Astronomical Surveys: From Electrons to Science

Robert Lupton Princeton University

Yale, 2nd October, 2009
How To Analyze Astronomical Data
Inside the Sausage Machine
Example: Finding $z \sim 6$ Quasars
Example: Finding $z \sim 6$ Quasars

With Xiaohui Fan and Michael Strauss and Željko Ivezić (and ...)
Example: Finding $z \sim 6$ Quasars

How does a photometric survey find Quasars?
Colour Selection of Quasars
Colour Selection of Quasars

$z < 2.2$ quasars

$z > 3$ quasars
Colour Selection of Quasars

$z > 4.5$ quasars
Why isn’t this Easy?
Objects Are Blended
Objects Move
The semi-major axis v. (proper) inclination of a sample of known asteroids detected by SDSS
The PSF can be Complicated
The PSF can be Complicated
The PSF can be Complicated

Two solutions:
The PSF can be Complicated

Two solutions:

- Normalise the seeing to some canonical form and value (cf. A&L image subtraction)
 - Involves some measure of deconvolution (or loss of S/N)
 - Slower, more complex code
The PSF can be Complicated

Two solutions:

• Normalise the seeing to some canonical form and value (cf. A&L image subtraction)
 – Involves some measure of deconvolution (or loss of S/N)
 – Slower, more complex code

• Estimate the seeing at the position of each object
 – Fast; a simple linear reconstruction at position of each object
 – The seeing is still variable across the frame
We chose the latter:

- KL decompose the bright stars in the frame, giving a number of basis functions (typically 3 or 4):
We chose the latter:

- KL decompose the bright stars in the frame, giving a number of basis functions (typically 3 or 4):

\[
P_{ij} = \sum_{\alpha=0}^{n-1} A^{(\alpha)} K_{ij}^{(\alpha)}
\]
We chose the latter:

- KL decompose the bright stars in the frame, giving a number of basis functions (typically 3 or 4):

\[P_{ij} = \sum_{\alpha=0}^{n-1} A^{(\alpha)} K^{(\alpha)}_{ij} \]
We chose the latter:

- KL decompose the bright stars in the frame, giving a number of basis functions (typically 3 or 4):

$$P_{ij} = \sum_{\alpha=0}^{n-1} A^{(\alpha)} K_{ij}^{(\alpha)}$$

- Write the $A^{(\alpha)}$ as low-order polynomials in x, y:

$$P_{ij}(x, y) = \sum_{\alpha=0}^{n-1} \sum_{r=0}^{n_r-1} \sum_{s=0}^{n_s-1} a_j^{(\alpha)} x^r y^s K_{ij}^{(\alpha)}$$
If you combine the last three points:

- blending
- moving
- variable seeing

it is not obvious how to build a catalogue out of a set of observations.
Not all Objects are Point Sources

All Objects
Not all Objects are Point Sources

Stars and Galaxies
Not all Point Sources are Point Sources

Stars and Galaxies and Cosmic Rays
Not all Point Sources are Point Sources

Stars and Galaxies and Cosmic Rays (cumulative)
High-z Quasars

$z > 4.5$ quasars
High-z Quasars are not very Bright
High-z Quasars are not very Bright

The small dots are 10^5 stars (from $\sim 10\text{deg}^2$ of sky)
High-z Quasars are not very Bright

The small dots are 10^5 stars (from $\sim 10\,\text{deg}^2$ of sky)
The quasars (and L/T stars) are from $\sim 2000\,\text{deg}^2$
All that Glistens isn't Gold
All that Glistens isn’t Gold
All that Glistens isn’t Gold
Is Anything Left?
Is Anything Left?
gri

riz
How To Analyze Astronomical Data
How To Analyze Astronomical Data

[the software] is difficult enough that Jim Gunn doesn’t think he could do it himself
How To Analyze Astronomical Data

[the software] is difficult enough that Jim Gunn doesn’t think he could do it himself

• CFHTL Emmanuel Bertin
How To Analyze Astronomical Data

[the software] is difficult enough that Jim Gunn doesn’t think he could do it himself

- CFHTL Emmanuel Bertin
- Pan-STARRS Gene Magnier
How To Analyze Astronomical Data

[the software] is difficult enough that Jim Gunn doesn’t think he could do it himself

- CFHTL Emmanuel Bertin
- Pan-STARRS Gene Magnier
- DES (Emmanuel Bertin)
How To Analyze Astronomical Data

[the software] is difficult enough that Jim Gunn doesn’t think he could do it himself

- CFHTL Emmanuel Bertin
- Pan-STARRS Gene Magnier
- DES (Emmanuel Bertin)
- ODI (Gene Magnier?)
How To Analyze Astronomical Data

[the software] is difficult enough that Jim Gunn doesn’t think he could do it himself

- CFHTL Emmanuel Bertin
- Pan-STARRS Gene Magnier
- DES (Emmanuel Bertin)
- ODI (Gene Magnier?)

Recommendation: Advertise a tenured faculty position
The End