Star Formation Theory: Connecting the Local to the Extra-Galactic

> Mark Krumholz University of California, Santa Cruz

Frontiers in Star Formation Conference Yale, October 27, 2012

SF Laws on Galactic Scales

SF Laws on Galactic Scales

SF Laws on Sub-Galactic Scales

Metallicity-Dependence

Phase-Dependence

The Theoretical Challenge

- Which laws are the fundamental ones, the local or the galactic-scale? Both? Neither?
- Can we unify the different sets of laws (at different scales, for different phases) within a single theoretical framework?

SF Laws: the Top-Down Approach

The idea in a nutshell: the SFR is set by *galactic-scale* regulation, independent of the local SF law. The local law is to be explained separately.

Q-Based Models

Basic idea: SFR is a function of Toomre Q in galaxy

Feedback Models

Also see Tasker (2011), E. Ostriker's talk

Mechanisms that regulate SF rate: supernovae, radiation pressure, ionized gas pressure, FUV heating

Characteristics of Top-Down Models

Changing the small-scale SF law does not change the SFR in the galaxy, but it does change the gas density distribution

Top-Down Model Limitations

- Results depend strongly on subgrid feedback model (e.g. radiative trapping, SFE inside unresolved GMCs, UV heating per unit)
- No independent prediction for local SF laws

Metallicity in Top-Down Models

Top-down models most naturally predict SF laws that do not depend on metallicity or phase, strongly inconsistent with observations

SF Laws: the Bottom-Up Approach

The idea in a nutshell: the SFR is set by a *local* SF law, plus a galactic-scale distribution of gas.

The "Dense Gas" Model

Basic idea: SFR = M(> ρ_{dense}) / t_{dense} , with ρ_{dense} , t_{dense} = const Problems: no physical basis for values of ρ_{dense} , t_{dense} ; evidence for threshold mixed

Observed Local SF Law

Local SF law: ~1% of gas mass goes into stars per free-fall time, independent of density or presence of massive stars

Why is $\epsilon_{\rm ff}$ Low?

(Original model: Krumholz & McKee 2005; updates by Padoan & Nordlund 2011, Hopkins 2012, Federrath & Klessen 2012)

- Properties of GMC turbulence: $\alpha_{vir} \sim 1$, density PDF lognormal, LWS relation $\sigma_v \sim \ell^{1/2}$
- Scaling: M ~ l³, PE ~ l⁵, KE ~ l⁴, so PE << KE, typical region unbound
- Only over-dense regions bound; integrating over lognormal PDF gives ε_{ff} ~ 0.01

Building a Galactic SF Law from a Local One

- Need to estimate characteristic density
- In MW-like galaxies, GMCs have $\Sigma_{GMC} \sim 100$ $M_{\odot} pc^{-2}$, $M_{GMC} \sim \sigma^4 / G^2 \Sigma_{gal}$; this gives

 $\rho_{\rm GMC} \sim G(\Sigma_{\rm GMC}^3 \Sigma_{\rm gal})^{1/4} / \sigma^2$

- In SB / high-z galaxies, Toomre stability gives $\rho_{\rm T}\sim \Omega^2/GQ^2$
- Ansatz: $\rho = max(\rho_T, \rho_{GMC})$

Combined Local-Galactic Law

Krumholz, Dekel, & McKee 2012

Metallicity / Phase-Dependence

Chemical and Thermal Balance

 ${
m H_{2}}$ formation ${
m H_{1}}$ n ${
m R}$ = $n_{{
m H_{2}}} \int d\Omega \int d
u \, \sigma_{{
m H_{2}}} f_{{
m diss}} I_{
u}/(h
u)$ $\hat{e} \cdot \nabla I_{\nu} = -(n_{\mathrm{H}_2}\sigma_{\mathrm{H}_2} + n\sigma_{\mathrm{d}})I_{\nu}$ Absorption Decrease in by dust, H₂ rad. intensity

Line cooling $n^2\Lambda = n \int d\Omega \int d
u \, \sigma_d E_{
m PE} I_
u/(h
u)$

 $\hat{e} \cdot \nabla I_{\nu} = -n\sigma_d I_{\nu}$

rad. intensity dust

Decrease in Absorption by

Caveat: this is assumes equilibrium, which may not hold

Calculating Molecular Fractions

To good approximation, solution only depends on two numbers:

$$egin{array}{rll} au_{
m R} &=& n\sigma_{
m d}R \ \chi &=& rac{f_{
m diss}\sigma_{
m d}E_0^*}{n\mathcal{R}} \end{array}$$

An approximate analytic solution can be given from these parameters.

Analytic solution for location of HI / H_2 transition vs. exact numerical result

Calculating f_{H_2}

Qualitative effect: f_{H_2} goes from ~o to ~1 when ΣZ ~ 10 $M_{\odot}~pc^{-2}$

Why Does SF Follow H₂?

The Local HI – H₂ Transition

Lee+ 2012

Extra-Galactic Phase Dependence

The Future: Mapping out the Space Between Local and Galactic

Extragalactic SF Laws at High Resolution

Extragalactic SF Laws at High Resolution

Comparison to Model

Comparison to Model

SF Laws in Many Lines

Comparison to Model

Summary

- Can local and extra-galactic laws be unified? Depends on whether SF regulation is topdown or bottom-up
- Can laws for different phases / metallicities be unified with other laws? Yes, but this only happens naturally in a bottom-up framework.
- Promising approach: measure and predict SF laws at intermediate scales and densities