of galaxies
of luminosity L that reside in a halo of mass M.

“
"
“
-

Galaxy luminosity
function
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The CLF Model

We split the CLF in a central and a satellite term:

For centrals we adopt a log-normal distribution:

| Forr sa.‘re[_h’reiy ;@ a q*g.'

FENS
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CLF Constraints from Group Catalogue

log[®(L) dlog L /group]
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9 10
log[L/(h™2L)]

11

log[®(L) dlog L /group]

log[#(L) dlog L /group]

13.5<log M, =13.8

9 10 | 11
log[L/(h_zLo)]

12.0<log M, =12.3

10
log[L/(h_gLo)]

Yang, Mo & vdB (2008)
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Comparison with Mock Catalogues

Run numerical simulation of
structure formation (DM only)

[-18.-19.5]

Identify DM haloes, and
populate them with galaxies
using a model for the CLF.

Compute galaxy-galaxy
correlation functions for
various luminosity bins.

Use analytical model to
compute the same, using the
same model for the CLF.

’A Our model is accumfg

Y
i at the 5-10% level
-1 0 -

log[r/(h~'Mpc)]

—
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Large Scale Structure: The Data

different Luminosity bins

[-18,-19]
[-19,-20]

[-21,-21.5]
[-21.5,-22]
[-22,-22.5]

-1 -05 O 0.5 1
log(rp) [h-'Mpc] Wang et al. (2007)

More luminous galaxies are more strongly clustered
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Occupation Statistics from Clustering

® Galaxies occupy dark matter halos
® CDM: more massive halos are more strongly clustered

® Clustering strength of given population of galaxies
indicates the characteristic halo mass

Correlation Lengths

) WMAP1
— W MAP3
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Cosmology Dependence
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Cacciato et al. (2009)
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Galaxy-Galaxy Lensing

The mass associated with galaxies lenses background galaxies
e e —A : S——

-—

e

Lensing causes correlated ellipticities, the tangential shear, ~;, which
is related to the excess surface density, AY, according to

[ 3(R) et = AX(R) = (< R) - B(R) |

L
AY is line-of-sight projection of galaxy-matter cross correlation
D. )
{ SR = [ () |
L . . J
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Galaxy-Galaxy Lensing: The Data

Number of background sources per lens is limited

Measuring shear with sufficient S/N requires stacking of many lenses

AX(R|L1,L2) has been measured using the SDSS by
Mandelbaum et al. 2006, using different bins in lens-luminosity

Mandelbaum et al. (2006)

Radius (h-!Mpc)
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How to interpret the signal?

Because of stacking the lensing signal is difficult to interpret
In order to model the data, what is required is:

[ Pecn(ML) Poo(MIL)  fuar(L)}

These can all be computed from the CLF...

For a given ®(L| M) we can predict the lensing signal AX(R|L1, Ls)

zCombina’rion of wy () and AX(R|L,, L) can constrain cosmologyL

L e —————
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Galaxy-Galaxy Lensing: Results

"1 - - ITIIII

" [19.-18)

WMAP1 =295
WMAP3 ’=3.1

R [h-'Mpc]

iCombination of clustering & lensing can constrain cosmology!!l
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Fiducial Model

Total of 13 free parameters:
- 11 parameters to describe CLF
- 2 cosmological parameters; ), and og
Total of 172 data points.

We use WMAP7 priors on h, (2;,and ng,
including their covariance.

Dark matter haloes follow NFW profile.

Radial number density distribution of satellites
follows that of dark matter particles.

Halo mass function and halo bias function and J

radial bias function of Tinker (2008, 2010)
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Fisher Forecasting

Flat priors on (),, n_, h WMAP7 priors on Q,, n_, h

LF+ESD+Wp LF+ESD+Wp

LF+ESD
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Results: Clustering Data
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Results: Lensing Data
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Luminosity Function & Satellite Fractions

Lumiwosi‘ca Fuwnctlon Satellite Fractions
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Cosmological Constraints
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Conclusions

Conditional Luminosity Function (CLF) is powerful
statistic to describe galaxy-dark matter connection.

Combination of galaxy clustering and galaxy-galaxy
| lensing can constrain cosmological parameters.

This method is complementary to and competitive with
BAO, cosmic shear, SNIa & cluster abundances.

}' Main systematic uncertainties (~10%) related to
(  radial bias, redshift space distortions and halo bias.

- i ——— I

Preliminary results are in excellent agreement
with CMB constraints from WMAPS J
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