Simulating the Formation of the First Stars

Thomas Greif

Harvard-Smithsonian CfA

Outline

Outline:

- (i) Previous work
- (ii) Recent simulations
- (iii) Disk fragmentation
- (iv) Protostellar migration and merging

Collaborators:

- Volker Springel, Simon White (HITS, MPA)
- Ralf Klessen, Simon Glover, Paul Clark, Rowan Smith (ITA Heidelberg)
- Volker Bromm (University of Texas)
- Jarrett Johnson, Athena Stacy (Goddard, LANL)
- Naoki Yoshida (IPMU)

From Cosmological to Protostellar Scales

- $\blacktriangleright\,$ Stage for Pop III SF: $\gtrsim 10^5~M_\odot$ DM 'minihalos' at z>20
- Gas collapses and heats to $T_{\rm vir} \simeq 1000 \, {\rm K}$

Abel et al. 02

From Cosmological to Protostellar Scales

- ► Gas becomes dense enough for H₂ formation (Bromm et al. 02)
- \blacktriangleright Cooling by ro-vibrational transitions of H_2 to $\simeq 200~K$

From Cosmological to Protostellar Scales

- Central gas cloud becomes gravitationally unstable
- Nearly isothermal contraction to very high densities
- $\blacktriangleright\,$ Protostar with $\simeq 5\times 10^{-3}\,M_\odot$ forms

Yoshida et al. 06, 08

Subsequent evolution?

 Avoid CFL constraint by using sink particles (Bromm et al. 04, Stacy et al. 10, Clark et al. 08, 11, Greif et al. 11)

Recently:

- Direct simulation without sink particles
- > Very limited timescales: \sim 10 yr (however: \gtrsim 100 yr now possible)

Moving-mesh code AREPO (Springel 10):

- Hybrid Lagrangian / Eulerian code
- Voronoi tesselation of space based on a distribution of points
- Hydrodynamic fluxes computed across cell faces
- Mesh-generating points advected with flow
- Galilean-invariant, low diffusivity

Simulation Setup:

- Cosmological initial conditions
- Four realizations in boxes of size 250 and 500 kpc
- ► Four-step process to arrive at final simulations on AU scales

First step:

- Low-resolution DM-only simulations
- Initialized at z = 99 with Λ CDM/WMAP 7
- $\blacktriangleright\,$ First halo with mass $>5\times10^5\,M_\odot$ located

Second step:

- Reinitialization with DM and gas
- $\blacktriangleright\,$ Zoom-in on target minihalo ($\times 8^3) \rightarrow \simeq 1\, M_{\odot}$ gas resolution
- Non-equilibrium primordial chemistry and cooling network
- On-the-fly refinement ensures resolution of Jeans length (128 ightarrow 32)
- Run until $n_{\rm H} = 10^9 \, {\rm cm}^{-3}$

Width: 5 kpc (comoving)

Third step:

- $\blacktriangleright\,$ Central 1 pc cut out (only gas, DM mass fraction \simeq 10 %)
- Resimulation with reflective boundary conditions
- Additional equilibrium chemistry solver for $n_{\rm H} > 10^{14} \, {\rm cm}^{-3}$
- Run until $n_{\rm H} = 10^{19} \, {\rm cm}^{-3}$

Fourth step:

- Central 2000 AU cut out
- Run for $\simeq 10 \, \mathrm{yr}$ (1 month on 32 cores)

Time sequence:

Disk Fragmentation

Disk evolution:

- Stability governed by Toomre parameter
- $\blacktriangleright Q = c_{\rm s}\Omega/\pi G\Sigma$

Set by:

- Σ: surface density
- c_s: sound speed
- Ω: orbital frequency

For Q < 1:

perturbations grow

Q < 1 at $\lesssim 0.2\,\mathrm{AU}$ and $\simeq 1\,\mathrm{AU}$

Disk Fragmentation

In addition:

- Gammie criterion:
- $t_{
 m cool} \lesssim t_{
 m ff}$

Fragmentation:

- $\blacktriangleright\,$ Occurs at $\simeq 1\,{\rm AU}$
- Innermost regions stable
- Below 1 AU: temperature rises rapidly to ~ 10⁴ K
- H₂ fraction drops

 \rightarrow Relevant cooling mechanisms?

Disk Fragmentation

Heating:

- Compressional heating (solid line)
- H₂ formation heating (dotted line)

Cooling:

- Expansion cooling (solid line)
- H₂ dissociation cooling (dotted line)
- Collision-induced emission (dashed line)
- H₂ line cooling (dot-dashed line)

Most important 'coolant': H2 dissociation cooling

Subsequent evolution:

- Secondary protostars migrate to center and merge with primary
- Mergers rarely occur between secondary protostars
- Primary protostar dominates mass budget

Torques:

- Decomposition into:
- Gravitational torques
- ▶ ∇P torques
- Timescales:

 $t_{
m grav, pres} = \mathbf{L}/ au$ $au = \mathbf{r} \times \mathbf{F}_{
m grav, pres}$

Overall:

- Gravitational torques dominate
- Directed inward
- Torquing time agrees with merging time

Merging timescales:

Merging occurs in a free-fall time!

Similar analysis for protostars that survive:

Slingshot effect: Migration to higher orbits via N-body interactions

Evolution of multiplicity:

50% of all secondary protostars merge with primary!

Summary

- Gas in minihalos becomes rotationally supported and fragments
- Very efficient merging (free-fall time)
- Predominant growth of primary protostar
- Slingshot migration of low-mass protostars
- $\blacktriangleright\,$ Final mass function unclear, but most likely top-heavy ($\lesssim 50\,M_\odot)$
- Caveats: magnetic fields / radiative transfer / limited timespan