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How to describe the matter distribution?

 the halo bias function

Second Moment �δ1 δ2� ≡ ξ(r12) r12 = |�x1 − �x2|

ξ(r) is called the two-point correlation function

Clustered distribution
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r

1 + ξ(r) =
npair(r ± dr)

nrandom(r ± dr)

Note that this two-point correlation function is defined for a continuous 
field,        . However, one can also define it for a point distribution:δ(�x)
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However, there are good reasons to believe that the density distribution
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Thus far we discussed the first and second moments; how many moments
do we need to completely specify the matter distribution?

However, there are good reasons to believe that the density distribution
of the Universe is special, in that it is a Gaussian random field...

A random field        is said to be Gaussian if the distribution of the field values
at an arbitrary set of N points is an  N-variate Gaussian:

δ(�x)

Q ≡ 1
2

�

i,j

δi (C−1)ijδj

Cij = �δiδj� = ξ(r12)
P(δ1, δ2, ..., δN ) =

exp(−Q)
[(2π)N det(C)]1/2

In principle infinitely many......

As you can see, such a Gaussian random field is completely specified
by its second moment, the two-point correlation function       !!!!ξ(r)
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How to describe the matter distribution?

 the halo bias function

Often it is very useful to describe the matter field in Fourier space:

δ(�x) =
�

k

δ�k e+i�k·�x δ�k =
1
V

�
δ(�x) e−i�k·�x

Here V is the volume over which the Universe is assumed to be periodic.

The Fourier transform of the two-point correlation function is
called the power spectrum and is given by

P (�k) ≡ V �|δ�k|2�

=
�

ξ(�x) e−i�k·�x

= 4π

�
ξ(r)

sin kr

kr
r2 dr

A Gaussian random field is completely specified by either the two-point
correlation function       , or, equivalently, the power spectrumξ(r) P (k)
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The Evolving Density Field
Inflation predicts that the power spectrum, immediately after inflation,
is given by a simple power-law

P (k) ∝ kn n � 1with

A spectrum with n=1 is called Harrison-Zel’dovich spectrum, and is scale-invariant



The Evolving Density Field
Inflation predicts that the power spectrum, immediately after inflation,
is given by a simple power-law

P (k) ∝ kn n � 1with

A spectrum with n=1 is called Harrison-Zel’dovich spectrum, and is scale-invariant

During radiation domination, matter 
perturbations that are inside the horizon 
cannot grow. This is called `stagnation’ or 
the Meszaros effect. 

Because of this, after recombination there 
is a characteristic scale in the matter 
power spectrum, which corresponds to the 
sound horizon at matter-radiation equality.

log(k)

lo
g
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(k

)]

~100 Mpc small
scales

large
scales
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During linear evolution,            , all modes     evolve independently from each 
other according to                .  Hence, 

(δ � 1) δ�k

δ�k ∝ D(t) δ(�x, t) =
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(δ � 1) δ�k

δ�k ∝ D(t) δ(�x, t) =
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δ�ke+i�k·�x ∝ D(t)

D(t) is called the linear growth rate
It is cosmology dependent. Accurate 
fitting functions available in literature.

This process continues until overdensities 
are of order unity.
At that point, overdensities `turn around’ 
 (stop expanding) and start to collapse...

δ = δc � 1.686
According to spherical collapse model, 
collapse happens when
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Evolution after turn-around depends on nature of matter

Dark Matter = collisionless              shell crossing
Baryonic Matter = collisional                 shock heating 
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Onion Model

you can think of overdensity
as consisting of many 

individual thin mass shells
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Because dark matter has no pressure, 
shell crosses itself and starts to oscillate
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virialization

Individual oscillating shells interact gravitationally, exchanging
energy (virializing), giving rise to a relaxed dark matter halo

The Evolving Density Field
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Non-Linear Evolution:

During non-linear evolution modes start to couple to each other. One can no longer 
describe the evolution of the density field with a simple (linear) growth rate

Because of this mode-coupling, the density field looses its Gaussian properties,
i.e., in the non-linear regime, we no longer have a Gaussian random field.

Hence, higher-order moments are required to completely specify density field.
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The Halo Model

Halo model describes dark 
matter density distribution 
in terms of its halo building 
blocks, under ansatz that all 
dark matter is partitioned 
over haloes.

 the halo bias function

Throughout we assume that all dark matter haloes are spherical,
and have a density distribution that only depends on halo mass:

ρ(r|M) = M u(r|M)

�
d3�x u(�x|M) = 1Here            is the normalized density profile:u(r|M)
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= halo center
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Imagine space divided into many small volumes,        ,which are so small that
none of them contain more than one halo center.

∆Vi
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Imagine space divided into many small volumes,        ,which are so small that
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∆Vi

Then we have that
and therefore

Let      be the occupation number
of dark matter haloes in cell i

Ni

Ni = 0, 1
Ni = N 2

i = N 3
i =
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Imagine space divided into many small volumes,        ,which are so small that
none of them contain more than one halo center.

∆Vi

Then we have that
and therefore

Let      be the occupation number
of dark matter haloes in cell i

Ni

Ni = 0, 1
Ni = N 2

i = N 3
i =

This allows us to write the matter
density field as a summation:

ρ(�x) =
�

i

Ni Mi u(�x− �xi|Mi)
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ρ =
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Ni Mi u(�x − �xi|Mi)�
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halo mass function
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NO: dark matter haloes themselves are clustered, i.e., have a non-zero two point
       correlation function. This needs to be taken into account.
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The halo-halo correlation function:   dark matter haloes are biased tracers of
                                                         the dark matter mass distribution!

b(M)Here          is called the halo bias function

Note: only valid on large (linear) scales!!!!
ξhh(r|M1,M2) = b(M1) b(M2) ξlin

mm(r)
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convolution integral
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The Halo Model: Summary (part I)
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ξ2h(r) =
1
ρ2

�
dM1 M1 b(M1) n(M1)
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dM2 M2 b(M2) n(M2)×
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d3�y1

�
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�
dM M2 n(M)

�
d3�y u(�x− �y|M)u(�x + �r − �y|M)

ξ(r) = ξ1h(r) + ξ2h(r)

Halo Model Ingredients:
 the halo mass function n(M)
 the halo bias function b(M)

the halo density profiles ρ(r|M) = Mu(r|M)

ξlin
mm(r)the linear correlation 

function of matter



The Halo Model: Summary (part I)

Frank van den Bosch                                                           Yale University

ξ2h(r) =
1
ρ2

�
dM1 M1 b(M1) n(M1)

�
dM2 M2 b(M2) n(M2)×

�
d3�y1

�
d3�y2u(�x− �y1|M1) u(�x + �r − �y2|M2) ξlin

mm(�y1 − �y2)

ξ1h(r) =
1
ρ2

�
dM M2 n(M)

�
d3�y u(�x− �y|M)u(�x + �r − �y|M)

ξ(r) = ξ1h(r) + ξ2h(r)

Halo Model Ingredients:
 the halo mass function n(M)
 the halo bias function b(M)

the halo density profiles ρ(r|M) = Mu(r|M)

ξlin
mm(r)the linear correlation 

function of matter

All of these are (reasonably) well calibrated against numerical simulations.



The Halo Model in Fourier Space
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P (k) = P 1h(k) + P 2h(k)

P 1h(k) =
1
ρ2

�
dM M2 n(M) |ũ(k|M)|2

P 2h(k) = P lin(k)
�
1
ρ

�
dM M b(M) n(M) ũ(k|M)

�2

Since convolutions in real-space become multiplications in Fourier space,
the halo model expression for the power spectrum is much easier.
Therefore, in practice, one computes         and then uses Fourier
transformation to obtain two-point correlation function

P (k)
ξ(r)

P lin(k) =
�

ξlin
mm(�x)e−i�k·�xd3�x = 4π

� ∞

0
ξlin
mm(r)

sin kr

kr
r2 dr

ũ(�k|M) =
�

u(�x|M)e−i�k·�x d3�x = 4π

� ∞

0
u(r|M)

sin kr

kr
r2 dr



The Halo Model in Fourier Space
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from: Cooray & Sheth (2002)

Dashed line: true non-linear power spectrum
Solid line: halo model

∆2(k) =
1

2π2
k3P (k)

Dimensionless power spectrum
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 the halo bias function

The Halo Model: complications

P 1h(k) =
1
ρ̄2

�
dM M2 n(M) |ũ(k|M)|2

P 2h(k) = P lin(k)
�
1
ρ̄

�
dM M b(M) n(M) ũ(k|M)

�2

is no longer adequate
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However, this is ONLY true under the simplifying assumption that

In reality, on small scales, in the (quasi)-linear regime, this description of the 
halo-halo correlation function becomes inadequate for two reasons:

ξhh(r|M1,M2) = b(M1) b(M2) ξlin
mm(r)

is no longer adequate
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halo-halo correlation function becomes inadequate for two reasons:

ξhh(r|M1,M2) = b(M1) b(M2) ξlin
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is no longer adequate

halo exclusion

RR1

R2ξlin
mm(r) is no longer adequate

halo exclusion
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 the halo bias function

halo exclusion

RR1

R2

P 2h(k) =
1
ρ̄2

�
dM1 M1 n(M1) ũ(k|M1)

�
dM2 M2 n(M2)ũ(k|M2) Q(k|M1,M2)

Here Q(k|M1,M2) = 4π

� ∞

rmin

[1 + ξhh(r|M1,M2)]
sin kr

kr
r2dr

describes the fact that dark matter haloes are clustered, as described by 
the halo-halo correlation function,                       , and takes halo exclusion 
into account by having 

ξhh(r|M1,M2)
rmin = R1 + R2

The Halo Model: complications
Because of these complications, the 2-halo term needs to
be modified to the following, much more complicated form

Also, the halo-halo correlation function itself has to be modified to:
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The Halo Model: complications
Because of these complications, the 2-halo term needs to
be modified to the following, much more complicated form

Also, the halo-halo correlation function itself has to be modified to:

Also, the halo-halo correlation function itself has to be modified to:

ξhh(r|M1,M2) = b(M1) b(M2) ζ(r) ξmm(r)

Here        is called the radial bias function, and which is a higher-order
bias correction. No analytical model for       exists; use empirical calibration...ζ(r)

ζ(r)
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 the halo bias function

halo exclusion
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Also, the halo-halo correlation function itself has to be modified to:
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Worst of all;            is the non-linear matter-matter correlation functionξmm(r)
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 the halo bias function

The Halo Model: Summary (part II)

Also, the halo-halo correlation function itself has to be modified to:

Accurate to ~5% level, but requires            as input....ξmm(r)

P 1h(k) =
1
ρ2

�
dM M2 n(M) |ũ(k|M)|2

P 2h(k) = P lin(k)
�
1
ρ

�
dM M b(M) n(M) ũ(k|M)

�2

The simple, `linear’, halo model

Only accurate to ~40-50% in the 1-halo to 2-halo transition region (~1 Mpc/h)
Can still be adequate for certain applications....

P 2h(k) =
1
ρ̄2

�
dM1 M1 n(M1) ũ(k|M1)

�
dM2 M2 n(M2)ũ(k|M2) Q(k|M1,M2)

P 1h(k) =
1
ρ2

�
dM M2 n(M) |ũ(k|M)|2

The more accurate halo model

Still, this halo model is very useful, as it can also be used to model the 
correlation function (or power-spectrum) of galaxies !!!!



Frank van den Bosch                                                           Yale University

 the halo bias function

The Halo Model: Summary (part II)

Also, the halo-halo correlation function itself has to be modified to:

Accurate to ~5% level, but requires            as input....ξmm(r)

P 1h(k) =
1
ρ2

�
dM M2 n(M) |ũ(k|M)|2
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Halo Occupation Modeling



To constrain the physics of Galaxy Formation
To constrain cosmological parameters

Four Methods to Constrain Galaxy-Dark Matter Connection:

Satellite Kinematics
Abundance Matching

Large Scale Structure
Galaxy-Galaxy Lensing

Halo Occupation Modelling: Motivation & Goal
Our main goal is to study the Galaxy-Dark Matter connection;

i.e., what galaxy lives in what halo?
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The Galaxy-Galaxy Correlation Function

 the halo bias function

P 1h(k) =
1
ρ̄2

�
dM M2 n(M) |ũ(k|M)|2

The above equations describe the non-linear matter power-spectrum.

P 2h(k) =
1
ρ̄2

�
dM1 M1 n(M1) ũ(k|M1)

�
dM2 M2 n(M2)ũ(k|M2) Q(k|M1,M2)

It is straightforward to use same formalism to compute power spectrum of galaxies:

Simply replace

M

ρ̄m
→ �N�M

n̄g

ũ(k|M)→ ũg(k|M)

where           describes the average number of galaxies (with certain properties)
in a halo of mass     . Thus, the halo model combined with a model for the halo
occupation statistics, allows a computation of   

�N�M

M
ξgg(r)



The Conditional Luminosity Function

Φ(L|M)The CLF describes the average number of galaxies
of luminosity L that reside in a halo of mass M.

see Yang, Mo & vdBosch 2003

Describes occupation statistics of dark matter haloes 

Links galaxy luminosity function to halo mass function

Holds information on average relation between light and mass
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Φ(L) =
�

Φ(L|M) n(M) dM

�L�M =
�

Φ(L|M) LdL

�N�M =
�

Φ(L|M) dL



The CLF Model
We split the CLF in a central and a satellite term:

Φ(L|M) = Φc(L|M) + Φs(L|M)

For centrals we adopt a log-normal  distribution:

For satellites we adopt a modified Schechter function:

Φc(L|M)dL =
1√

2πσc

exp

�
−

�
ln(L/Lc)√

2σc

�2
�

dL

L

Φs(L|M)dL =
φs

Ls

�
L

Ls

�αs

exp
�
−(L/Ls)2

�
dL

 all depend on halo mass{Lc, Ls,σc,φs,αs}Note:

Free parameters are constrained by fitting data.
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Galaxy Clustering



Occupation Statistics from Clustering

Clustering strength of given population of galaxies
indicates the characteristic halo mass

Galaxies occupy dark matter halos
CDM: more massive halos are more strongly clustered

Clustering strength measured by correlation length r0
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Occupation Statistics from Clustering

Clustering strength of given population of galaxies
indicates the characteristic halo mass

Galaxies occupy dark matter halos
CDM: more massive halos are more strongly clustered

Clustering strength measured by correlation length r0

CAUTION: results depend on cosmology
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Galaxy Clustering: The Data

More luminous galaxies are more strongly clustered

Wang et al. (2007)

different luminosity bins

Frank van den Bosch                                                           Yale University



DATA: more luminous galaxies are more strongly clustered
LCDM: more massive halos are more strongly clustered

CONCLUSION: more luminous galaxies reside in more massive halos
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Luminosity and Correlation Functions



Results from MCMC Analysis

χ2
red � 1

Cacciato, vdB et al. (2009)
Model fits data extremely well with
Same model in excellent agreement with results
from SDSS galaxy group catalogue
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Cosmology Dependence
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Cosmology Dependence
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Galaxy-Galaxy Lensing



Galaxy-Galaxy Lensing
The mass associated with galaxies lenses background galaxies

Lensing causes correlated ellipticities, the tangential shear,    , which
is related to the excess surface density,      , according to

γt

∆Σ

γt(R)Σcrit = ∆Σ(R) = Σ̄(< R)− Σ(R)

Σ(R) = ρ̄

� Ds

0
[1 + ξg,dm(r)] dχ

∆Σ is line-of-sight projection of galaxy-matter cross correlation

background sources lensing due to foreground galaxy
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Galaxy-Galaxy Lensing: The Data
Number of background sources per lens is limited

Measuring shear with sufficient S/N requires stacking of many lenses

has been measured using the SDSS by
Mandelbaum et al. (2006), using different bins in lens-luminosity
∆Σ(R|L1, L2)

Mandelbaum et al. (2006)
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How to interpret the signal?

Stacking

Because of stacking the lensing signal is difficult to interpret  

In order to model the data, what is required is:

Pcen(M |L) Psat(M |L) fsat(L)

These can all be computed from the CLF...

Φ(L|M) ∆Σ(R|L1, L2)we can predict the lensing signalFor a given
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Galaxy-Galaxy Lensing: Results

NOTE: this is not a fit, but a prediction based on CLF
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Galaxy-Galaxy Lensing: Results
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Galaxy-Galaxy Lensing: Results

Combination of clustering & lensing can constrain cosmology!!!
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Constraining Cosmology
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Comparison with Mock Catalogues

Run numerical simulation of
structure formation (DM only)

Identify DM haloes, and 
populate them with galaxies
using a model for the CLF.

Compute galaxy-galaxy 
correlation functions for 
various luminosity bins.

Use analytical model to 
compute the same, using the 
same model for the CLF.
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Comparison with Mock Catalogues

Run numerical simulation of
structure formation (DM only)

Identify DM haloes, and 
populate them with galaxies
using a model for the CLF.

Compute galaxy-galaxy 
correlation functions for 
various luminosity bins.

Use analytical model to 
compute the same, using the 
same model for the CLF.

Our model is accurate
to better than ~5%
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Residual Redshift Space Distortions

To avoid redshift space 
distortions, one typically uses 
projected correlation function

wp = 2
∞�

0

ξgg(rp, rπ) drπ = 2
∞�

rp

ξgg(r)
r dr�
r2 − r2

p
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data, one can only integrate 
out to finite radius, rmax
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The resulting, residual z-space distortions easily exceed 20% at r_p ~20 Mpc/h                   
                                                                                                                    (Norberg et al. 2009).
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Residual Redshift Space Distortions

To avoid redshift space 
distortions, one typically uses 
projected correlation function

wp = 2
∞�

0

ξgg(rp, rπ) drπ = 2
∞�

rp

ξgg(r)
r dr�
r2 − r2

p

We correct for these 
residual redshift space 
distortions using the 
linear Kaiser formalism.
Mocks show that this is 
accurate to few percent.

Because of limitations of 
data, one can only integrate 
out to finite radius, rmax

wp = 2
rmax�

0

ξgg(rp, rπ) drπ �= 2

√
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max�
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r dr�
r2 − r2
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The resulting, residual z-space distortions easily exceed 20% at r_p ~20 Mpc/h                   
                                                                                                                    (Norberg et al. 2009).
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Covariance Matrix

Covariance matrix has block
diagonal form.

Little correlation between 
cosmological parameters,
and other parameters.

Nuisance parameters are
mainly correlated with the
satellite CLF parameters

Our results are robust to
our particular parameterization
of the CLF.
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Covariance Matrix

cosmological
parameters

central CLF
parameters

satellite
 CLF

parameters

nuisance
params

Covariance matrix has block
diagonal form.

Little correlation between 
cosmological parameters,
and other parameters.

Nuisance parameters are
mainly correlated with the
satellite CLF parameters

Our results are robust to
our particular parameterization
of the CLF.
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Covariance Matrix

Covariance matrix has block
diagonal form.
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cosmological parameters,
and other parameters.

Nuisance parameters are
mainly correlated with the
satellite CLF parameters

Our results are robust to
our particular parameterization
of the CLF.



Fiducial Model
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Total of 16 free parameters:
     - 9 parameters to describe CLF
     - 5 cosmological parameters;   

Dark matter haloes follow NFW profile + 
marginalize over 10% uncertainty in c(M) relation

Radial number density distribution of satellites
follows that of dark matter particles.
Halo mass function and halo bias function of
Tinker et al. (2009,2010).

Total of 176 data points.

Ωm,Ωb,σ8, ns, h

WMAP7 priors on Ωb, ns, h

Correction for residual redshift space distortions

- 2 nuisance parameters; ζmax,Rc



Results: Clustering Data
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Results: Lensing Data
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Luminosity Function & Satellite Fractions

Luminosity Function

fit 
to d

ata

Satellite Fractions

Model P
red

ict
ion
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Cosmological Constraints
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Conclusions

Combination of galaxy clustering and galaxy-galaxy
lensing can constrain cosmological parameters.

Recent years have seen enormous progress in establishing 
the galaxy-dark matter connection, including its scatter!

Different methods (group catalogues, satellite kinematics,
galaxy-galaxy lensing, clustering & abundance matching) now
all yield results in good mutual agreement.

This method is complementary to and competitive with
BAO, cosmic shear, SNIa & cluster abundances.

Preliminary results are in excellent agreement
with CMB constraints from WMAP7
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Forecasting for constraints on neutrino mass,
WDM and modified gravity very promising.    



The End


