

These lecture notes are constantly being updated, extended and improved

This is Version F2021:v0.1

Last Modified: Jul 20, 2021

2

CONTENTS

1: Solving PDEs with Finite Di↵erence Methods . 1

2: Consistency, Stability, and Convergence . 17

3: Reconstruction and Slope Limiters . 24

4: Burgers’ Equation & Method of Characteristics . 34

5: The Riemann Problem & Godunov Schemes . 41

Appendix: Di↵erential Equations. .55

0

CHAPTER 1

Solving PDEs with Finite Di↵erence Methods

Having discussed the theory of fluid dynamics, we now focus on how to actually solve
the partial di↵erential equations (PDEs) that describe the time-evolution of the
various hydrodynamical quantities. Solving PDEs analytically is complicated (see
Appendix E for some background) and typically only possible for highly idealized
flows. In general, we are forced to solve the PDEs numerically. How this is done is
the topic of this and subsequent chapters.

The first thing to realize is that a computer will only solve a discrete representation
of the actual PDE. We call this approximation a finite di↵erence approximation
(FDA). In addition, we need to represent the physical data (i.e., our hydrodynam-
ical quantities of interest) in a certain finite physical region of interest, called the
computational domain). Typically this is done by subdividing the computational
domain using a computational mesh; the data is specified at a finite number of grid
points or cells. Throughout these chapters on numerical hydrodynamics we will con-
sider regular, cartesian meshes, but more complicated, even time-dependent meshes
can be adopted as well. There are two di↵erent ‘methods’ (or ‘philosophies’) for
how to formulate the problem. On the one hand, one can think of the data as liter-
ally being placed at the grid points. This yields a finite di↵erence formulation.
Alternatively, one can envision the data being spread our over the mesh cell (or
‘zone’), yielding a finite volume formulation. In practice. finite di↵erence formu-
lations are a bit faster, and easier to comprehend, which is why much of what follows
adopts the finite di↵erence formulation. In Chapter 3, though, we will transition to
finite volume formulation, which is the formulation most often adopted in modern
computational fluid dynamics.

Before proceeding with discussing finite di↵erence formulations of our hydrodynami-
cal equations on a mesh, we point out that particle based methods have also been
developed. Smoothed Particle Hydrodynamics (SPH) is the main example, which is
quite often used in astrophysics (but rarely in engineering problems). SPH has the
advantage of being Lagrangian, which is desirable in certain applications, but it is
typically much harder to proof that the SPH scheme converges to the actual physical

1

equations being modelled. In what follows we therefore adhere to Eulerian methods
based on computational domains that are discretized on a mesh.

In numerical hydrodynamics it is common and most convenient to write the hydro-
dynamical equations in conservative form

@q

@t

+r · ~f(q) = S

Here q(~x, t) is a state variable of the fluid (either scalar or vector), ~

f(q) describes
the flux of q, and S describes the various sources and/or sinks of q. For an ideal
(i.e., inviscid and non-conductive) fluid, which is what we consider throughout
these chapters on numerical hydrodynamics, the continuity, momentum and energy
equations in conservative form are:

@⇢

@t

+r · (⇢~u) = 0

@⇢~u

@t

+r · (⇢~u⌦ ~u+ P) = �⇢r�

@⇢(1
2

u

2 + �+ ")

@t

+r ·
✓

1

2
u

2 + �+ "+
P

⇢

◆
⇢~u

�
= ⇢

@�

@t

� L

The latter, the energy equation, can be rewritten as

@⇢(1
2

u

2 + ")

@t

+r ·
✓

1

2
u

2 + "+
P

⇢

◆
⇢~u

�
= �⇢~u ·r�� L

In order to see this, use that

⇢

@�

@t

� @⇢�

@t

� @⇢�u
k

@x

k

= ��
@⇢

@t

�r · (⇢�~u)

= ��
@⇢

@t

� �r · ⇢~u� ⇢~u ·r�

= ��

@⇢

@t

+r · ⇢~u
�
� ⇢~u ·r� = �⇢~u ·r�

Thus, ignoring radiation (L = 0) and gravity (� = 0), in addition to viscosity and
conduction, the equations of hydrodynamics in conservative form are

@~q

@t

+r · ~f = 0 or,
@q

i

@t

+
@f

i

@q

i

= 0

2

where

~q =

0

@
⇢

⇢~u

1

2

⇢u

2 + ⇢"

1

A and ~

f(~q) =

0

@
⇢~u

⇢~u⌦ ~u+ P

(1
2

u

2 + "+ P/⇢) ⇢~u

1

A

Depending on the number of spatial dimensions, this is a set of 3-5 coupled PDEs,
and our goal is to come up with a scheme how to numerically solve these. Note that
we are considering a highly oversimplified case, ignoring gravity, radiation, viscosity
and conduction. As discussed later, adding viscosity and conduction changes the
character of the PDE, while gravity and radiation can be added as source and/or
sink terms, something we will not cover in these lecture notes.

Typically, one can numerically solve this set of PDEs using the following procedure:

1. Define a spatial grid, ~x
i

, where here the index refers to the grid point.

2. Specify initial conditions for ~q(~x, t) at t = 0 at all ~x
i

, and specify suitable
boundary conditions on the finite computational domain used.

3. Compute ⇢, ~u and " at all ~x
i

.

4. Compute the fluxes ~

f(~q) at all ~x
i

.

5. Take a small step in time, �t, and compute the new ~q(~x
i

, t+�t).

6. Go back to [3]

Although this sounds simple, there are many things that can go wrong. By far the
most tricky part is step [5], as we will illustrate in what follows.

Let us start with some basics. The above set of PDEs is hyperbolic. Mathematically
this means the following. Consider the Jacobian matrix of the flux function

F

ij

(~q) ⌘ @f

i

@q

j

The set of PDEs is hyperbolic if, for each value of ~q, all the eigenvalues of F are real,
and F is diagonizable.

3

In a system described by a hyperbolic PDE, information travels at a finite speed (c
s

in the example here). Information is not transmitted until the wave arrives. The
smoothness of the solution to a hyperbolic PDE depends on the smoothness of the
initial and boundary conditions. For instance, if there is a jump in the data at the
start or at the boundaries, then the jump will propagate as a shock in the solution.
If, in addition, the PDE is nonlinear (which is the case for the Euler equations), then
shocks may develop even though the initial conditions and the boundary conditions
are smooth.

If we were to consider the Navier-Stokes equation, rather than the Euler equa-
tions, then we add ‘non-ideal’ terms (referring to the fact that these terms are absent
for an ideal fluid) related to viscosity and conduction. These terms come with a
second-order spatial derivative, describing di↵usive processes. Such terms are called
parabolic, and they have a di↵erent impact on the PDE. See the box on the next
page.

Hence, we are faced with the problem of simultaneously solving a hyperbolic set of
3-5 PDEs, some of which are non-linear, and some of which may contain parabolic
terms. This is a formidable problem, and one could easily devote an entire course to
it. Readers who want to get more indepth information are referred to the textbooks
listed at the start of this section on numerical hydrodynamics.

4

The Nature of Hyperbolic and Parabolic PDEs

Consider the first-order PDE

@⇢

@t

+ v

@⇢

@x

= 0

As we will see later on, this is the 1D linear advection equation, and
it describes how density features are being propagated (i.e., advected)
with constant speed v. To get some insight, let’s consider the formal
solution

⇢ = ⇢

0

+ ⇢

1

ei(kx�!t)

which consists of a constant part, ⇢

0

, plus a wave-like perturbation.
Substituting this in the PDE yields

! = kv) ⇢(x, t) = ⇢

0

+ ⇢

1

eik(x�vt)

This is a travelling wave, and ! is always real. We also see that the group
velocity @!/@k = v is constant, and independent of k; all modes prop-
agate at the same speed, and the wave-solution is thus non-dispersive.
This is characteristic of a hyperbolic PDE. Next consider the heat
equation

@T

@t

=

@

2

T

@x

2

This equation describes how heat di↵uses in a 1D system with di↵usion
coe�cient . Substituting the same formal solution as above, we obtain
that

! = �ik

2) ⇢(x, t) = ⇢

0

+ ⇢

1

eikxe�k

2
t

Note that ! is now imaginary, and that the solution has an exponentially
decaying term. This describes how the perturbation will ‘die out’ over
time due to dissipation. This is characteristic of a parabolic PDE.

5

In what follows, rather than tackling the problem of numerically solving the Euler
or Navier-Stokes equations, we focus on a few simple limiting cases that result in
fewer equations, which will give valuable insight to aspects of the various numerical
schemes. In particular, we restrict ourselves to the 1D case, and continue to assume
an ideal fluid for which we can ignore radiation and gravity. The hydrodynamic
equations now reduce to the following set of 3 PDEs:

@⇢

@t

+
@

@x

(⇢u) = 0

@

@t

(⇢u) +
@

@x

(⇢uu+ P) = 0

@

@t

✓
1

2
⇢u

2 + ⇢"

◆
+

@

@x

✓
1

2
⇢u

2 + ⇢"+ P

�
u

◆
= 0

If we now, in addition, assume constant pressure, P , and a constant flow ve-
locity, u, then this system reduces to 2 separate, linear PDEs given by

@⇢

@t

+ u

@⇢

@x

= 0 and
@"

@t

+ u

@"

@x

= 0

These are identical equations, known as the linear advection equation. They
describe the passive transport of the quantities ⇢ and " in the flow with constant
velocity u. This equation has a well-known, rather trivial solution: If the initial
(t = 0) conditions are given by ⇢

0

(x) and "

0

(x), the the general solutions are

⇢(x, t) = ⇢

0

(x� ut) and "(x, t) = "

0

(x� ut)

Since the analytical solution to this linear advection equation is (trivially) known,
it is an ideal equation on which to test our numerical scheme(s). As we will see,
even this extremely simple example will proof to be surprisingly di�cult to solve
numerically.

The Courant-Friedrich-Lewy condition: Due to the finite travelling speed of
waves, hyperbolic PDEs have a finite physical domain of dependence. This
implies that any scheme used to solve a hyperbolic PDE must obey the Courant-
Friedrich-Lewy (CFL) condition (often called the Courant condition, for short). In
particular, if u is the speed at which information propagates, and grid cells are
interspaced by �x, then the time-step �t used in the numerical integration must
obey

|u�t/�x| ⌘ |↵
c

| 1

6

Figure 1: Filled and open dots indicate the grid points (horizontal) and time steps
(vertical). The grey region is the physical domain of dependence for the (x, t)-grid
point, and the CFL-condition states that the numerical domain of dependence must
contain this physical domain. The triangle formed by the two dashed lines and solid
black line indicates this numerical domain in the case of the explicit Euler scheme
of integration discussed below. It relies on the properties of the neighboring grid points
at the previous time-step. The time-step in panel [1] DOES meet the CFL-criterion,
while that in panel [2] does NOT.

Here the parameter ↵
c

is often called the CFL, or Courant, parameter. Note that this
CFL condition is necessary for stability, but not su�cient. In other words, obeying
the CFL condition does not guarantee stability, as we will see shortly.

The principle behind the CFL condition is simple: if a wave is moving across a
discrete spatial grid and we want to compute its amplitude at discrete time steps
of equal duration, �t, then this duration must be less than the time for the wave
to travel to adjacent grid points. As a corollary, when the grid point separation is
reduced, the upper limit for the time step also decreases. In essence, the numerical
domain of dependence of any point in space and time must include the analytical
domain of dependence (wherein the initial conditions have an e↵ect on the exact value
of the solution at that point) to assure that the scheme can access the information
required to form the solution. This is illustrated in Fig. 25.

IMPORTANT: change in notation: From here on out, following standard nota-
tion in many textbooks on this topic, we are going to write the function to be solved
as u(x, t), without implying that this u is velocity (as has been our notation thus
far). Although this may cause some confusion, it is in line with the standard notation

7

in computational hydrodynamics and much of the literature on solving di↵erential
equations. In this new notation our linear advection equation is given by

@u

@t

+ v

@u

@x

= 0

where v is now the constant advection speed, and u is the property being advected.
Throughout we adopt a discretization in time and space given by

t

n = t

0

+ n�t

x

i

= x

0

+ i�x

Note that subscripts indicate the spatial index, while superscripts are used to refer
to the temporal index. Hence, un+1

i

refers to the value of u at grid location i at
time-step n+1, etc. The key to numerically solving di↵erential equations is find how
to express derivatives in terms of the discretized quantities. This requires a finite
di↵erence scheme. Using Taylor series expansion, we have that

u

i+1

⌘ u(x
i

+�x) = u(x
i

) +�x

@u

@x

(x
i

) +
(�x)2

2

@

2

u

@x

2

(x
i

) +
(�x)3

6

@

3

u

@x

3

(x
i

) +O(�x

4)

u

i

⌘ u(x
i

)

u

i�1

⌘ u(x
i

��x) = u(x
i

)��x

@u

@x

(x
i

) +
(�x)2

2

@

2

u

@x

2

(x
i

)� (�x)3

6

@

3

u

@x

3

(x
i

) +O(�x

4)

By subtracting the first two expression, and dividing by �x, we obtain the following
finite di↵erence approximation for the first derivative

u

0
i

⇡ u

i+1

� u

i

�x

� 1

2

@

2

u

@x

2

(x
i

)�x

The first term is the finite di↵erence approximation (FDA) for the first derivative,
and is known as the forward di↵erence. The second term gives the truncation
error, which shows that this FDA is first-order accurate (in �x).

We can obtain an alternative FDA for the first derivative by subtracting the latter
two expressions, and again dividing by �x:

u

0
i

⇡ u

i

� u

i�1

�x

� 1

2

@

2

u

@x

2

(x
i

)�x

8

Figure 2: Stencil diagrams for the Backward-Space FTBS scheme (left-hand panel),
the Central-Space FTCS scheme (middle panel), and the Forward-Space FTFS
scheme (right-hand panel). All of these are examples of explicite Euler integration
schemes.

which is also first-order accurate in �x (i.e., the numerical error in u

0 is proportional
to �x). This finite di↵erence scheme is known as backward di↵erence.

Combining the two Taylor series approximations, and subtracting one from the other,
yields yet another FDA for the first derivative, given by

u

0
i

⇡ u

i+1

� u

i�1

2�x

� 1

3

@

3

u

@x

3

(x
i

)(�x)2

which is known as the centred di↵erence scheme. Note that this FDA is second-
order accurate in �x.

Using the same approach, one can also obtain FDAs for higher-order derivatives. For
example, by adding the two Taylor series expressions above, we find that

u

00
i

⇡ u

i+1

� 2u
i

+ u

i�1

(�x)2
� 1

12

@

4

u

@x

4

(x
i

)(�x)2

Similarly, by folding in Taylor series expressions for u

i+2

and u

i�2

, one can obtain
higher-order FDAs. For example, the first derivative can then be written as

u

0
i

⇡ �u

i+2

+ 8u
i+1

� 8u
i�1

+ u

i�2

12�x

9

Figure 3: The results of using the FTCS scheme to propate the initial conditions,
indicated by the red dotted lines, using the 1D linear advection equation. Despite the
fact that ↵

c

= v�t/�x = 0.1, thus obeying the CFL-condition, the numerically solu-
tion (in blue) develops growing oscillations, a manifestation of its inherent unstable
nature. The red solid lines in each panel show the corresponding analytical solutions.
These results are based on a linear spatial grid using 100 spatial cells over the domain
[0, 1], with a time step �t = 0.001. The advection velocity is v = 1.0.

which is fourth-order accurate in �x. Typically, higher-order is better (if stable, see
next chapter), but it also is computationally more expensive (slower).

Now let us return to our linear advection equation. Since we only know u(x, t) in
the past, but not in the future, we have to use the backward di↵erence scheme to
approximate @⇢/@t. For the spatial derivative it seems natural to pick the centred
di↵erence scheme, which is higher order than the forward or backward di↵erence
schemes. Hence, we have that

@u

@t

! u

n+1

i

� u

n

i

�t

@u

@x

! u

n

i+1

� u

n

i�1

2�x

which allows us to write

u

n+1

i

= u

n

i

� v

�t

2�x

�
u

n

i+1

� u

n

i�1

�

This scheme for solving the linear advection equation numerically is called the ex-
plicit Euler scheme or FTCS-scheme for Forward-Time-Central-Space.

We can define similar explicit schemes based on the forward and backward di↵erence

10

schemes. In particular, we have the FTBS (Forward-Time-Backward-Space) scheme

u

n+1

i

= u

n

i

� v

�t

�x

�
u

n

i

� u

n

i�1

�

and the FTFS (Forward-Time-Forward-Space) scheme

u

n+1

i

= u

n

i

� v

�t

�x

�
u

n

i+1

� u

n

i

�

It is useful to illustrate the dependencies in these schemes using so-called stencil
diagrams. These are depicted for the FTBS, FTCS and FTFS schemes in Fig. 26.

Figure 27 shows the results of the FTCS-scheme applied to a simple initial condition
in which u = 1 for 0.4 x 0.6 and zero otherwise (red, dotted lines). These
conditions are advected with a constant, uniform velocity v = 1.0. The blue curves
show the results obtained using the FTCS scheme with �x = 0.01 (i.e., the domain
[0, 1] is discretized using 100 spatial cells) and �t = 0.001. Results are shown after
50, 100, 150 and 200 time-steps, as indicated. The solid, red curves in the four panels
show the corresponding analytical solution, which simply correspond to a horizontal
displacement of the initial conditions.

Despite the fact that the CFL-condition is easily met (|v�t/�x = 0.1), the solution
develops large oscillations that grow with time, rendering this scheme useless.

Let’s now try another scheme. Let’s pick the FTBS scheme, whose stencil is given
by the left-hand panel of Fig. 26. The results are shown in Fig. 28. Surprisingly,
this scheme, which is also known as the upwind or donor-cell scheme yields very
di↵erent solutions. The solutions are smooth (no growing oscillations), but they are
substantial ‘smeared out’, as if di↵usion is present.

For completeness, Fig. 29 shows the same results but for the FTFS scheme (stencil
shown in right-hand panel of Fig. 26). This scheme is even more unstable as the
FTCS scheme, with huge oscillations developing rapidly.

11

Figure 4: Same as Figure 27, but for the FCBS scheme (stencil in left-hand panel
of Fig. 26). This scheme is stable, yielding smooth solutions, but it su↵ers from
significant numerical di↵usion.

Before we delve into other integration schemes, and an indepth analysis of why subtly
di↵erent schemes perform so dramatically di↵erently, we first take a closer look at
the 1D conservation equation

@u

@t

+
@f

@x

= 0

where f = f(u) is the flux associated with u (which, in the case of linear advection
is give by f = vu). We can write this equation in integral form as

x

i+1
2Z

x

i�1
2

dx

t

n+1Z

t

n

dt

@u

@t

+
@f

@x

�
= 0

where the integration limits are the boundaries of cell i, which we denote by x

i� 1
2

and x

i+

1
2
, and the boundaries of the time step t

n ! t

n+1. If we now consider u as
being constant over a cell, and the flux is assumed constant during a time step, we
can write this as

x

i+1
2R

x

i� 1
2

dx [u(x, tn+1)� u(x, tn)] +
t

n+1R
t

n

dt
h
f(x

i+

1
2
, t)� f(x

i� 1
2
, t)

i
=

u(x
i

, t

n+1)�x� u(x
i

, t

n)�x+ f

n+

1
2

i+

1
2

�t� f

n+

1
2

i� 1
2

�t = 0

This yields the following update formula in conservation form:

u

n+1

i

= u

n

i

� �t

�x

⇣
f

n

i+

1
2
� f

n

i� 1
2

⌘

12

Figure 5: Same as Figure 27, but for the FCFS scheme (stencil in right-hand panel
of Fig. 26). Clearly, this scheme is utterly unstable and completely useless.

This is called ‘conservation form’ because it expresses that property u in cell i only
changes due to a flux of u through its boundaries. With this formulation, we can
describe any integration scheme by simply specifying the flux f

n

i+

1
2
. For example, the

three integration schemes discussed thus far are specified by f

n

i+

1
2
= f(un

i

) (FTBS),

f

n

i+

1
2
= 1

2

[f(un

i+1

) + f(un

i

)] (FTCS), and f

n

i+

1
2
= f(un

i+1

) (FTFS). See also the Table

on the next page.

So far we have considered three integration schemes, which are all examples of explicit
Euler schemes. When a direct computation of the dependent variables can be made
in terms of known quantities, the computation is said to be explicit. In contrast,
when the dependent variables are defined by coupled sets of equations, and either a
matrix or iterative technique is needed to obtain the solution, the numerical method
is said to be implicit. An example of an implicit scheme is the following FDA of
the heat equation (see Problem Set 3)

u

n+1

i

� u

n

i

�t

=

✓
u

n+1

i+1

� 2un+1

i

+ u

n+1

i�1

�x

2

◆

Note that the second-order spatial derivative on the rhs is evaluated at time t

n+1,
rather than t

n, which is what makes this scheme implicit. Since explicit schemes
are much easier to code up, we will not consider any implicit schemes in these lec-
ture notes. We emphasize, though, the sometimes implicit schemes are powerful
alternatives.

Neither of the three (explicit) schemes considered thus far are satisfactory; the FTCS

13

and FTFS schemes are unstable, yielding oscillations that grow rapidly, while the
FTBS scheme su↵ers from a large amount of numerical dissipation. Fortunately,
there are many alternative schemes, both explicit and implicit. The Table on the
next page lists 7 explicit finite di↵erence methods that have been suggested in the
literature. In addition to the three Euler methods discussed above, this includes the
Lax-Friedrichs method, which is basically a FTCS-method with an added artificial
viscosity term. Similar to the FTCS method, it is second order accurate in space,
and first-order accurate in time. The performance of this method is evident from the
upper-right panel in Fig. 30. Clearly, the artificial viscosity suppresses the onset of
growing oscillations, which is good, but the numerical di↵usion is much worse than
in the FCBS upwind (or donor-cell) scheme, rendering this method not very useful,
except when the initial conditions are very smooth.

All the finite-di↵erence methods encountered thus far are first-order accurate in time.
The table also lists three schemes that are second-order accurate in both space
and time, i.e., with an error that is O(�x

2

,�t

2). The first of these is the Lax-
Wendro↵ method. As is evident from the lower-left panel of Fig. 30 it results
in some oscillations, but these don’t grow much beyond a certain point (unlike, for
example, the first-order Euler-FTCS scheme shown in the upper-left panel). Another,
similar scheme, is the Beam-Warming method, whose performance, shown in the
lower-middle panel of Fig 30, is only marginally better. Finally, the lower-right panel
shows the performace of the Fromm method, which is basically the average of the
Lax-Wendro↵ and Beam-Warming schemes, i.e., fn

i+

1
2 ,Fromm

= 1

2

[fn

i+

1
2 ,LW

+ f

n

i+

1
2 ,BW

].

As is evident, this is clearly the most successfull method encountered thus far.

14

Explicit Finite Di↵erence Methods for 1D Linear Advection Problem

Euler FTBS f

n

i+

1
2
= f(un

i

)

u

n+1

i

= u

n

i

� ↵

c

[un

i

� u

n

i�1

]

Euler FTCS f

n

i+

1
2
= 1

2

[f(un

i+1

) + f(un

i

)]

u

n+1

i

= u

n

i

� ↵c
2

[un

i+1

� u

n

i�1

]

Euler FTFS f

n

i+

1
2
= f(un

i+1

)

u

n+1

i

= u

n

i

� ↵

c

[un

i+1

� u

n

i

]

Lax-Friedrichs f

n

i+

1
2
= 1

2

[f(un

i+1

) + f(un

i

)]� 1

2

�x

�t

[un

i+1

� u

n

i

]

u

n+1

i

= u

n

i

� ↵c
2

[un

i+1

� u

n

i�1

] + 1

2

[un

i+1

� 2un

i

+ u

n

i�1

]

Lax-Wendro↵ f

n

i+

1
2
= 1

2

[f(un

i+1

) + f(un

i

)]� v

2

2

�t

�x

[un

i+1

� u

n

i

]

u

n+1

i

= u

n

i

� ↵c
2

[un

i+1

� u

n

i�1

] + ↵

2
c
2

[un

i+1

� 2un

i

+ u

n

i�1

]

Beam-Warming f

n

i+

1
2
= 1

2

[3f(un

i

)� f(un

i�1

)]� v

2

2

�t

�x

[un

i

� u

n

i�1

]

u

n+1

i

= u

n

i

� ↵c
2

[3un

i

� 4un

i�1

+ u

n

i�2

] + ↵

2
c
2

[un

i

� 2un

i�1

+ u

n

i�2

]

Fromm f

n

i+

1
2
= 1

4

[f(un

i+1

) + 4f(un

i

)� f(un

i�1

)]� v

2

4

�t

�x

[un

i+1

� u

n

i

� u

n

i�1

+ u

n

i�2

]

u

n+1

i

= u

n

i

� ↵c
4

[un

i+1

+ 3un

i

� 5un

i�1

+ u

n

i�2

] + ↵

2
c
4

[un

i+1

� u

n

i

� u

n

i�1

+ u

n

i�2

]

Table listing all the explicit integration schemes discussed in the text. For each entry
the first line indicates the flux, while the second line indicate the conservative update
formula for the 1D linear advection equation, for which f(u) = vu, with v the con-
stant advection speed. The parameter ↵

c

is the Courant (or CFL) parameter given
by ↵

c

= v�t/�x.

15

Figure 6: The result of using 6 di↵erent explicit integration schemes, as indicated,
to propagate the initial conditions indicated by red using the 1D linear advection
equation with a constant velocity v = 1.0. All schemes use a Courant parameter
↵

c

= 0.1, and 100 grid points to sample u(x) over the x-interval [0, 1], assuming
periodic boundary conditions. The blue curves show the results after 1000 time steps
of �t = 0.001, which covers exactly one full period.

————————————————-

16

CHAPTER 2

Consistency, Stability, and Convergence

In the previous chapter we have explored a variety of finite di↵erence methods,
applied to a super-simple PDE, namely the 1D linear advection equation (whose
analytical solution is trivially known). And we have seen that each method has its
own shortcomings. In some cases, large oscillations develop, that continue to grow,
in other cases, numerical di↵usion washes away any sharp features.

In this chapter we address the question how one can test/assess the performance of
finite di↵erence schemes. We start by introducing some relevant terms:

Consistency: A numerical scheme is consistent if its discrete operator (with finite
di↵erences) converges towards the continuous operator (with derivatives) of the PDE
in the limit �t,�x ! 0 (which is the limit of vanishing truncation error).

Stability: A numerical scheme is stable if numerical noise, from initial conditions,
round-o↵ errors, etc., does not grow.

Convergence: A numerical scheme converges if its solution converges towards the
real solution of the PDE in the limit �t,�x ! 0.

The three ‘aspects’ of a numerical scheme are related through what is known as Lax’s
equivalance theorem: It states that for a consistent finite di↵erence method, for
a well-posed linear initial value problem, the method is convergent if and only if it is
stable.

The theorem is important since it allows one to assess convergence of a finite
di↵erence method, which is ultimately what one is interested in, by establishing
whether the method is consistent and stable. Consistency, the requirement that
the finite di↵erence scheme approximates the correct PDE is straightforward to verify,
and stability is typically much easier to test than convergence. In the remainder of
this chapter we discuss how to test for stability, and we introduce the concept of the

17

modified equation, which is useful to develop a feeling for the behavior of a finite
di↵erence method.

Truncation error: As we have seen in the previous chapter, the finite di↵erences
are typically obtained using Taylor series expansion up to some order in �x and/or
�t. This introduces truncation errors, errors that derive from the fact that the series
is truncated at some finite order. The forward and backward Euler schemes are first
order in both space and time, we write O(�t,�x), the FTCS and Lax-Friedrichs
schemes are first order in time, but second order in space, i.e., O(�t,�x

2), and
the Lax-Wendro↵, Beam-Warming and Fromm methods are all second order in both
space and time, i.e., O(�t

2

,�x

2). Typically higher order yields better accuracy, if
stable. Or, put di↵erently, one can achieve the same accuracy but using a coarser
grid/mesh.

As we have seen in the previous chapter, the first-order method that appears stable
(the upwind/donor cell methods) yields smeared solutions, while the second-order
methods (Lax-Wendro↵, Beam-Warming and Fromm) give rise to oscillations. This
qualitively di↵erent behavior of first and second order methods is typical and can
be understood using an analysis of what is called the modified equation. Recall
that the discrete equation used (i.e., the finite di↵erence scheme adopted) is to ap-
proximate the original PDE (in the cases discussed thus far, the 1D linear advection
equation). However, the discrete equation may be an even better approximation of a
modified version of the original PDE (one that corresponds to a higher order of the
truncation error). Analyzing this modified equation gives valuable insight into the
qualitative behavior of the numerical scheme in question.

As an example, consider the Euler FTCS method, which replaces the actual PDE

@u

@t

+ v

@u

@x

= 0

with the following discrete equation

u

n+1

i

� u

n

i

�t

+ v

u

n

i+1

� u

n

i�1

2�x

= 0

Using Taylor series expansion in time up to second order, we have that

u

n+1

i

= u

n

i

+�t

✓
@u

@t

◆
+

(�t)2

2

✓
@

2

u

@t

2

◆
+O(�t

3)

18

which implies that

u

n+1

i

� u

n

i

�t

=
@u

@t

+
�t

2

✓
@

2

u

@t

2

◆
+O(�t

2)

Similarly, using Taylor series expansion in space up to second order, we have that

u

n

i+1

= u

n

i

+�x

✓
@u

@x

◆
+

(�x)2

2

✓
@

2

u

@x

2

◆
+O(�x

3)

u

n

i�1

= u

n

i

��x

✓
@u

@x

◆
+

(�x)2

2

✓
@

2

u

@x

2

◆
+O(�x

3)

which implies that
u

n

i+1

� u

n

i�1

2�x

=
@u

@x

+O(�x

2)

Hence, our modified equation is

@u

@t

+ v

@u

@x

= ��t

2

@

2

u

@t

2

+O(�t

2

,�x

2)

Using that

@

2

u

@t

2

=
@

@t

✓
@u

@t

◆
= �v

@

@t

✓
@u

@x

◆
= �v

@

@x

✓
@u

@t

◆
= v

2

@

2

u

@x

2

where in the second and final step we have used the original PDE to relate the
temporal derivate to the spatial derivative. Using this, we can write our modified
equation as

@u

@t

+ v

@u

@x

= �v

2

�t

2

@

2

u

@x

2

+O(�t

2

,�x

2)

Note that the first term on the right-hand side is a di↵usion term, with a di↵usion
coe�cient

D = �v

2

�t

2
Hence, to second order, the discrete equation of the 1D linear advection equa-
tion based on the FTCS method, actually solves what is known as an advection-
di↵usion equation. But, most importantly, the corresponding di↵usion coe�ent
is negative. This implies that the FTCS scheme is unconditionally unstable; i.e.,
there are no �x and/or �t for which the FTCS method will yield a stable solution
of the 1D linear advection equation.

19

Let us now apply the same method to the FTBS scheme, whose discrete equation
for the 1D linear advection equation is given by

u

n+1

i

� u

n

i

�t

+ v

u

n

i

� u

n

i�1

�x

= 0

Using Taylor series expansions as above, one finds that

u

n

i

� u

n

i�1

�x

=
@u

@x

� �x

2

@

2

u

@x

2

+O(�x

2)

Hence, our modified equation is

@u

@t

+ v

@u

@x

= ��t

2

@

2

u

@t

2

+ v

�x

2

@

2

u

@x

2

+O(�t

2

,�x

2)

which can be recast in the advection-di↵usion equation form with

D = v

�x

2
� v

2

�t

2
= v

�x

2

✓
1� v

�t

�x

◆
= v

�x

2
(1� ↵

c

)

Thus we see that we can achieve stable di↵usion (meaning D > 0) if v > 0
and ↵

c

< 1 (the latter is the CFL-condition, which has to be satisfied anyways).
This explains the di↵use nature of the FTBS scheme (see Fig. 28). It also shows
that if v < 0 one needs to use the FTFS scheme, to achieve similar stability. The
upwind or donor cell scheme is generic term to refer to the FTBS (FTFS) scheme
if v > 0 (v < 0). Or, put di↵erently, in the upwind method the spatial di↵erencing
is performed using grid points on the side from which information flows.

The student is encouraged to apply this method to other finite di↵erence schemes.
For example, applying it to the Lax-Friedrichs method yields once again a modified
equation of the advection-di↵usion form, but this time with a di↵usion coe�cient

D =
�x

2

2�t

(1� ↵

2

c

)

which results in stable di↵usion (D > 0) as long as the CFL-criterion is satisfied.

For Lax-Wendro↵ and Beam-Warming one obtains modified equations of the form

@u

@t

+ v

@u

@x

= ⌘

@

3

u

@x

3

+O(�t

3

,�x

3)

20

with

⌘ =
v�x

2

6
(↵2

c

� 1) Lax-Wendro↵

⌘ =
v�x

2

6
(2� 3↵

c

+ ↵

2

c

) Beam-Warming

In order to understand the behavior of the explicit, second-order schemes, consider
the modified equation

@u

@t

+ v

@u

@x

= ⌘

@

3

u

@x

3

Applying this to a linear wave with frequency ! and wave number k, i.e., u /
exp[±i(kx� wt)], yields a dispersion relation

�i! + i v k = �i ⌘ k

3) ! = v k + ⌘ k

3

and thus a group velocity

c

g

⌘ @!

@k

= v + 3⌘k2

Hence, di↵erent waves move with a di↵erent group velocity, which means that the
solution of the above equation is dispersive. Numerical noise due to (for example)
the truncation error can be written as a Fourier series, and di↵erent modes will
propagate at di↵erent speeds. In particular, if we satisfy the CFL criterion, such
that |↵

c

| < 1, then we see that ⌘ < 0 for the Lax-Wendro↵ scheme. This in turn
implies that c

g

< v, and thus that the noise-modes will start to trail with respect to
the advection. This explains why the noise in this scheme is present downwind (see
lower-left panel of Fig. 30). In the case of the Beam-Warming method, we have that
⌘ > 0 (if CFL-criterion is satisfied), and thus c

g

> v; indeed, for this method the
noise-induced oscillations lead the advection (see lower middle panel of Fig. 30).

We now turn our attention to the stability of finite di↵erence schemes. In the case
where the original PDE is linear, one can assess the stability of the finite di↵er-
ence method using a von Neumann stability analysis. This analysis models the
numerical noise as a Fourier series, and investigates whether the amplitude of the
Fourier modes will grow or not. To see how this works, consider once again the 1D
linear advection equation, as discretized by the FTCS method:

u

n+1

i

= u

n

i

� ↵

c

2

⇥
u

n

i+1

� u

n

i�1

⇤

21

Since the underlying PDE is linear, the numerical noise, which is what is added to the
actual solution, also obeys the above equation. The von Neumann stability analysis
therefore starts by writing the present solution as a Fourier series (representing the
numerical noise), i.e.,

u

n

i

=
X

k

A

n

k

exp(�ikx

i

)

where we have assumed period boundary conditions, such that we have a discrete
sum of modes. Substitution in the above equation yields

A

n+1

k

= A

n

k

h
1� ↵

c

2
exp(�ik�x) +

↵

c

2
exp(+ik�x)

i

= A

n

k

[1 + i↵

c

sin(k�x)]

where we have used that sin x = (eix�e�ix)/2i. The evolution of the mode amplitudes
is thus given by

⇣

2 ⌘ |An+1

k

|2
|An

k

|2 = 1 + ↵

2

c

sin2(k�x)

As is evident, we have that ⇣ > 1, for all k. Hence, for any k the mode amplitude will
grow, indicating that the FTCS method is inherently, unconditionally unstable.

Now let’s apply the same analysis to the upwind scheme (FTBS), for which the
discrete equation is given by

u

n+1

i

= u

n

i

� ↵

c

⇥
u

n

i

� u

n

i�1

⇤

Substituting the Fourier series yields

A

n+1

k

= A

n

k

[1� ↵

c

+ ↵

c

exp(+ik�x)]

= A

n

k

[1� ↵

c

+ ↵

c

cos(k�x) + i↵

c

sin(k�x)]

After a bit of algebra, one finds that the evolution of the mode amplitudes is thus
given by

⇣

2 ⌘ |An+1

k

|2
|An

k

|2 = 1� 2↵
c

(1� ↵

c

)[1� cos(k�x)]

Upon inspection, this has ⇣ < 1 if ↵
c

< 1; Hence, the upwind scheme is stable as long
as the CFL condition is satisfied. Note, though, that the fact that ⇣ < 1 implies not
only that the numerical noise will not grow, but also that the actual solution will
decline with time. Pure advection, which is what the actual PDE describes, show
have ⇣ = 1, i.e., solutions only move, they don’t grow or decay with time. Hence, the

22

fact that our FDA has ⇣ < 1 is not physical; rather, this represents the numerical
di↵usion that is present in the upwind scheme.

In Problem Set 3, the students will perform a similar von Neumann stability analysis
for an explicit FDA of the heat equation.

23

CHAPTER 3

Reconstruction and Slope Limiters

In the previous two chapters we discussed how numerically solving the equations of
hydrodynamics means that we have to develop a FDA of the PDE (typically hyper-
bolic, potentially with non-ideal parabolic terms). We discussed how we can obtain
insight as to the behavior of the FDA by examining the corresponding modified
equation, and by performing a von Neumann stability analysis.

We have compared various FDA schemes to solve the 1D linear advection equation,
but found all of them to have serious shortcomings. These became especially apparent
when we examined the advection of ICs that contained discontinuities. The first-
order FDA schemes were too di↵usive and dissipative, while the second order schemes
gave rise to spurious over- and undershoots. The latter can be fatal whenever the
property to be advected is inherently positive (i.e., mass density). In fact, this relates
to an important theorem due to Godunov,

Godunov Theorem: there are no linear higher-order schemes for treating linear
advection that retain positivity of the solution.

So how are we to proceed? The solution, originally proposed by Dutch astrophysicist
Bram van Leer from Leiden, is to use a non-linear scheme to treat linear advection.
This is sometimes called non-linear hybridization. These non-linear schemes,
though, are based on the finite volume formulation, rather than the finite di↵er-
ence formulation adopted thus far. We can transition to the finite volume formulation
by taking the integral form of the linear advection equation. This is obtained by
integrating the advection equation in conservative form,

@u

@t

+
@f

@x

= 0

over each cell, which is bounded by x

i� 1
2
⌘ x

i

� �x/2 and x

i+

1
2
⌘ x

i

+ �x/2, and

by t

n and t

n+1 = t

n +�t. Note that, in the case of linear advection considered here
f = vu with v the constant advection speed, and u the property that is advected.
However, what follows is valid for any flux f .

24

The above equation in integral form is simply

x

i+1
2Z

x

i�1
2

dx

t

n+1Z

t

n

dt

@u

@t

+
@f

@x

�
= 0

which reduces to

x

i+1
2Z

x

i�1
2

dx
⇥
u(x, tn+1)� u(x, tn)

⇤
+

t

n+1Z

t

n

dt
h
f(x

i+

1
2
, t)� f(x

i� 1
2
, t)

i
= 0

If we now introduce the cell-averaged quantities

U

n

i

⌘ 1

�x

x

i+1
2Z

x

i� 1
2

u(x, tn)dx , U

n+1

i

⌘ 1

�x

x

i+1
2Z

x

i� 1
2

u(x, tn+1)dx

and

F

n+

1
2

i� 1
2

⌘ 1

�t

t

n+1Z

t

n

f(x
i� 1

2
, t)dt , F

n+

1
2

i+

1
2

⌘ 1

�t

t

n+1Z

t

n

f(x
i+

1
2
, t)dt

then the update formula for the advection equation becomes

U

n+1

i

= U

n

i

� �t

�x

⇣
F

n+

1
2

i+

1
2

� F

n+

1
2

i� 1
2

⌘

This is similar to the update formula for the conservation equation that we derived
in chapter 1, expect that here the quantities are volume averaged. Note that this
equation is exact (it is not a numerical scheme), as long as the U and F involved are
computed using the above integrations.

Computing the precise fluxes, though, requires knowledge of u(x, t) over each cell, and
at each time. This is easy to see within the context of the linear advection equation:
Let u(x, tn) be the continuous description of u at time t

n. Then, the amount of
u advected to the neighboring downwind cell in a timestep �t is simply given by

�u =
R

x+

1
2

x+

1
2�v�t

u(x, tn)dx (assuming that v�t < �x), and the time-averaged flux

25

through the corresponding cell face is F
n+

1
2

i+

1
2

= �u/�t. If the continuous u(x, tn) is

known, this flux can be computed, and the advection equation (in integral form) can
be solved exactly. However, because of the discrete nature of sampling, we only know
u at finite positions x

i

, and the best we can hope to do is to approximate �u, and
thus the corresponding flux. Once such approximations are introduced, the update
formula becomes a numerical scheme, called a Godunov scheme.

One ingredient of such a scheme is reconstruction, which refers to a method to
reconstruct the continuous u(x, tn) from the discrete u

n

i

= u(x
i

, t

n). In Godunovs
first order method, it is assumed that u(x, t) is piecewise constant; i.e., u(x, tn) =
U

n

i

for x

i� 1
2
 x x

i+

1
2
. Obviously this is basically the simplest, lowest-order

approximation one can make. Godunov then used the fact that the discontinuities
between adjacent cells, if interpreted as real, basically consistitute what is called a
Riemann problem, for which a solution can (often) be found analytically. This

then allows one to compute the fluxes F

n+

1
2

i± 1
2

, which in turn allows one to update

U

n

i

! U

n+1

i

. We will discuss the Riemann problem, and (approximate) Riemann
solvers in Chapter 5. Here, we will apply this first-order Godunov scheme to our 1D
linear advection equation.

The left-hand panel of Fig. 31 shows the condition for some particular u(x
i

) at time
t

n. Only 5 cells are shown, for the sake of clarity. The cells are assumed to have a
constant distribution of u (i.e., we have made the piecewise constant assumption).
Let us now focus on cell i, which straddles a discontinuity in u. Advection with a
constant v > 0 simply implies that in a time step �t the piecewise constant profile
of u(x) shifts right-ward by an amount v�t. This right-ward shift is indicated in the
right-hand panel of Fig. 31 by the dashed lines. At the end of the time-step, i.e.,
at time t

n+1, we once again want the fluid to be represented in a piecewise constant
fashion over the cells. This is accomplished, for cell i, by integrating u(x) under the
dashed lines from x

i� 1
2
to x

i+

1
2
and dividing it by �x to obtain the new cell-averaged

value U

n+1

i

. The new U

i

thus obtained are indicated by the solid lines in the right-
hand panel. The Un+1

i

di↵ers from U

n

i

because some amount of u has flown into cell
i from cell i � 1 (indicated by the light-gray shading), and some amount of u has
flown from i into cell i+ 1 (indicated by the dark-gray shading). The corresponding
time-averaged fluxes obey

�t F

n+

1
2

i� 1
2

= (v�t)Un

i�1

, and �t F

n+

1
2

i+

1
2

= (v�t)Un

i

26

Figure 7: A single time step in the linear advection of a fluid modelled using piecewise
constant reconstruction. The left-hand panel (a) shows the conditions at time tn. The
right-hand panel (b) shows the slabs of fluid after they have been advected for a time
�t (dashed lines) as well as the final profile of u(x) at the end of the time step (solid
lines). The total amount of fluid entering (leaving) cell i is shaded light-gray (dark-
gray). [Figure adapted from Prof. D. Balsara’s lecture notes on ”Numerical PDE
Techniques for Scientists and Engineers”].

By invoking conservation of u, we then have that

�xU

n+1

i

= �xU

n

i

+�t F

n+

1
2

i� 1
2

��t F

n+

1
2

i+

1
2

which implies that

U

n+1

i

= U

n

i

� v

�t

�x

�
U

n

i

� U

n

i�1

�
= U

n

i

� ↵

c

�
U

n

i

� U

n

i�1

�

Note that this is exactly the first-order accurate FTBS upwind (or donor-cell)
scheme from Chapter 1, but now applied to the volume average quantities.

So, one might wonder, what is so ‘special’ about this Godunov scheme? Well,
the ingenious aspect of Godunov’s method is that is yields an upwind scheme for
a general, non-linear system of hyperbolic PDEs. For a linear system of equations,
upwind schemes can only be used if all velocities of all waves in the problem (recall

27

Figure 8: Same as Fig. 31, but this time piecewise linear reconstruction is used,
based on right-sided slopes (thus giving rise to the Lax-Wendro↵ scheme). Note how
the linear reconstruction has introduced a new, higher-than-before, extremum in cell
i + 1, which is ultimately responsible for the spurious oscillations characteristic of
second-order schemes. As discussed in the text, the solution is to develop a Total
Variation Diminishing (TVD) scheme with the use of slope-limiters. [Figure adapted
from Prof. D. Balsara’s lecture notes on ”Numerical PDE Techniques for Scientists
and Engineers”].

that hyperbolic PDEs describe travelling waves) have the same sign. If mixed signs
are present, one can typically split the flux F (u) in two components: F

+ and F

�

which correspond to the fluxes in opposite directions. This is called Flux Vector
Splitting. The linearity of the PDE(s) then assures that the solution of the PDE
is simply given by the sum of the PDEs for F+ and F

� separately. However, for a
non-linear system (we will encounter such systems in the next chapter) this approach
will not work. This is where Godunov’s method really brings its value to bear.

For now, though, we apply it to the 1D linear advection equation, in which case it
simply becomes identical to the first-order accurate FTBS scheme. And as we have
already seen, this scheme su↵ers from a large amount of numerical di↵usion. But,
within the Godunov scheme, we can now try to overcome this by going to higher-
order. In terms of reconstruction, this implies going beyond piecewise constant
reconstruction.

28

The logical next-order step in reconstruction is to assume that within each cell u(x)
follows a linear profile, with a slope that is determined by the values of U at its
neighboring cells. This is called piecewise linear reconstruction. As always, we
have three choices for the slope: a right-sided finite di↵erence �U

n

i

= U

n

i+1

� U

n

i

, a
left-sided di↵erence �Un

i

= U

n

i

�U

n

i�1

and a central di↵erence �Un

i

= (Un

i+1

�U

n

i�1

)/2.
In what follows we shall refer to �U

n

i

as the slope, eventhough it really is only an
undivided di↵erence.

The left-hand panel of Fig. 32 shows the same mesh function as in Fig 31, but
this time the dashed lines indicate the reconstructed profile based on the right-
sided slopes. For cells i � 2, i + 1 and i + 2, this right-sided slope is zero, and the
reconstruction is thus identical to that for the piecewise constant case. However, for
cells i � 1 and i reconstruction has endowed the cells with a non-zero slope. For
example, the profile of u(x) in cell i is given by

u

n

i

(x) = U

n

i

+
�U

n

i

�x

(x� x

i

)

where x
i

is the central position of cell i. It is easy to see (the student should do this),
that upon substitution of this profile in the integral expression for Un

i

, one obtains
that Un

i

= u

n

i

, as required.

Advecting the fluid with second-order accuracy is equivalent to shifting the piecewise
linear profile rightwards by a distance v�t. The resulting, shifted profile is shown in
the right-hand panel of Fig. 32. As in Fig. 31, the light-gray and dark-gray shaded
regions indicate the amount of u that is entering cell i from cell i � 1, and leaving
cell i towards i+ 1, respectively. With a little algebra, one finds that the associated
time-averaged fluxes obey

�t F

n+

1
2

i� 1
2

= (v�t)

U

n

i�1

+
1

2
(1� ↵

c

)�Un

i�1

�

and

�t F

n+

1
2

i+

1
2

= (v�t)

U

n

i

+
1

2
(1� ↵

c

)�Un

i

�

As before, invoking conservation of u then implies that

U

n+1

i

= U

n

i

� ↵

c

�
U

n

i

� U

n

i�1

�� ↵

c

2
(1� ↵

c

)
�
�U

n

i

� �U

n

i�1

�

29

A comparison with the update formula in the piecewise constant case, we see that
we have added an extra term proportional to (�t/�x)2 that depends on the slopes.
Hence, this is indeed a second-order scheme. By substituting the expressions for the
right-sided bias adopted here, the update formula becomes identical to that of the
Lax-Wendro↵ scheme that we encountered in Chapter 1, but with u

i

replaced by
U

i

. Similarly, it is easy to show that using the left-sided slopes, yields an update
formula equal to that for the Beam-Warming scheme, while the central slopes
yield an update formula identical to Fromm’s scheme.

Piecewise Constant Reconstruction ! Upwind scheme

Piecewise Linear Reconstruction
+ right-sided slopes ! Lax-Wendro↵ scheme
+ central slopes ! Fromm scheme
+ left-sided slopes ! Beam-Warming scheme

Finite volume reconstruction methods and their link to finite di↵erence schemes.

As we have seen in Chapter 1, these second-order accurate schemes all give rise to
large oscillations; large over- and undershoots. And as we know from Godunov’s
theorem, these schemes are not positivity-conserving. Fig. 32 makes it clear where
these problems come from. Advection of the linearly reconstructed u(x) has caused
a spurious overshoot in cell i � 1 at time t

n+1. Upon inspection, it is clear that
this overshoot arises because our reconstruction has introduced values for u(x) that
are higher than any u

i

present at tn. Once such an unphysical extremum has been
introduced, it has a tendency to grow in subsequent time-steps. Using the centered
slopes would cause a similar overshoot (albeit somewhat smaller), while the left-sided
slopes will result in an undershoot in cell i+ 1.

This insight shows us that the over- and under-shoots have their origin in the fact that
the linear reconstruction introduces new extrema that were not present initially. The
solution, which was originally suggested by Bram van Leer, is to limit the piecewise
linear profile within each cell such that no new extrema are introduced. This is
accomplished by introducing slope-limiters (or, very similar, flux-limiters). The
idea is simple: limit the slopes �Un

i

, such that no new extrema are introduced. Over
the years, many di↵erent slope-limiters have been introduced by the computational

30

fluid dynamics community. All of these use some combination of the left- and right-
sided slopes defined above. An incomplete list of slope-limiters is presented in the
Table below.

An incomplete list of Slope Limiters

van Leer �U

n

i

= Q(�
L

, �

R

) �L �R
|�L|+|�R|

MinMod �U

n

i

= 1

2

Q(�
L

, �

R

)min(|�
L

|, |�
R

|)
Monotized Central �U

n

i

= 1

2

Q(�
L

, �

R

)min(1
2

|�
L

+ �

R

|, 2|�
L

|, 2|�
R

|)
Superbee �U

n

i

= 1

2

Q(�
L

, �

R

)max [min(2|�
L

|, |�
R

|),min(|�
L

|, 2|�
R

|)]

Here �
L

and �

R

are the left- and right-sided slopes, and Q(�
L

, �

R

) = [sgn(�
L

)+sgn(�
R

)]
with sgn(x) the sign-function, defined as +1 for x � 0 and �1 for x < 0.

31

Figure 9: The result of using Piecewise Linear Reconstruction combined with 4 di↵er-
ent slope limiters (as indicated at the top of each panel). to linearly advect the initial
conditions shown in red. As in Fig. 30, the advection speed is v = 1.0, and 100 grid
points are used to sample u(x) over the x-interval [0, 1], assuming periodic boundary
conditions. The Courant parameter ↵

c

= 0.5. The blue curves show the results after
1000 time steps of �t = 0.001, which covers exactly one full period. Note the drastic
improvement compared to the finite di↵erence schemes used in Fig. 30!!

Fig. 33 shows the results of applying our Piecewise Linear Reconstruction with four
di↵erent slope-limiters (as indicated) to the 1D linear advection of initial conditions
indicated by the red top-hat. The blue curves show the results obtained after one
period (using periodic boundary conditions) using an advection speed v = 1.0, a
mesh with 100 grid points on the domain x 2 [0, 1], and a Courant parameter ↵

c

=
0.5. As can be seen, all limiters produce oscillation-free propogation of the top-
hat profile, and with a numerical di↵usion that is much smaller than in the case of
the upwind finite di↵erence scheme used in Chapter 1 (i.e., compare Fig. 33 to the
results in Fig. 30). Clearly, by using a finite volume formulation with non-linear
hybridizatrion in the form of piecewise linear reconstruction with the use of
slope limiters has drastically improved our ability to advect discontinuous features
in the fluid.

What is it that makes these slope-limiters so succcessful? In short, the reason is that
they are total variation dimishing, or TVD for short. The total variation, TV
of a discrete set U = U

1

, U

2

, ..., U

N

is defined as

TV (Un) ⌘
NX

i=1

��
U

n

i+1

� U

n

i

��

32

and an integration scheme is said to beTVD i↵ the total variation does NOT increase
with time, i.e.,

TVD , TV (Un+1) TV (Un)

Clearly, whenever a scheme introduces spurious oscillations, the TV will go up, vio-
lating the TVD-condition. Or, put di↵erently, if a scheme is TVD, then it will not
allow for the formation of spurious over- and/or under-shoots. Readers interested in
finding a quick method to test whether a scheme is TVD are referred to the paper
”High Resolution schemes for Conservation Laws” by Harten (1983) in the Journal
of Computational Physics. Here we merely point out that the schemes used in this
chapter are all TVD.

As we have seen, using reconstruction combined with slope-limiters yields integration
schemes that do very well for our 1D linear advection problem. A natural extention
to even high-order can be achieved by using high-order in the reconstruction. For
example, one could use piecewise parabolic reconstruction, which is third-order ac-
curate in space, and indeed, such schemes have been developed and are in use. It is
important, though, to realize that as long as one uses a ”piecewise” reconstruction,
that discontinuities between neighboring cells persist. And it is these discustinuities
that typically cause problems.

This begs the question: why can’t we use a continuous reconstruction, i.e., connect
all the u

i

(i = 1, 2, ..., N) using say an N

th-order polynomial. That would assure
smoothness and di↵erentiability across the entire computational domain. However,
this is not an option, for the simple reason that, as we will see in the next Chap-
ter, discontinuities can be real. An obvious example is a shock, which is a natural
outcome of the Euler equations due to its non-linear character. Using continuous
reconstruction would fail to capture such discontinuities.

As we will see, the solution is to use Godunov schemes that rely on use piecewise
reconstruction (be it constant, linear or parabolic) and Riemann solvers to compute
the fluxes across the resulting discontinuities between adjacent cells. Before we ex-
amine this approach in detail, though, we will first take a closer look at non-linearity.

33

CHAPTER 4

Burgers’ Equation & Method of Characteristics

In the previous chapters we examined a number of di↵erent numerical schemes to
solve the 1D linear advection equation. We derived this equation from the set of
hydro-equations by ignoring gravity and radiation, and by assuming constant pres-
sure and velocity (clearly a highly simplified case).

The linear advection equation is an ideal test case because its solution is trivially
known (or can be derived using the method of characteristics discussed below).
In this chapter we are going to consider another equation, which appears very similar
to the linear advection equation, except that it is non-linear. As before, we consider
the 1D case, and we ignore radiation and gravity. But rather than assuming both
P and ~u to be constant, we only assume a constant pressure. This implies that the
continuity equation is given by

@⇢

@t

+
@⇢u

@x

=
@⇢

@t

+ ⇢

@u

@x

+ u

@⇢

@x

= 0

while the momentum equation reduces to

@⇢u

@t

+
@

@x

[⇢uu+ P] = ⇢

@u

@t

+ u

@⇢

@t

+ ⇢u

@u

@x

+ u

@⇢u

@x

= 0

where we have used that @P/@x = 0. Multiplying the continuity equation with u

and subtracting this from the momentum equation yields

@u

@t

+ u

@u

@x

= 0

This equation is known as Burgers’ equation. Unlike the similar looking advection
equation, this is a non-linear equation. In fact, it is one of the few non-linear PDEs
for which an analytical solution can be found for a select few ICs (see below). The
importance of Burgers’ equation is that it highlights the quintessential non-linearity
of the Euler equations.

34

Note that the above form of Burgers’ equation is not in conservative form. Rather
this form is called quasi-linear. However, it is trivial to recast Burgers’ equation in
conservative form:

@u

@t

+
@

1

2

u

2

@x

= 0

Let’s devise finite di↵erence upwind schemes for both (assuming u > 0). The results
are shown in the table below.

quasi-linear
@u

@t

+ u

@u

@x

u

n+1

i

= u

n

i

� �t

�x

u

n

i

⇥
u

n

i

� u

n

i�1

⇤

conservative
@u

@t

+
@

1

2

u

2

@x

u

n+1

i

= u

n

i

� �t

2�x

⇥
(un

i

)2 � (un

i�1

)2
⇤

Forms of Burgers’ equation and the corresponding numerical upwind scheme.

Let’s use these two schemes to numerically solve Burgers’ equation on the domain
x 2 [0, 1] (using periodic boundary conditions) for an initial velocity field u(x, 0) given
by a Gaussian centered at x = 0.5, and with a dispersion equal to � = 0.1. The initial
density is assumed to be uniform. The results for a Courant parameter ↵

c

= 0.5 are
shown in Fig. 34, where the initial conditions are shown in red, the results from
the quasi-linear scheme in magenta (dashed) and the results from the conservative
scheme in blue (solid). Note how, in the region where @u/@x > 0 a rarefaction
wave develops, causing a reduction in the density. Over time, this rarefied region
grows larger and larger. In the region where @u/@x < 0 a compression wave forms,
which steepens over time. Because of the non-linear nature of the Euler equations
such waves steepen to give rise to shocks, representing discontinuities in flow speed.

Note, though, that at late times the numerical schemes based on the conservative
and quasi-linear forms of Burgers’ equation yield di↵erent predictions for the location
of this shock. As it turns out, and as we demonstrate explicitely below, the correct
prediction is that coming from the conservative form. This highlights the importance
of using a conservative scheme, which is expressed by the following theorem:

35

Figure 10: Evolution as governed by Burgers’ equation for an initial, uniform density
with the 1D velocity field given by the red Gaussian. Left and right-hand panels show
the evolution in density and velocity, respectively. Red lines indicate the initial con-
ditions, while blue (solid) and magenta (dashed) lines indicate the numerical results
obtained using the conservative and quasi-linear equations, respectively. Both are
solved using the upwind scheme with a Courant parameter ↵

c

= 0.5, and sampling
the x = [0, 1] domain using 100 grid points. Note how a shock develops due to the
non-linear nature of Burgers’ equation, but that the location of the shock di↵ers in
the two schemes. Only the conservative scheme yields the correct answer.

36

Lax-Wendro↵ theorem: If the numerical solution of a conservative scheme con-
verges, it converges towards a weak solution.

In mathematics, a weak solution (also called a generalized solution) to an ordinary
or partial di↵erential equation is a function for which the derivatives may not all
exist but which is nonetheless deemed to satisfy the equation in some precisely de-
fined sense. Practically, what the Lax-Wendro↵ theorem indicates is that the use of
equations in conservation form assures that shocks move at the correct speed, and
thus converge to the correct location on the mesh.

In order to develop some understanding of the shock and rarefaction, we are going
to solve Burgers’ equation analytically using the ‘method of characteristics’, which
is a powerful method to solve hyperbolic PDEs.

Method of Characteristics: The idea behind the method of characteristics is to
find curves, called chararacteristics or characteristic curves, along which the PDE
becomes an ODE. Once the ODE corresponding to the characteristics is found, these
can be solved along the characteristic and transformed into a solution of the PDE.
Rather than going through a detailed description of themethod of characteristics,
which can be found in any good textbook on di↵erential calculus1, we are going to
give an example; we will use the method of characteristics to solve the 1D Burgers
equation which, as discussed above, describes the non-linear evolution of the velocity
field in a case without gravity, without radiation, and with a constant pressure (no
pressure gradients).

Let the ICs of Burgers’ equation be given by the initial velocity field u(x, 0) = f(x).
Now consider an ‘observer’ moving with the flow (i.e., an observer ‘riding’ a fluid
element). Let x(t) be the trajectory of this observer. At t = 0 the observer is located
at x

0

and has a velocity u

0

= f(x
0

). We want to know how the velocity of the
observer changes as function of time, i.e., along this trajectory. Hence, we want to
know

du

dt
=

d

dt
u(x(t), t) =

@u

@t

+
@u

@x

dx

dt

1
or, for an elementary introduction, see https://www.youtube.com/watch?v=tNP286WZw3o

37

Figure 11: Solving the Burgers equation for the initial conditions indicated by the blue
curve at t = 0 using the method of characteristics. The red lines are characteristics;
lines along which the velocity remains fixed to the intial value. Not the formation of
a rarefaction fan, where the method of characteristics fails to provide a solution, and
the formation of a shock where-ever characeristics collide together.

We see that this equation is equal to Burgers’ equation that we seek to solve if
dx/dt = u(x, t). And in that case we thus have that du/dt = 0. Hence, we see
that solving the Burgers equation (a quasi-linear, first-order PDE), is equivalent
to solving the ODE du/dt = 0 along characteristic curves (characteristics) given
by dx/dt = u(x, t). The solution is simple: u(x, t) = u

0

(x
0

, 0) = f(x
0

) where
x

0

= x� u

0

t. Hence, this can be solved implicitly: for given x and t find the x
0

that
solves x

0

= x� f(x
0

)t. Then, the instantaneous velocity at (x, t) is given by f(x
0

).

Fig. 35 illustrates an example. The blue curve indicates the initial conditions; i.e., the
initial velocity as function of position x at t = 0. It shows a sudden jump (increase)
in velocity at x

1

and a sudden decrease at x = x

2

. The red lines are characteristics,
i.e., lines along which the velocity remains constant; their slope is the inverse of the
initial velocity at the location x

0

where they cross the t = 0 axis. From point x

1

,
a rarefraction fan emenates, which corresponds to a region where the density will
decline since neighboring elements spread apart. The method of characteristics does
not give a solution in this regime, simply because no characteristics enter here...the
solution in this regime turns out to be a linear interpolation between the beginning
and end-point of the fan at a given t. From point x

2

a shock emenates. Here
characteristic from x

0

< x

2

‘merge’ with characteristics emerging from x

0

> x

2

.
When two characteristics meet, they stop and a discontinuity in the solution emerges
(which manifests as a shock).

38

rarefaction

compression

shock
shock

Figure 12: Initial conditions of u(x) (top panels), and the corresponding characteris-
tics (bottom panels). Note the formation of shocks, and, in the right-hand panel, of
a rarefaction wave. Clearly, characteristics give valuable insight into the solution of
a hyperbolic PDE.

39

Figure 13: Evolution of a shock wave in velocity. The initial discontinuity in u(x)
at x = 0.5 introduces a shock wave which propagates to the right. The solid red
curve panels show the analytical solution (a shock propagating at u

shock

= [u(x <

0.5) + u(x > 0.5)]/2), while the red dotted curve shows the ICs. As in Fig. 34, the
blue and magenta curves indicate the numerical solutions obtained using conservative
and quasi-linear schemes, respectively. Note how the latter fails to reproduce the
correct shock speed.

This is further illustrated in Fig. 36. Upper panels show the initial conditions, with
the little bar under the panel indicating with little line-segments the velocity (as
reflected by the slope of the line-segment) as function of position. The lower panels
plot the characteristics (in a t vs. x plot). Where characteristics merge, a shock
forms. It is apparent from the left-hand panels, that the shock in this case will prop-
agate with a speed that is simply the median of the upwind and downwind material,
i.e., u

shock

= [u(x
2

+) + u(x
2

�)]/2. The right-hand panels show the characteristics
in the case of the Gaussian ICs also considered in Fig. 34; note how one can see the
formation of both a rarefaction fan as well as a shock.

The example shown in the left-hand panels of Fig. 36 presents us with a situation
in which the shock speed is known analytically. We can use this as a test-case
to determine which of our numerical schemes (quasi-linear vs. conservative) best
reproduces this. We set up ICs in which u(x) = 1.0 for x < 0.5 and u(x) = 0.2
for x > 0.5. We solve this numerically using both schemes (with ↵

c

= 0.5), and
compare the outcome to our analytical solution (the shock is moving right-ward
with a speed v

shock

= (1.0 + 0.2)/2 = 0.6). The results are shown in Fig. 37. Note

40

how the solutions from the conservative scheme (in blue) nicely overlap with the
analytical solution (in red), while that from the quasi-linear scheme (in magenta)
trails behind. This demonstrates the Lax-Wendro↵ theorem, and makes it clear
that conservative schemes are required to correctly model the propogation of shocks.

Shock-formation is a natural outcome of the non-linear behavior of the Burgers’
equation. And since Burgers’ equation is a simplified case of the general Euler
equations, we are to be prepared to deal with shocks and discontinuities in our
attempt to numerically solve the hydrodynamic equations. Practically, as we have
seen here, this means that we need to consider the Euler equations in conservative
form.
%hfill

41

CHAPTER 5

The Riemann Problem & Godunov Schemes

Thus far, rather than trying to numerically solve the full set of hydrodynamics equa-
tions, we instead considered two very special, much simpler cases, namely the linear
advection equation, and the non-linear Burgers’ equation, both in 1D. We
derived these equation from the set of hydro-equations by assuming an ideal fluid,
ignoring gravity and radiation, by assuming constant pressure, and, in the case of
the advection equation, also constant velocity. Clearly these are highly simplified
cases, but they have the advantage that analytical solution exist, thus allowing us to
test our numerical schemes.

We have seen, though, that numerically solving even these super-simple PDEs using
finite di↵erence schemes is far from trivial. First order schemes, if stable, su↵er
from significant numerical di↵usion, while second order schemes have a tendency to
develop oscillations. As we will discuss in this chapter, and briefly touched upon in
Chapter 3, the way forward is to use Godunov schemes with Riemann solvers.

A Godunov scheme is a Finite Volume Formulation for solving conserva-
tion laws, that relies on reconstruction. The order of the scheme is related to
the method of reconstruction used: piece-wise constant reconstruction yields
Godunov’s first-order scheme. In Chapter 3 we applied this to the linear advec-
tion problem, and obtained exactly the first-order Euler FTBS upwind scheme. The
power of the first-order Godunov scheme, though, is that it is an upwind scheme for
a general, linear or non-linear, system of hyperbolic PDEs; not only for the linear
advection equation. If one uses piece-wise linear reconstruction, one obtains a
scheme that is second-order accurate. As Godunov’s theorem states, though, a
linear higher-order scheme does not preserve positivity, and we have seen the con-
sequences of that in Chapter 1 in the form of large over- and undershoots. As we
discussed in Chapter 3, the solution for that is to use a non-linear scheme that in-
volves slope-limiters. Applying that to the linear advection equation yields very
satisfactory results indeed. And one can in principle take this to even higher accuracy
(third-order) by using piece-wise parabolic reconstruction, which is something
we won’t discuss in any detail in these lecture notes (for the interested reader, see
Colella & Woodward, 1984).

42

In this Chapter we are going to see how to apply Godunov schemes to the (1D)
Euler equations. This will involve Riemnann solvers, which are numerical schemes
for solving Riemann problems, which describes the evolution of a discontinuity in
fluid properties. We will discuss how to solve a Riemann problem, apply it to the
SOD shock tube, and then end by briefly discussing approximate Riemann
solvers.

Let us first give a brief review of the basics behind the Godunov scheme. In the
absence of source/sink terms (i.e., gravity and radiation), and ignoring viscocity
and conduction (which add parabolic terms), the hydrodynamic equations reduce
to a set of hyperbolic PDEs that can be written in conservation form as

@~u

@t

+r · ~f(~u) = 0

(see Chapter 1). The update-formula for this equation, in the Finite Volume formu-
lation, is given by

U

n+1

i

= U

n

i

� �t

�x

⇣
F

n+

1
2

i+

1
2

� F

n+

1
2

i� 1
2

⌘

where the cell-averaged quantities are defined as

U

n

i

⌘ 1

�x

x

i+1
2Z

x

i� 1
2

u(x, tn)dx , U

n+1

i

⌘ 1

�x

x

i+1
2Z

x

i� 1
2

u(x, tn+1)dx

and

F

n+

1
2

i� 1
2

⌘ 1

�t

t

n+1Z

t

n

f(x
i� 1

2
, t)dt , F

n+

1
2

i+

1
2

⌘ 1

�t

t

n+1Z

t

n

f(x
i+

1
2
, t)dt

Reconstruction basically means that one models the continuous u(x, t) from the
discrete u

n

i

on the mesh. This means that, for x
i� 1

2
 x x

i+

1
2
, one assumes that

u(x, tn) = u

n

i

piecewise constant

u(x, tn) = u

n

i

+
�U

n

i

�x

(x� x

i

) piecewise linear

43

In the latter �U

n

i

is a slope, which can be computed centered, left-sided or right-
sided. Once such a reconstruction scheme is adopted, one can compute the Un

i

using
the integral expression given above. Next, the Godunov schemes use (approximate)

Riemann solvers to infer the (time-averaged) fluxes F

n+

1
2

i� 1
2

and F

n+

1
2

i+

1
2

. The idea is

that reconstruction (be it piecewise constant, piecewise linear or piecewise parabolic)
leaves discontinuities between adjacent cells. Godunov’ insight was to treat these as
‘real’ and to solve them analytically as Riemann problems. That implies that one
now has, at each cell-interface, a solution for u(x, t), which can be integrated over

time to infer F
n+

1
2

i� 1
2

and F

n+

1
2

i+

1
2

. Next, one uses the update formula to compute U

n+1

i

,

and one proceeds cell-by-cell, and time-step by time-step. In what follows we take a
closer look at this Riemann problem and how it may be solved.

Riemann Problem: A Riemann problem, named after the mathematician Bern-
hard Riemann, is a specific initial value problem composed of a conservation equation
together with piecewise constant initial data which has a single discontinuity in the
domain of interest. Let L and R denote the states to the left and right of the dis-
contuity. Each of these states is described by three quantities. These can be the
conserved quantities ⇢, ⇢u and E = 1

2

⇢u

2 + ⇢", or what are called the primitive
variables ⇢, u, and P .

The solution of the Riemann problem, i.e., the time-evolution of this discontinuous
initial state, can comprise

• 0 or 1 contact discontinuitieas (also called entropy jumps)

• 0, 1 or 2 shocks

• 0, 1 or 2 rarefaction waves (or fans)

but, the total number of shocks plus rarefaction fans cannot exceed two. All these
shocks, entropy jumps and rarefaction waves appear as characteristics in the solu-
tion. In particular, the velocities of the features are given by the eigenvalues of the
Jacobian matrix of the flux function (called the characteristic matrix), which is
given by

A

ij

(~q) ⌘ @f

i

@q

j

where ~

f(~q) is the flux in the Euler equations in conservative form.

44

Figure 14: Initial conditions for the Sod shock tube. The left region has the higher
pressure (i.e., P

L

> P

R

) and is therefore called the driven section, while the region
on the right is called the working section. The two regions are initially separated by
a diaphragm (in blue), which is instantaneously removed at t = 0. Both the fluid on
the left and right are assumed to be ideal fluids with an ideal equation of state.

The solution for a completely general Riemann problem can be tedious, and will not
be discussed here. Rather, we will look at a famous special case, the Sod shock
tube problem, named after Gary Sod who discussed this case in 1978. It is a
famous example of a 1D Riemann problem for which the solution is analytical, and
which is often used as a typical test-case for numerical hydro-codes.

The shock tube is a long one-dimensional tube, closed at its ends and initially divided
into two equal size regions by a thin diagragm (see Fig. 38). Each region is filled
with the same gas (assumed to have an ideal equation of state), but with di↵erent
thermodynamic parameters (pressure, density and temperature). The gas to the
left, called the driven section, has a higher pressure than that to the right, called
the working section (i.e., P

L

> P

R

), and both gases are initially at rest (i.e.,
u

L

= u

R

= 0). At t = 0, the diagragm, which we consider located at x = x

0

is instantaneously removed, resulting in a high speed flow, which propagates into
the working section. The high-pressure gas originally in the driven section expands,
creating an expansion or rarefaction wave, and flows into the working section,
pushing the gas of this part. The rarefaction is a continuous process and takes place
inside a well-defined region, called the rarefaction fan, which grows in width with
time (see also Chapter 4). The compression of the low-pressure gas results in a
shock wave propagating into the working section. The expanded fluid (originally
part of the driven section) is separated from the compressed gas (originally part
of the working section) by a contact discontinuity, across which there is a jump
in entropy. The velocities and pressures on both sides of the contact discotinuity,
though, are identical (otherwise it would be a shock).

45

(R)(1)(2)(L) (E)

x0 x3 x4x2x1

undisturbed

low density,

low pressure

gas

compressed,

post-shocked

gas
post-rarefaction

gas
left-going

rarefaction

fan

undisturbed

high density,

high pressure

gas

Figure 15: Illustration of the di↵erent zones present in the SOD shock tube. The
original diaphragm, which was removed at t = 0, was located at x

0

indicated by the
dotted line. The solid line at x

4

marks the location of the right-going shock, while
the dashed line at x

3

corresponds to a contact discontuity. The region marked (E),
between x

1

and x

2

, indicates the left-going rarefaction fan. Regions (L) and (R) are
not yet a↵ected by the removal of the diaphragm and thus reflect the initial conditions
Left and Right of x

0

.

Fig. 39 illustrates the di↵erent zones at a time before either the shock wave or the
rarefaction fan has been able to reach the end of the tube. Hence, the regions to
the far left and far right are still in their original, undisturbed states, to which we
refer as the ‘L’ and ‘R’ states, respectively. In between, we distinguish three di↵erent
zones; a rarefaction fan ‘E’, a region of gas (region ‘2’) that originally came from the
driven section but has been rarefied due to expansion, and a region with gas (region
‘1’) that originally belonged to the working section but that has been compressed (it
has been overrun by the shock wave). Note that regions 1 and 2 are separated by a
contact discontinuity (aka entropy jump).

Our goal is to compute ⇢(x, t), u(x, t), and P (x, t) in each zone, as well as the
locations x

1

, x
2

, x
3

and x

4

of the boundaries between each of these zones. This is a
typical Riemann problem. It can be solved using the method of characteristics,
but since we are focussing on numerical hydrodynamics here, we are not going to
give the detailed derivation; interested readers are referred to textbooks on this
topic. Another useful resource is the paper by Lora-Clavijo et al. 2013, Rev. Mex.
de Fisica, 29-50, which gives a detailed description of exact solutions to 1D Riemann
problems.

46

However, even without the method of characteristics, we can use our physical insight
developed in these lectures notes to obtain most of the solution. This involves the
following steps:

[1] First we realize that we can infer the conditions in region ‘1’ from the known
conditions in region ‘R’ using the Ranking-Hugoniot jump conditions for a
non-radiative shock. If we refer to the Mach number of the shock (to be derived
below) as M

s

⌘ u

s

/c

s,R

, with c

s,R

=
p

�P

R

/⇢

R

the sound speed in region ‘R’, then
we have that

P

1

= P

R

2�

� + 1
M2

s

� � � 1

� + 1

�

⇢

1

= ⇢

R

2

� + 1

1

M2

s

+
� � 1

� + 1

��1

u

1

=
2

� + 1

M

s

� 1

M
s

�

Note that for the latter, one first needs to convert to the rest-frame of the shock,
in which the velocities in regions ‘R’ and ‘1’ are given by u

0
R

= u

R

� u

s

= �u

s

and
u

0
1

= u

1

+ u

s

. One then solves for u

0
1

and converts to u

1

. Finally, if needed one
can infer the temperature T

1

from T

R

using the corresponding RH jump condition
according to which T

1

/T

R

= (P
1

⇢

1

/P

R

⇢

R

).

[2] Having established the properties in zone ‘1’, the next step is to infer the prop-
erties in zone ‘2’. Here we use that the velocity and pressure are constant across a
contact discontinuity to infer that P

2

= P

1

and u

2

= u

1

. For the density, we need to
link it to ⇢

L

, which we can do using the fact that rarefraction is an adiabatic process,
for which P / ⇢

� . Hence, we have that ⇢
2

= ⇢

L

(P
2

/P

L

)1/� .

[3] What remains is to compute the shock speed, u
s

, or its related Mach number,
M

s

. This step is not analytical, though. Using insight that can be gained from the
method of characteristics, not discussed here, one can infer that the Mach number
is a solution to the following implicit, non-linear equation, which needs to be solved
numerically using a root finder:

M
s

� 1

M
s

= c

s,L

� + 1

� � 1

(
1�

P

R

P

L

✓
2�

� + 1
M2

s

� � � 1

� + 1

◆���1
2�

)

with c

s,L

=
p
�P

L

/⇢

L

the sound speed in region ‘L’. Once the value of M
s

has been

47

determined, it can be used in steps [1] and [2] to infer all the parameters of (uniform)
zones 1 and 2.

[4] To determine the internal structure of the rarefraction fan, one once again has to
rely on the method of characteristics. Without any derivation, we simply give the
solution:

u(x) =
2

� + 1

✓
c

s,L

+
x� x

0

t

◆

c

s

(x) = c

s,L

� 1

2
(� � 1)u(x)

P (x) = P

L

c

s

(x)

c

s,L

� 2�
��1

⇢(x) = �

P (x)

c

2

s

(x)

[5] Finally we need to determine the locations of the zone boundaries, indicated by x
1

,
x

2

, x
3

and x

4

(see Fig. 39). The shock wave is propagating with speed u

s

= M
s

c

s,R

.
The contact discontinuity is propagating with a speed u

2

= u

1

. The far left-edge
of the rarefaction wave is propogating with the sound-speed in zone L. And finally,
from the method of characteristics, one infers that the right-edge of the rarefraction
zone is propagating with speed u

2

+ c

s,2

in the positive direction. Hence, we have
that

x

1

= x

0

� c

s,L

t (1)

x

2

= x

0

+ (u
2

� c

s,2

)t (2)

x

3

= x

0

+ u

2

t (3)

x

4

= x

0

+ u

s

t (4)

which completes the ‘analytical’ solution to the Sod shock tube problem. Note that
the word analytical is in single quotation marks. This is to highlight that the solution
is not trully analytical, in that it involves a numerical root-finding step!

Fig. 40 shows this analytical solution at t = 0.2 for a Sod shock tube problem with
� = 1.4 and the following (unitless) initial conditions:

⇢

L

= 8.0 ⇢

R

= 1.0

P

L

= 10/� P

R

= 1/�

u

L

= 0.0 u

R

= 0.0

48

Figure 16: Analytical solution to the SOD shock tube problem at t = 0.2. Note that
the pressure and velocity are unchanged across the discontinuity (entropy jump) at
x

3

, while the density is clearly discontinuous.

In what follows, we develop a simple 1D numerical hydro code to integrate this same
Sod shock tube problem, which we can then compare with our ‘analytical’ solution.
The code will use di↵erent Godunov schemes to do so.

As discussed above, Godunov’s method, and its higher order modifications, require
solving the Riemann problem at every cell boundary and for every time step. This
amounts to calculating the solution in the regions between the left- and right-moving
waves (i.e., zones ‘E’, ‘1’, and ‘2’ in the case of the Sod shock tube), as well as the
speeds of the various waves (shock wave(s), rarefraction wave(s), and entropy jumps)
involved. The solution of the general Riemann problem cannot be given in a closed
analytic form, even for 1D Newtonian flows (recall, that even for the Sod shock tube
a numerical root finding step is required). What can be done is to find the answer
numerically, to any required accuracy, and in this sense the Riemann problem is said
to have been solved exactly, even though the actual solution is not analytical.

However, mainly because of the iterations needed to solve the Riemann problem, the
Godunov scheme as originally envisioned by Godunov, which involves using an exact
Riemann solver at every cell-interface, is typically far too slow to be practical. For
that reason, several approximate Riemann solvers have been developed. These
can be divided in approximate-state Riemann solvers, which use an approximation
for the Riemann states and compute the corresponding flux, and approximate-flux
Riemann solvers, which approximate the numerical flux directly.

49

Here we highlight one of these approximate Riemann solvers; the HLL(E) method,
after Harten, Lax & van Leer, who proposed this method in 1989, and which was later
improved by Einfeldt (1988). The HLL(E) method is an approximate-flux Riemann
solver, which assumes that the Riemann solution consists of just two waves separating
three constant states; the original L and R states which border an intermediate ‘HLL’
state. It is assumed that, after the decay of the initial discontinuity of the local
Riemann problem, the waves propagate in opposite directions with velocities S

L

and
S

R

, generating a single state (assumed constant) between them. S

L

and S

R

are the
smallest and the largest of the signal speeds arising from the solution of the Riemann
problem. The simplest choice is to take the smallest and the largest among the
eigenvalues of the Jacobian matrix @f

i

/@q

j

evaluated at some intermediate (between
L and R) state. For the 1D Euler equation that we consider here, one obtains
reasonable results if one simply approximates these eigenvalues as S

L

= u

L

� c

s,L

and
S

R

= u

R

+ c

s,R

, where u
L

and u

R

are the initial fluid velocities in the L and R states,
and c

s,L

and c

s,R

are the corresponding sound speeds. Without going into any detail,
the HLL(E) flux to be used in the Godunov scheme is given by

~

F

n+

1
2

i� 1
2

=
S

R

~

f

L

� S

L

~

f

R

+ S

L

S

R

(~q
R

� ~q

L

)

S

R

� S

L

Here we have made it explicit that the flux is a vector, where each element refers to
the corresponding elements of ~q and ~

f(~q) of the Euler equation in conservation form.
Note that the L and R states here, refer to mesh cells i � 1 and i, respectiveley. In

the case of the F

n+

1
2

i+

1
2

flux, which is needed in the Godunov scheme together with

F

n+

1
2

i� 1
2

, the L and R states refer to mesh cells i and i+ 1.

50

A simple 1D hydro-code: We are now ready to write our own simple 1D numerical
hydro-code (adopting an adiabatic EoS), which we can test against the (analytical)
solution of the Sod shock tube problem examined above. What follows are some of
the steps that you may want to follow in writing your own code:

• Define an array q(1 : Nx, 0 : Nt, 1 : 3) to store the discrete values of the vector
~q = (⇢, ⇢u, E)t of conserved quantities on the spatial mesh x

i

with i = 1, ..,Nx
and at discrete time t

n with n = 0, 1, ...,Nt.

• Write a subroutine that computes the primary variables, ⇢(1 : Nx), u(1 : Nx)
and P (1 : Nx), given the conserved variables ~q. This requires computing the
pressure, which follows from E = P/(� � 1) � 1

2

⇢u

2. Also compute the local

sound speed c

s

(1 : Nx) =
p

�P/⇢ (which is needed in the HLL(E) scheme).

• Write a subroutine that, given the primary variables, computes the time step
�t = ↵

c

(�x/|vn
max

|). Here ↵

c

< 1 is the user-supplied value for the Courant
parameter, and |vn

max

| = MAX
i

[|un

i

| + c

s

(x
i

)] denotes the maximum velocity
present throughout the entire computational domain at time t

n. Since v

max

can change with time, this means that di↵erent time steps typically adopt a
di↵erent value for �t.

• Write a subroutine that, given the array q(1 : Nx, n, 1 : 3) computes the corre-
sponding fluxes ~

f(~q) at time t

n, and store these in f(1 : Nx, 1 : 3).

• Each time step (i) compute the primary variables, (ii) compute the time step,
�t, (iii) compute the fluxes f(1 : Nx, 1 : 3), (iv) compute the Godunov fluxes

F

n+

1
2

i� 1
2

and F

n+

1
2

i+

1
2

; (this depends on the scheme used), and (v) update q using

the Godunov update scheme:

q(i, n+ 1, 1 : 3) = q(i, n, 1 : 3)� �t

�x

h
F

n+

1
2

i+

1
2

(1 : 3)� F

n+

1
2

i� 1
2

(1 : 3)
i

• Loop over time steps until the total integration time exceeds the user-defined
time, and output the mesh of primary variables at the required times.

Fig. 41 shows the outcome of such a program for three di↵erent numerical schemes
applied to the Sod shock tube problem. All methods start from the same ICs as
discussed above (i.e., those used to make Fig. 40), and are propagated forward using
time-steps that are computed using a Courant parameter ↵

c

= 0.8 until t = 0.2. The

51

Figure 17: Numerical integration of Sod’s shock tube problem. From top to bottom
the panels show the density, velocity and pressure as function of position. The ‘an-
alytical’ results at t = 0.2 are indicated in red (these are identical to those shown
in Fig. 40). In blue are the results from three di↵erent numerical schemes; from
left to right, these are the first-order FTBS scheme, the first-order Godunov scheme
with the approximate Riemann solver of HLL(E), and the second-order predictor-
corrector scheme of Lax-Wendro↵. All schemes adopted a spatial grid of 65 points
on the domain x 2 [0, 1], and a Courant parameter ↵

c

= 0.8.

52

results (in blue, open circles) are compared to the analytical solution (in red). In
each column, panels from top to bottom show the density, velocity, and pressure.

The first scheme, shown in the left-hand panels, is the standardEuler FTBS scheme,

which simply sets F
n+

1
2

i� 1
2

= f(qn
i�1

) (cf. Table at the end of Chapter 1). Although this

scheme reduces to the stable upwind scheme in the case of the 1D linear advection
equation, clearly in this more complicated case it failes miserably. The reason is easy
to understand. In the Sod shock tube problem, there are multiple waves moving in
di↵erent directions (forward moving shock and entropy jump, and a backward moving
rarefraction wave). Hence, there is no single direction in the flow, and the FTBS
scheme cannot be an upwind scheme for all these waves. For some it is a downwind
scheme (equivalent to FTFS), and such a scheme is unconditionally unstable. This
explains the drastic failure of this scheme. In the case of the advection equation
there is only a single wave, and the FTBS (FTFS) scheme acts as an upwind scheme
if u > 0 (u < 0).

What is needed, therefore, is a Godunov-scheme, which is an upwind scheme for the
general, non-linear case. The middle panel shows an example, in which the fluxes
are computed using the HLL(E) scheme discussed above. This scheme is first-
order (i.e., it relies on piecewise constant reconstruction) and as such su↵ers from
numerical di↵usion, which is clearly apparent (i.e., the discontinuities in the solution
are ‘blurred’). Nevertheless, the scheme is stable, and captures the salient features
of the analytical solution.

Finally,the right-hand panels show the results for a second-order Godunov scheme,
based on the Lax-Wendro↵ fluxes. This scheme uses piecewise linear reconstruction
(see Chapter 3), and is second-order in both space and time. The latter arises because
this scheme uses a predictor and corrector step, according to:

~q

i+

1
2
=

~q

n

i

+ ~q

n

i+1

2
� �t

2�x

h
~

f(~q n

i+1

)� ~

f(~q n

i

)
i

~q

n+1

i

= ~q

n

i

� �t

�x

h
~

f(~q
i+

1
2
)� ~

f(~q
i� 1

2
)
i

It uses an intermediate step, and it is apparent from combining the two steps that
the final update formula is Q(�t

2). It is left as an exersize for the student to show
that this scheme reduces to the LW-scheme highlighted in Chapter 1 for the linear
advection equation (i.e., when f = vu with v the constant advection speed and u the

53

quantity that is advected). The higher-order accuracy of this scheme is better able
to capture the discontinuities in the analytical solution of the Sod shock tube, but,
as expected from Godunov’s theorem, the scheme is not positivity conserving and
introduces artificial over- and under-shoots.

As we have seen in Chapter 3, such over- and undershoots can be prevented by
using slope (or flux) limiters. An example of such a scheme is the MUSCL scheme
developed by van Leer, which is based on piecewise linear reconstruction combined
with slope limiters. This higher-order reconstruction scheme implies that at the
cell interfaces, one now has to solve so-called generalized Riemann problems; i.e.,
a discontinuity separating two linear (rather than constant) states. These are not
as easy to solve as the standard Riemann problem. Hence, one typically resorts to
approximate Riemann solvers.

Before closing our discussion of computational hydrodynamics, we briefly address
a few loose ends. The schemes discussed in the previous four chapters are by no
means exhaustive. A quick literature study will reveal many more schemes, com-
bining higher-order reconstruction schemes with a wide variety of limiters (to assure
TVD) and approximate Riemann solvers. Another topic we haven’t really discussed
is that of source terms. In our discussion of computational hydrodynamics we have
restricted our discussion to homogeneous conservation laws. However, most astro-
physical situations involve source and sink terms, especially in the form of gravity and
radiation. Adding these terms to the hydro-equations makes the conservation laws
inhomogeneous. How to deal with this numerically is not trivial, and an ongoing
topic of investigation. The most obvious inclusion of a source term into a Godunov
scheme adds extra complications to the Riemann problem and calculation of the
corresponding intercell fluxes. The reader interested in learning more about these
topics is referred to the excellent textbook Riemann Solvers and Numerical Methods
for Fluid Dynamics by E.F. Toro, which presents a detailed discussion of the mate-
rial covered here and much more, including alternative approximate Riemann solvers
such as those by Roe and Osher, Flux Vector Splitting methods, higher-order TVD
schemes, methods to include source terms, and the extension to multiple dimensions.

Finally, as already eluded to in Chapter 1, we have focussed exclusively on Eulerian
schemes. Many hydro-simulations in astrophysics make use of the Lagrangian SPH
method. It is left as an exersize for the interested reader to research this di↵erent
methodology. Hopefully the material provided here will facilitate such a self-study.

54

Appendix

Di↵erential Equations

The equations of fluid dynamics are all di↵erential equations. In order to provide
the necessary background, this appendix gives a very brief overview of the basics.

A di↵erential equation is an ordinary di↵erential equation (ODE) if the un-
known function depends on only 1 independent variable.

If the unknown function depends on two or more independent variables, then the
di↵erential equation is a partial di↵erential equation (PDE).

The order of a di↵erential equation is that of the highest derivative appearing in
the equation.

Consider the following examples:

[a] du

dx

= 2x2 � 4

[b] eu d

2
u

dx

2 + 3
�
du

dx

�
4

= 2

[c] @

2
u

@t

2 � 4@

2
u

@x

2 = 0

Equation [a] is an ODE of order 1, equation [b] is an ODE of order 2, and equation
[c] is a PDE of order 2.

In what follows we shall often use the following shorthand notation:

u

0 ⌘ du

dx
, u

00 ⌘ d2

u

dx2

, u

(n) ⌘ dn

u

dxn

.

When the independent variable is time, we often use a dot rather than a hyphen,
i.e., u̇ = du/dt, ü = d2

u/dt2, etc.

55

When dealing with PDEs, we use the following shorthand:

u

,x

⌘ @u

@x

, u

,xy

⌘ @

2

u

@x@y

, u

,tt

⌘ @

2

u

@

2

t

,

etc. Consider the following examples

r2

u = 0 $ u

,xx

+ u

,yy

+ u

,zz

= 0

r(r · u) +r2

u+ u = 0 $ u

k,ki

+ u

i,jj

+ u

i

= 0

Note that in the latter we have adopted the Einstein summation convention.

A di↵erential equation along with subsidiary conditions on the unknown function and
its derivatives, all given at the same value of the independent variable, consistitute
an initial value problem.

If the subsidiary conditions are given at more than one value of the independent vari-
able, the problem is a boundary value problem and the conditions are boundary
conditions.

There are three broad classes of boundary conditions:

• Dirichlet boundary conditions: The value of the dependent variable is
specified on the boundary.

• Neumann boundary conditions: The normal derivative of the dependent
variable is specified on the boundary.

• Cauchy boundary conditions: Both the value and the normal derivative of
the dependent variable are specified on the boundary.

Cauchy boundary conditions are analogous to the initial conditions for a second-order
ODE. These are given at one end of the interval only.

56

Linear and non-linear PDEs: A linear PDE is one that is of first degree in all of
its field variables and partial derivatives.

Consider the following examples:

[a] @u

@x

+ @u

@y

= 0

[b] @u

@x

+
⇣

@u

@y

⌘
2

= 0

[c] @

2
u

@x

2 +
@

2
u

@y

2 = x+ y

[d] @u

@x

+ @u

@y

= u

2

[e] @

2
u

@x

2 + u

@

2
u

@y

2 = 0

Equations [a] and [c] are linear, while [b], [d] and [e] are all non-linear.

We can write the above equations in operator notation as:

[a] L(u) = 0 with L :=
@

@x

+
@

@y

[b] L(u) = 0 with L :=
@

@x

+

✓
@

@y

◆
2

[c] L(u) = x+ y with L :=
@

2

@x

2

+
@

2

@y

2

[d] L(u) = 0 with L :=
@

@x

+
@

@y

� u

2

[e] L(u) = 0 with L :=
@

2

@x

2

+ u

@

2

@y

2

= 0

Homogeneous and non-homogeneous PDEs: Let L be a linear operator. Then,
a linear PDE can be written in the form

L(u) = f(x
1

, x

2

, x

3

, ..., x

n

, t)

The PDE is said to be homogeneous i↵ f(x
1

, x

2

, x

3

, ..., x

n

, t) = 0. Thus, in the
examples above, equation [a] is homogeneous, while [c] is non-homogeneous (aka
inhomogeneous).

57

In (hydro-)dynamics, we typically encounter three types of second-order PDEs, clas-
sified as elliptic, hyperbolic, and parabolic. Each type has certain characteristics
that help determine if a particular finite element approach is appropriate to the prob-
lem being described by the PDE. Interestingly, just knowing the type of PDE can
give us insight into how smooth the solution is, how fast information propagates,
and the e↵ect of initial and boundary conditions.

Consider a second-order PDE for the unknown function u(x, y) of the form

a u

,xx

+ b u

,xy

+ c u

,yy

+ d u

,x

+ e u

,y

+ f u+ g = 0

where each of a, b,...,g are allowed to be functions of x and/or y.

Elliptic: The above PDE is called elliptic if b2 � 4ac < 0.
An example is the 2D Poisson equation u

,xx

+ u

,yy

= f (which has a = c = 1
and b = 0). The solutions of elliptic PDEs are always smooth, and boundary data
at any point a↵ect the solution at all points in the domain. There is no temporal
propagation, yet elliptic PDEs convey the e↵ect of objects on each other. Newtonian
mechanics is an example of this, which is why the Poisson equation is elliptic.

Parabolic: The above PDE is called parabolic if b2 � 4ac = 0.
An example is the heat equation u

,t

= u

,xx

(which has a = 1 and b = c = 0) which
describes heat flow in a 1D system. Parabolic PDEs are usually time dependent and
represent di↵usion-like processes (i.e., dissipation, convection). Solutions are smooth
in space but may possess singularities.

Hyperbolic: The above PDE is called hyperbolic if b2 � 4ac > 0.
An example is the wave equation u

,xx

� 1

c

2
s
u

,tt

= f (which has b = 0, a = 1 and

c = �1/c2
s

< 0). In a system modeled with a hyperbolic PDE, information travels at
a finite speed referred to as the wavespeed (c

s

in the example here). Information is not
transmitted until the wave arrives. The smoothness of the solution to a hyperbolic
PDE depends on the smoothness of the initial and boundary conditions. For instance,
if there is a jump in the data at the start or at the boundaries, then the jump will
propagate as a shock in the solution. If, in addition, the PDE is nonlinear, then
shocks may develop even though the initial conditions and the boundary conditions
are smooth.

58

Finally, since solving PDEs can often be reduced to solving (sets) of ODEs, a few
words about solving the latter. Problems involving ODEs can always be reduced to
a set of first-order ODEs! For example, the 2nd order ODE

d2

u

dx2

+ s(x)
du

dx
= t(x)

can be rewritten as two first-order ODEs

du

dx
= v(x) ,

dv

dx
= t(x)� s(x)v(x)

Consider the general nth-order initial value problem

dn

u

dxn

= a

n�1

(x)
dn�1

dxn�1

++ a

1

(x)
du

dx
+ a

0

(x) u(x) + f(x)

with u(0) = c

0

, u0(0) = c

1

, u00(0) = c

2

, ... ,u(n�1)(0) = c

n�1

as the initial values.
In general, this can be written in matrix form as

u0 = A(x)u(x) + f(x)

with the initial values given by u(0) = c. Here the elements of u are given by
u

1

= u(x), u
2

= u

0(x), ..., u
n

= u

(n�1)(x). Theses are interrelated with the elements
of u0 by the equations u0

1

= u

2

, u0
2

= u

3

, ... ,u0
n�1

= u

n

, u0
n

= u

(n)(x). The matrices
A(x) and f(x) are related to a

i

(x) and f(x) according to

A(x) =

0

BBBBBBB@

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
a

0

(x) a

1

(x) a

2

(x) a

3

(x) · · · a

n�1

(x)

1

CCCCCCCA

and

f(x) =

0

BBBBB@

0
0
...
0

f(x)

1

CCCCCA

59

Hence, solving an ODE of order N reduces to solving a set of N coupled first-order
di↵erential equations for the functions u

i

(i = 1, 2, ..., N) having the general form

du
i

dx
= f

i

(x, u
1

, u

2

, ..., u

n

)

where the functions f
i

on the rhs are known.

60

