Dark Halo Response and the Stellar IMF in Early- and Late-Type Galaxies

FRANK VAN DEN BOSCH YALE UNIVERSITY

In collaboration with: Aaron Dutton, Charlie Conroy, Surhud More, Trevor Mendel, Stephane Courteau Luc Simard, Avishai Dekel, Francisco Prada

Scaling Relations

Both Late- and Early-Type Galaxies follow tight Scaling Relations

Faber-Jackson (FJ) Relation

 $L \propto \sigma^{\beta} \qquad (\beta \sim 4)$

scatter correlated with size

Fundamental Plane Relation $L\propto\sigma^\beta R_e^\gamma$

These scaling relations can be used as distance indicators, but are also interesting for understanding galaxy formation

The Origin of Galaxy Scaling Relations

The origin of the TF and FJ relations is believed to be that all DM halos have same density, which implies that

 $V_{
m vir} \propto R_{
m vir} \propto M_{
m vir}^{1/3}$

Using that less massive halos are more concentrated, this becomes $V_{
m max,h}\propto M_{
m vir}^{0.29}$

This scaling is similar to observed stellar mass TF & FJ relations

 $V_{2.2} \propto M_{*}^{0.28}$ [Dutton et al. 2010]

 $V_{2.2}$ is disk rotation velocity at 2.2 disk scale lengths $\sigma_{
m e} \propto M_*^{0.29}$

[Gallazzi et al. 2006]

 σ_{e} is velocity dispersion inside effective radius

The Origin of Galaxy Scaling Relations

For the $V_{\text{max,h}} - M_{\text{vir}}$ relation to be the direct origin of the TF & FJ relations requires that $V_{\text{opt}}/V_{\text{max,h}}$ and M_*/M_{vir} are both constants! *

Hence, there is hope that the observed TF & FJ relations can shed light on Galaxy Formation and Halo Response.

 * Here $V_{
m opt} = V_{2.2}$ for late-types, and $V_{
m opt} = \sigma_{
m e}$ for early-types

Dark Halo Response

When baryons collect at center, the dark matter halo contracts...

In the limit where the process is slow, the response is adiabatic

spherical symmetry: $r_i M_i(r_i) = r_f M_f(r_f)$ no shell crossing: $M_{h,i}(r_i) = M_{h,f}(r_f)$ initially well mixed: $M_{b,i}(r_i) = f_b M_{h,i}(r_i)$

$$\frac{r_{\rm f}}{r_{\rm i}} = \Gamma_{\rm AC} = \frac{M_{\rm h,i}(r_{\rm i})}{M_{\rm b,f}(r_{\rm f}) + (1 - f_{\rm b})M_{\rm h,i}(r_{\rm i})}$$

In general, system is not spherically symmetric and the process of galaxy formation may not be adiabatic. We therefore adopt the more general form:

-lere
$$u$$
 is a free parameter, to be constrained by the data: \langle

 $\frac{r_{\rm f}}{r_{\rm i}} = \Gamma^{\nu}_{\rm AC}$

 $u = 1 \quad \text{standard AC} \\
\nu = 0 \quad \text{no contraction} \\
\nu < 0 \quad \text{expansion}$

[Based on cosmological, hydrodynamical simulations, Gnedin et al. (2004) suggest $u\simeq 0.8$]

Structural Models

Galaxies consist of three components:

<u>Dark Matter Halo</u>

Modelled as spherical NFW halo. Concentration mass relation of Maccio et al. (2007) Completely specified by its mass, $M_{\rm h}$

<u>Stellar Component</u>

Modelled as sum of two Sersic profiles: n=1 plus n=4. In case of late-type, n=1 component is thin disk. In case of early-type, n=1 component is spherical. Specified by four free parameters: $M_{\rm d}$, $M_{\rm b}$, $R_{\rm d}$, $R_{\rm b}$.

 $M_* \equiv M_{\rm d} + M_{\rm b}$

<u>Cold Gas Disk</u>

Modelled as thin exponential disk. Specified by two free parameters: $M_{\rm g}, R_{\rm g}$

Tully-Fisher and Faber-Jackson Relations

We use these relations as constraints for the models

Methodology

Galaxy Sizes and B/D Ratios

Sizes and B/D ratios obtained from GIM2D photometric analysis of ~270.000 SDSS galaxies.

Stellar masses obtained from SDSS ugríz-SED by MPA/JHU group, assuming a Chabrier IMF. We can rescale these stellar masses to another IMF by adding Δ_{IMF} to $\log(M_*)$ Chabrier: $\Delta_{IMF} = 0.0$

Salpeter: $\Delta_{IMF} = +0.24$

Note: Our sizes for <u>late-types</u> are larger than those of Shen et al. (2003); This is due to fact that Shen et al used circular aperture photometry.

Properties of Cold Gas in Late-Type Galaxies

Gas Mass Fractions

Gas Scale Lengths

$$\log\left(\frac{R_{\rm d}}{R_{\rm g}}\right) = 0.19$$

$$\log\left(\frac{M_{\rm g}}{M_{*}}\right) = -0.27 - 0.47\log\left(\frac{M_{*}}{10^{10}M_{\odot}}\right)$$

These two relations define the gas properties of late-types.

How to convert from V(r) to σ_e ?

Data from SLACS survey (strong gravitational lensing sample). Taken from Auger et al. (2009) Based on strong lensing data we infer that

$$\frac{V_{\rm c}(R_{\rm e})}{\sigma_{\rm e}} = 1.54$$

which is the value we adopt throughout.

Previous studies: Padmanabhan et al. (2004) $\frac{V_{\rm c}(R_{\rm e})}{\sigma_{\rm e}} = 1.65$ Cappellari et al. (2006) $\frac{V_{\rm c}(R_{\rm e})}{\sigma_{\rm e}} = 1.44$

We adopt uncertainty of 0.03 dex

Satellite Kinematics

We use satellite kinematics in the SDSS to probe the relation between stellar mass and halo mass. Using virial equilibrium and spherical collapse:

Satellite Kinematics

Unless $P(M_h|M_*)$ is a Dirac Delta function, stacking implies combining haloes of different masses. Consequently, distinguish two schemes:

satellite weighting:

$$\sigma_{sw}^{2}(M_{*}) = \frac{\int P(M_{h}|M_{*}) \langle N_{s}|M_{h} \rangle \sigma_{sat}^{2}(M_{h}) dM_{h}}{\int P(M_{h}|M_{*}) \langle N_{s}|M_{h} \rangle dM_{h}}$$
host weighting:

$$\sigma_{hw}^{2}(M_{*}) = \frac{\int P(M_{h}|M_{*}) \sigma_{sat}^{2}(M_{h}) dM_{h}}{\int P(M_{h}|M_{*}) dM_{h}}$$
satellites per host:

$$\langle N_{sat} \rangle(M_{*}) = \frac{\int P(M_{h}|M_{*}) \langle N_{s}|M_{h} \rangle dM_{h}}{\int P(M_{h}|M_{*}) dM_{h}}$$

From the measurements of $\sigma_{sw}^2(M_*)$, $\sigma_{hw}^2(M_*)$, and $\langle N_{sat} \rangle(M_*)$ one can determine $P(M_h|M_*)$.

[More, vdB & Cacciato 2009]

Satellite Kinematics: results

Baryonic Mass Fractions

Chabrier IMF consistent with all galaxies.... Salpeter IMF ruled out for massive late-types and for low mass early-types

Results

A model with Chabrier IMF ($\Delta_{IMF} = 0.0$) and Gnedin contraction ($\nu = 0.8$) is in agreement with the FJ relation, but yields a TF zeropoint that is too high (too much rotation for given stellar mass).

Results

For a Chabrier IMF ($\Delta_{IMF} = 0.0$), the zero-point of the TF relation requires halo expansion ($\nu < 0$). However, for the same IMF, the zero-point of the FJ relation requires contraction with $\nu = 0.8$.

Summary of Results

Early- and Late-type galaxies cannot have same IMF <u>and</u> have experienced the same amount of halo contraction!

In case of universal IMF, early-types must have experienced more halo contraction than late types.

In case of universal contraction, early-types must have IMF that is less top-heavy than in case of late-types.

IMF is power-law which turns over at low mass. Turn-over mass set by Jeans mass at formation, which is expected to increase with redshift due to T_CMB (Larson 1998). Early-types have older stellar populations, yielding IMF that is more top-heavy.

A Bottom-Heavy IMF in Massive Ellipticals?

Sodium line and Wing-Ford band in spectra of nuclei of massive ellipticals reveal large population of low-mass stars; this suggests IMF that is more bottom-heavy than a Salpeter...

[van Dokkum & Conroy 2010]

Similar data of M31 globulars, which have similar age and metallicity, are consistent with Salpeter/Kroupa IMF [van Dokkum & Conroy 2011]

Baryonic Mass Fractions

Bottom-heavy IMF of Conroy & van Dokkum CANNOT be present in lower mass early-types!