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Used to interpret galaxy clustering and galaxy-galaxy lensing,
to inform models of galaxy formation, and to constrain cosmology
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SHAM spin-off: Empirical Modeling

Apply SHAM at different redshifts, using ®(Mx,z)
Combine with halo merger trees = SFR(Mx,z)

Yang+09; Conroy & Wechsler 09; Moster+10; Yang+12; Behroozi+13a,b;
Moster+13; Wang+13;Bethermin+13; Lu+14
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The Clustering Crisis

0.5 < log(M,/h—2Mg) < 10.0  10.0 < log(M,/h=2Mg) < 10.5  10.5 < log(M, /h=2Mg) < 11.0

Moster et al.
(2013) Behroozi et al.

Yang et al. (2013)
- (2012) SDSS

10° 10t
rp [h™ 1 Mpc]

Campbell, vdB, et al. 2016, in prep.

® Moster+13, Behroozi+13 and Yang+12, which all fit ®(M*,z), underpredict
clustering on small scales, especially at low stellar mass...

e Same holds for standard SHAM based on Mpeak

® Vpeak based SHAM nicely fits clustering data (see also Reddick+13)
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The Clustering Crisis

® Vpeak SHAM implicitely assumes NO
evolution in the Vpeak(M*) relation with
redshift (i.e., N0 zpeak dependence).

® Using average Vmax(z) histories of
vdBosch+14, we can infer the average
stellar mass growth histories implied.

® These are very different from those
implied by Moster+13, Behroozi+13, or

Yang+12, and are thus inconsistent
with ®(M*,z)

Campbell, vdB, et al. 2016, in prep.

Models that fit the clustering don’t fit the evolution
in the stellar mass function, and vice versa
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The Clustering Crisis

Moster et al.
(2013)

Yang et al.
(2012)

Behroozi et al.

Campbell, vdB, et al. 2016, in prep.

Problem is with satellites.
Either models need more sub-halos (orphans)
or satellites need to be more massive...
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The Clustering Crisis

9.5 < log(M,/h™>Mg) <10.0  10.0 < log(M,/h™2Mg) < 10.5  10.5 < log(M,/h™>Mg) < 11.0

Moster et al. — = 4 Gyr sat growth

— (2013)
SPSS max sat growth assem bias

Solutions to the Clustering Crisis

® Satellite galaxies continue to grow in stellar mass after accretion.
This by itself is not enough to solve the problem.

® Assembly bias: satellites at accretion have already overgrown
their stellar mass compared to centrals.

® There is too much subhalo disruption in numerical simulations,
by roughly a factor two. Need for orphans’.
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Subhalo Disruption in Bolshoi

—1 < log(mace /M)
—2 < log(Mace/Mo)
—3 < log(mace/My)
—4 < log(macc/Mp)
all [-4,-0.5]

0.3 04 0.5
log(1 + Zacc) Jiang & vdB, 2016

e Fractional Disruption Rate =13 percent per Gyr

e Only ~35 percent of subhaloes accreted at z=1 survive to z=0

e |s tidal disruption real or numerical artifact?
If real, what are the physical conditions for disruption?
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What if ALL disruption is numerical?

subhalo mass function subhalo Vmax function retained mass fractions

© Bols: present
O Bols: accretion

dP/dlog(m/m,)

—
S
X
>

-

N
]
4]
£

-

p—

o] )

R/

i

~

z.

5

o] )]

2

= = = model: accretion ¢
= = == model: unevolved

-1.0-0.8-0.6-0.4-0.2 0.0 -1.5 -1.0 -0.5 0.0
log(vmax/vvir.o) log(m/macc)

Jiang & vdB, 2016

® Jiang & van den Bosch (2016) developed semi-analytical model for DM substructure
® Model includes treatments of tidal stripping & tidal disruption

® Model is tuned to accurately reproduce the Bolshoi simulation results
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What if ALL disruption is numerical?

subhalo mass function subhalo Vmax function retained mass fractions

O Bolshoi: present
O Bolshoi: accretio

Bolshoi
Modell
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e Turning off disruption in model reveals its impact

e Without disruption, abundance of subhalos is boosted by factor ~2,
roughly independent of mass or maximum circular velocity.

e This would solve the Clustering Crisis
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The Evolution of Dark Matter Substructure

Limiting'Mass:Resolution
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Statistics of Subhalo Disruption

i il Disruption occurs

' preferentially at small
halo-centric radii, for
subhalos on more radial
orbits, and at first or
second pericentric
passage.
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van den Bosch, 2016~ M=HL(E) Zgce Based on Bolshoi + Rockstar
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Subhalo Disruption in the Bolshoi Simulation

log[m/m,. ]
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-06 -04 -02 -08 -06 -04 -02
t-t, [Gyr] t-ty [Gyr]

Three modes of disruption in Bolshoi

Withering: subhaloes whose mass is
stripped below mass resolution.

Merging (Dm): subhaloes that merge with

« Al H 1~ 0_||||||||||||||| Olllllll
host halo; driven by dynamical friction. B 06 04 oo 008 06 oz

t-t, [Gyr] t—t, [Gyr]

Disintegration (Dq): subhaloes that seem
to “spontaneously’ disintegrate close to
pericenter...

Examples of Dy subhalos the last 0.8Gyr prior to disruption.
All these examples have Ny > 5000 at disruption
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Does Stripping cause Disruption?

vdB+16, in prep.

e As first pointed out by Hayashi+03, instantaneous stripping of outer
layers of NFW halo can leave a remnant with positive binding energy.

® For an isotropic NFW halo (=0), the core has positive binding energy
if reut < roind = 0.77 rs.  (corresponding core mass is ~0.08 M)

® Hayashi+03 therefore suggest that subhaloes will spontaneously
disintegrate once their tidal radius, ric becomes smaller than reut
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Does Stripping cause Disruption? NO!
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vdB+16, in prep.

e As first pointed out by Hayashi+03, instantaneous stripping of outer
layers of NFW halo can leave a remnant with positive binding energy.

® However, contrary to their claim, this does NOT result in disruption...
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Numerical Simulations

Simulate NFW halo orbiting on circular
orbit inside static potential of host halo.

e No impulsive (tidal) heating
e No dynamical friction

Naive Prediction:
all matter outside of tidal radius will
be stripped of over time...
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Numerical Simulations

Simulate NFW halo orbiting on circular
orbit inside static potential of host halo.

N=10°%
Ch=5

Cs=1 O
Mnh=103ms

\

rt shrinks dyn. friction 20 30 40 50

/ i

vdB, 2016, in prep. t [Gyr]

~ massloss

\ e Analytical predictions fail to
rt shrinks virialization predict amount of mass stripped

/
7

A
\: modified p(r)

® Mass loss continues for >50 Gyr
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Tidal Stripping on Circular Orbits
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Tuning the Softening Length

log[p(r)]

vdB+16, in prep.

e too large > force bias > central cusp unresolved
e too small > force noise > artificial large-angle deflections > isothermal core
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Force Softening

vdB, 2016, in prep.

® Mass evolution and disruption extremely sensitive to softening length
® As subhalo looses mass, its optimal softening length decreases
® Adaptive, individual softening may be required (e.g., lannuzzi & Dolag 11; Hobbs+15)
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Towards Numerical Convergence

N=1,000,000

N=30,000
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Towards Numerical Convergence

In order to suppress discreteness noise: N > 106

In order to suppress artificial disruption: € < 0.005
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Fors=0.5 Towards Numerical Convergence

Ch=5
Cs=1 O
Mh=1 03ms

N=30,000

N=10,000

N=3,000

10 20 30 0 10 20 30 O 10 20 30 O 10 20 30 O 10 20 30
t [Gyr]

Ability to resolve dynamics is a strong function of

- number of particles
- force softening
- strength of tidal field
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What about Tidal (Impulsive) Heating?

We model tidal heating by integrating the impulse
approximation along the subhalo’s orbit using detailed
model of Gnedin, Hernquist & Ostriker (1999).

. _ _ _ f(E,<0)=0.61
We add adiabatic correction using the model of f(r<r,)=0.36

Weinberg (1994) and Gnedin & Ostriker (1999). f(r,po<r,)=0.26

We apply this method to Monte-Carlo realizations of
a NFW subhalo on a typical orbit in a NFW host halo,

and compute AE for each individual DM particle 0.8 -08 -04 -02 O

AL
® Impulsive heating injects large amounts of energy.

® Central region is unaffected and remains bound.

® Material that becomes unbound due to tidal heating,
is anyways stripped of due to tidal force

Impulsive, tidal heating is sub-dominant

02 04 06 0.8

vdB, 2016, inprep.  M=L/Le(E)
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What about Tidal (Impulsive) Heating?
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e Two-body relaxation due to interactions of subhalo particles with (hotter) host halo
particles is similar to that due to interactions with (colder) subhalo particles.
[Despite claims to the contrary; Carlberg 1994; van Kampen 1995, 2000]

e Impulsive heating due to encounters with hotter (overly massive) host halo particles
has similar (negligble) impact as two-body relaxation
[Despite claims to the contrary; Moore, Katz & Lake 1996]

CAUTION: Eiot # Z =
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Conclusions

:  . * Clustering Crisis: Halo Occupation Models that fit clustering,
- do not fit ®(Mx,z) and vice versa

\ Solution requires at least one of the following

g e very significant satellite growth after accretion
e assembly bias; Mx sat(Mh,Zacc) > Mx cen(Mh,Zacc)
e orphans (i.e., more satellites than subhalos)

% Subhalo Disruption: resolving dynamics of subhalos requires
| e huge N (to suppress discreteness noise)
T ’4 e small softening length (~1/10 of that for isolated halos)

W Current generation of cosmological simulations still suffers from
severe overmerging.

e serious road-block for small-scale cosmology program
e serious road-block for understanding galaxy formation

——— . A L - L S—— S — - TEEw W e & .

. — L ——_— -

Frank van den Bosch . Yale University

|



Conclusions

* What causes subhalo disruption?

® Dynamical friction (physical)
e |Inadequate force resolution (humerical)
e Discreteness noise (numerical)

_' "4 % Howto proceed?

Only hope is to characterize shortcomings of N-body simulations,
and complement simulation results with semi-analytical model.
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% |n absence of dynamical friction, subhaloes never disrupt.
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