ASTRO 530: Problem Set 2

Problem 1: The main-sequence lifetime of stars scales with their zero-age mainsequence (ZAMS) masses roughly as $\tau_{\rm MS} \propto M^{-3}$. Under the assumption that all stars burn roughly the same mass fraction of their hydrogen into helium while at the main sequence, give a simple estimate of the value of $\alpha \equiv d\ln L/d\ln M$.

Problem 2: The gravitational potential energy can in general be written as

$$U = -\alpha \frac{GM^2}{r_{\rm e}}$$

with $r_{\rm e}$ the effective radius. Derive the value of α for a uniform sphere.

Problem 3: The surface photometry of a galaxy that appears circular on the sky reveals a surface brightness profile $I(R) \propto R^{-\gamma}$. Assuming that the galaxy is intrinsically spherical, the three-dimensional luminosity density $\nu(r) \propto r^{-\alpha}$. What is the relation between α and γ ?

Problem 4: The luminosity function of galaxies is well-fit by a Schechter function

$$\Phi(L)dL = \Phi^* \left(\frac{L}{L^*}\right)^{\alpha+1} \exp\left[-\frac{L}{L^*}\right] \frac{dL}{L}$$

Derive the corresponding LF in magnitudes, i.e., give $\Phi(\mathcal{M}) d\mathcal{M}$, where $\mathcal{M} = -2.5 \log(L/L_{\odot}) + \mathcal{M}_{\odot}$.

Problem 5: The Poisson equation relates the gravitational potential, Φ , of an object to its density distribution, ρ , and is given by

$$\nabla^2 \Phi = 4\pi G \rho$$

a) Show that in the case of spherical symmetry this implies

$$\frac{\mathrm{d}\Phi}{\mathrm{d}r} = \frac{GM(r)}{r^2}$$

where M(r) is the mass enclosed by radius r.

b) Suppose that the gravitational potential is filled with some hot gas in hydrostatic equilibrium, which has temperature and gas density profiles of T(r) and $\rho_{\text{gas}}(r)$, respectively. Under the assumption that the gas obeys the ideal gas law, show that one can infer the enclosed mass of the halo from

$$M(r) = -\frac{k_{\rm B}T(r)r}{\mu m_{\rm p}G} \left[\frac{\mathrm{dln}\rho_{\rm gas}}{\mathrm{dln}r} + \frac{\mathrm{dln}T}{\mathrm{dln}r}\right]$$

where μ is the mean molecular weight in units of the proton mass $m_{\rm p}$.

c) What is the mean molecular weight μ for a fully ionized, primordial (i.e., zero metallicity) gas with a helium mass fraction of Y = 0.25?

d) For an imaginary, spherical cluster, X-ray observations have indicated that its X-ray emitting gas has a temperature of 3×10^7 K, and a gas density profile $\rho_{\text{gas}} \propto r^{-2}$. What is the mass of the halo within $1.5h^{-1}$ Mpc under the assumption that the gas is fully ionized, and has zero metallicity with a helium mass fraction of Y = 0.25.

Problem 6: In an Einstein-de Sitter (EdS) universe ($\Omega_{\rm m} = 1$, $\Omega_{\Lambda} = 0$), two identical sources, 1 and 2, have an SED $L_{\nu} \propto \nu^{-\alpha}$, and are located at $z_1 = 1.0$ and $z_2 = 2.0$, respectively. For what value of α do both sources have the same apparent magnitudes.

(Hint: Use Eqs. [3.13], [3.75] and [3.104] and take k-corrections into account).

Useful Numbers

 $\overline{k_{\rm B}} = 1.381 \times 10^{-16} \, {\rm erg} \, {\rm K}^{-1}$ $m_{\rm p} = 1.673 \times 10^{-24} \, {\rm g}$ $G = 4.3 \times 10^{-9} \, ({\rm km/s})^2 \, {\rm M}_{\odot}^{-1} \, {\rm Mpc}$

Deadline: Oct 15, 2010

Grading:

Problem 1: 5 pt Problem 2: 10 pt Problem 3: 5 pt Problem 4: 10 pt Problem 5a: 5 pt Problem 5b: 15 pt Problem 5c: 20 pt Problem 5d: 5 pt Problem 6: 25 pt

TOTAL : 100 pt