Astronomical Surveys: From Electrons to Science

Robert Lupton

Princeton University

Yale, 2nd October, 2009

How To Analyze Astronomical Data

Inside the Sausage Machine

Example: Finding $z \sim 6$ Quasars

Example: Finding $z \sim 6$ Quasars

With Xiaohui Fan and Michael Strauss and Željko Ivezić (and ...)

Example: Finding $z \sim 6$ Quasars

How does a photometric survey find Quasars?

Colour Selection of Quasars

Colour Selection of Quasars

Colour Selection of Quasars

Why isn't this Easy?

Objects Are Blended

Objects Move

The semi-major axis v. (proper) inclination of a sample of known asteroids detected by SDSS

Two solutions:

Two solutions:

- Normalise the seeing to some canonical form and value (cf. A&L image subtraction)
 - -Involves some measure of deconvolution (or loss of S/N)
 - -Slower, more complex code

Two solutions:

- Normalise the seeing to some canonical form and value (cf. A&L image subtraction)
 - -Involves some measure of deconvolution (or loss of S/N)
 - -Slower, more complex code
- Estimate the seeing at the position of each object
 - Fast; a simple linear reconstruction at position of each object
 - The seeing is still variable across the frame

• KL decompose the bright stars in the frame, giving a number of basis functions (typically 3 or 4):

• KL decompose the bright stars in the frame, giving a number of basis functions (typically 3 or 4):

$$P_{ij} = \sum_{\alpha=0}^{n-1} A^{(\alpha)} K_{ij}^{(\alpha)}$$

• KL decompose the bright stars in the frame, giving a number of basis functions (typically 3 or 4):

$$P_{ij} = \sum_{\alpha=0}^{n-1} A^{(\alpha)} K_{ij}^{(\alpha)}$$

• KL decompose the bright stars in the frame, giving a number of basis functions (typically 3 or 4):

$$P_{ij} = \sum_{\alpha=0}^{n-1} A^{(\alpha)} K_{ij}^{(\alpha)}$$

• Write the $A^{(\alpha)}$ as low-order polynomials in x, y:

$$P_{ij}(x,y) = \sum_{\alpha=0}^{n-1} \sum_{r=0}^{n-1} \sum_{s=0}^{n-1} a_j^{(\alpha)} x^r y^s K_{ij}^{(\alpha)}$$

If you combine the last three points:

- blending
- moving
- variable seeing

it is not obvious how to build a catalogue out of a set of observations.

Not all Objects are Point Sources

All Objects

Not all Objects are Point Sources

Stars and Galaxies

Not all Point Sources are Point Sources

Stars and Galaxies and Cosmic Rays

Not all Point Sources are Point Sources

Stars and Galaxies and Cosmic Rays (cumulative)

High-7 Quasars

High-z Quasars are not very Bright

High-z Quasars are not very Bright

The small dots are 10^5 stars (from $\sim 10 \text{deg}^2$ of sky)

High-z Quasars are not very Bright

The small dots are 10^5 stars (from $\sim 10 \text{deg}^2$ of sky) The quasars (and L/T stars) are from $\sim 2000 \text{deg}^2$

All that Glistens isn't Gold

All that Glistens isn't Gold

riz

All that Glistens isn't Gold

riz

Is Anything Left?

Is Anything Left?

gri

riz

[the software] is difficult enough that Jim Gunn doesn't think he could do it himself

• CFHTL Emmanuel Bertin

- CFHTL Emmanuel Bertin
- Pan-STARRS Gene Magnier

- CFHTL Emmanuel Bertin
- Pan-STARRS Gene Magnier
- DES (Emmanuel Bertin)

- CFHTL Emmanuel Bertin
- Pan-STARRS Gene Magnier
- DES (Emmanuel Bertin)
- ODI (Gene Magnier?)

[the software] is difficult enough that Jim Gunn doesn't think he could do it himself

- CFHTL Emmanuel Bertin
- Pan-STARRS Gene Magnier
- DES (Emmanuel Bertin)
- ODI (Gene Magnier?)

Recommendation: Advertise a tenured faculty position

g – r

