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We present direct numerical simulations of Boussinesq and non-Boussinesq Rayleigh–Be´nard
convection in a rigid box containing a perfect gas. For small stratifications, which includes
Boussinesq fluids, the first instability after steady rolls was an oscillatory instability~a Hopf
bifurcation!. The resulting convection was characterized by two hot and two cold blobs circulating
each convective roll. The same sign thermal perturbations~blobs! are at diametrically opposite
points on the circular rolls, i.e., they are symmetric about the roll center. The time for a hot~or cold!
blob to circulate a roll was between two and three roll turnover times. When the stratification was
of sufficient strength, there was a dramatic change in the nature of the bifurcation. The sign of the
thermal perturbations became antisymmetric with respect to the roll center, i.e., a hot blob was
diametrically opposite a cold blob. In this case, a hot or cold blob circulated around each roll in
about one turnover time. In a stratified layer, the Rayleigh number varies with height. We found that
at the Hopf bifurcation, the Rayleigh number at the base was closest to the Boussinesq value. The
change in instability appeared to be related to an increase in the speed~or Mach number! of the
circulating rolls. It did not seem to be affected by the transport property variation with temperature.
If the along roll aspect ratio was less than 2 or the walls perpendicular to the roll axis periodic, then
only the symmetric instability could be found. We describe how our results might be reproduced in
a laboratory experiment of convection in cryogenic helium gas. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1689350#

I. INTRODUCTION

Due to the very low temperatures~'5 K! involved in
cryogenic helium convection experiments,1,2 it is now pos-
sible to get much closer to a specific type of stratified con-
vection, in which the vertical temperature differenceDT is a
significant fraction of the mean gas temperatureT. This is
one example of non-Boussinesq convection, other examples
are deep mantle convection3 or convection in the presence of
strong viscocity variations.4 At the low pressures and densi-
ties involved, the experiments can operate in the perfect gas
limit.2,5,6 This means that convection in a perfect gas, with
sayDT/T'0.5, can be modeled experimentally. This paper
describes numerical simulations of this type of non-
Boussinesq convection. To properly account for such non-
Boussinesq effects, we solved the fully compressible
Navier–Stokes equations in a perfect gas. To simulate labo-
ratory conditions, the gas was enclosed in a three-
dimensional box with rigid walls.

Most convection experiments work with Boussinesq flu-
ids in which the material properties are constant and ther-
mally induced density fluctuations provide buoyancy.7 Early
laboratory experiments typically used air or water as the
working fluid,8–10 while more recent experiments have used

compressible gases, with much smaller diffusion times, and
therefore a much greater range of Prandtl numbers~ratio of
thermal to viscous time scale!.11 In convection experiments
in water, one typically hasDT/T'0.01. Such a value is
within the Boussinesq regime. Past laboratory experiments
have provided good benchmarks for Boussinesq studies of
convection, but there are few laboratory experiments of non-
Boussinesq convection.1,4,12,13In fact, experimentalists gen-
erally try to minimize non-Boussinesq effects in order to
simplify their analysis.14,15

Incompressible fluids are commonly modeled using a set
of partial differential equations known as the Oberbeck–
Boussinesq equations.16 The two most often used approaches
to model the equations are the Galerkin method and finite
difference methods.17 Early analytical/numerical studies con-
centrate on the transition from the static conductive state to
small amplitude convective rolls. This first bifurcation is
brought about by increasing a control parameter called the
Rayleigh number Ra, above a critical value Rac . For incom-
pressible convection, the bifurcation to steady motion is a
stationary instability. However, in the fully compressible
case, the onset can be in the form of gravity waves or as an
acoustic mode.18 In the region of the critical point, as the
velocity is small, linear analysis and weakly nonlinear analy-
sis are possible.19 Analytical studies of finite amplitude com-
pressible convection have been done in the case of fixed heata!Electronic mail: marjf@astro.yale.edu
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flux at the base of the convection layer,20 but not in the case
of fixed temperatures on the horizontal boundaries.

Highly nonlinear convection (Ra.10Rac) is generally
studied numerically, typically in boxes with periodic side
boundaries.21 As the characteristic time scale in liquid con-
vection is the thermal diffusion time, while in gases it is the
much shorter sound travel time, it has, until recently, been
numerically prohibitive to solve the full Navier–Stokes
equations near the transition from incompressible to com-
pressible convection. Direct numerical simulations can gen-
erally be split into two groups, those of Boussinesq fluids22

and those of fully compressible fluids.23 In the simulations of
fully compressible convection,23,24 as periodic sides and
stress free upper and lower walls were used, Rayleigh num-
bers of a few hundred times critical were possible. While
being highly nonlinear, the convection was still laminar.
There have been some numerical studies of departures from
the Boussinesq approximation in the two-dimensional peri-
odic Rayleigh–Ben´ard problem,25,26but there are few studies
of the transition region between incompressible and com-
pressible convection in real convection experiments. The nu-
merical experiments in this paper are in boxes with rigid
walls and cover the full range of stratifications of the transi-
tion region, for example, 0.02<DT/T<0.8.

The outline of the paper is as follows. In the first section,
we describe the mathematical model and the numerical
scheme. Then, we describe how well convection characteris-
tics measured from laboratory experiments~Nusselt num-
bers, transition Rayleigh numbers, and oscillation periods!
are reproduced by the numerical simulations. In later sec-
tions, we describe how and why stratified convection is af-
fected by changes in the stratification or the aspect ratio, and
how the results might be reproduced in cryogenic helium
experiments. The final section is a conclusion.

II. NUMERICAL METHODS

A. Mathematical model

The numerical fluid is contained in a closed rectangular
box. In the absence of motion, and assuming a constant ther-
mal conductivity, the equations of compressible convection
in conservation form,27 reduce to the equations for hydro-
static and thermal equilibrium, a solution of which is

T/Tt511Z~12z/d!, ~1!

r/r t5~T/Tt!
m, ~2!

p/pt5~T/Tt!
m11, ~3!

whereZ5(Tb2Tt)/Tt is the external temperature contrast,z
is the vertical distance from the base,d is the depth of the
box, m is the polytropic index,p is the pressure, andr is the
density. The subscripts ‘‘t’’ and ‘‘ b’’ denote the top and bot-
tom of the box. This is theinitial stateof the gas. Equations
~1!–~3! describe a polytrope. The ratio of the specific heats
g5cp /cv , wherecp andcv are the specific heats at constant
pressure and volume, respectively.g and m determine the
convective stability of the layer. For an inviscid fluid, the
layer is convectively unstable if

d~ ln T!

d~ ln p!
2

d~ ln T!

d~ ln p!ad
.0. ~4!

Using Eq.~3! and the equation for an adiabatic process,

p}Tg/g21, ~5!

for the first and second parts of Eq.~4!, the instability crite-
rion reduces to

m,1/~g21!. ~6!

Equations~1!–~3! provide a reference atmosphere from
which convenient dimensionless units can be formed. Length
is scaled byd, and time byd/A(pt /r t). pt and r t are the
pressure and density at the top of the box. In such units,
velocity v is scaled by the isothermal sound speed,ct

5Apt /r t and the acceleration due to gravityg is scaled by
ct

2/d. In the rest of the paper, unless otherwise specified, all
quantities are nondimensional.

Using the nondimensional forms of Eqs.~1! and~3! that
describe the initial polytrope, gives

dp

dz
5

dp

dT
•

dT

dz
52~m11!Tm

•Z. ~7!

As the initial layer is in hydrostatic equilibrium

dp

dz
52rg. ~8!

Combining Eqs.~7! and ~8! gives

g5~m11!
pZ

rT
, ~9!

which for the nondimensional perfect gas equation,p5rT,
becomes

g5~m11!Z. ~10!

As g depends onm andZ, it is not an independent parameter.
The horizontal sides of the box are scaled by the dimensional
depthd, so thatLx5Gxd andLy5Gyd. HereGx andGy are
known as the aspect ratios, andLx andLy are the geometric
lengths perpendicular parallel to the roll axis.

With the above scalings, the governing equations be-
come

]r/]t52¹•rv, ~11!

]rv/]t52¹•rvv2¹p1Cm@¹2v1 1
3 ¹~¹•v!#

2r~m11!Zek, ~12!

]E

]t
52¹•@~rT/~g21!1p1rn2/2!v2v"S#

1¹•F Cmg

~g21!Pr
¹TG2rv•~m11!Zek, ~13!

p5rT, ~14!

whereek is a unit vector directed vertically upwards.
The viscous stress tensorS i j 5Cm(]v i /]xj1]v j /]xi)

2(2Cm/3)(¹•v)d i j .28 Additional terms in the equations are
the nondimensional dynamic viscosityCm and the Prandtl
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number Pr. AsCm5m/(ctdr t) ~wherem is the dimensional
dynamic viscosity!, it is equal to the ratio of the sound cross-
ing time,d/Apt /r t, to the viscous diffusion time,d2r t /m.

The total energy per unit volumeE in a fluid parcel,
equals the internal energy per unit volumerT/(g21), plus
the kinetic energy per unit volume of the fluid parcelrv2/2.
Equation~13! describes the time rate of change ofE. The
right-hand side consists mainly of fluxes of energy in or out
of the control volume by different physical processes. Con-
sidering the terms operated on by¹• operator consecutively,
the first two terms added together represent the enthalpy flux
~sometimes called the convective flux!, the third term is the
kinetic energy flux, the fourth is the viscous flux, and the
fifth is the conductive heat flux. The last term in the energy
equation is the work done by gravity. Equations~11!–~14!
are the coded equations. A particular compressible convec-
tion experiment can be defined by specifying seven nondi-
mensional parameters,Cm , Pr, Z, m, g, Gx , andGy .

The compressible Rayleigh number Ra must take into
account both the stability criterion Eq.~6!, and the variation
of fluid properties with depth. For the initial polytrope,a
51/T, n5Cm /Tm, and k5n/Pr. This means the compress-
ible Rayleigh number is

Ra5
gZPr

Cm
2

T2m21~12~g21!m!/g. ~15!

T2m21 and (12(g21)m)/g account for the fluid property
variation with depth, and the static stability criteria, respec-
tively.

To define a particular convection experiment, we must
specify Ra at some point in the box. Using Eq.~10! and the
fact thatT51 at the top, we define Ra at the top of the box
as

Rat5
~m11!Z2Pr

Cm
2 ~12~g21!m!/g, ~16!

where the subscriptt denotes top.
We can now define a particular compressible convection

experiment by specifying Rat , Pr, Z, m, g, Gx , and Gy .
Rearranging Eq.~16! gives

Cm5APr~m11!Z2~12~g21!m!/gRat. ~17!

This suggests that characteristic time scales such as the ther-
mal relaxation time, or the oscillation time period, will
lengthen as the stratification~i.e., Z! is reduced. Solving the
fully compressible equations can be very time consuming for
small stratifications.

Unless otherwise stated, all surfaces are rigid~v50!, the
sides are insulating (]T/]nj50, wherenj is the normal di-
rection to the side wall!, and the top and bottom surfaces are
perfect conductors.

B. Numerical schemes

The coded equations were solved in three dimensions
using finite differences. The numerical scheme we used was
the alternating direction implicit method on a staggered
mesh.27 This method was applied to the direct numerical

simulation of both steady and time-dependent flows in a per-
fect gas. The method has also been applied to nonideal gases,
for example, to model granulation in the Sun.29 For compu-
tation of steady flows, time accuracy is unimportant and the
implicit time-stepping method can be employed. Using an
implicit method, the restriction on the time step~for accu-
racy! comes from the flow speed~which is small for subcriti-
cal flows!, rather than the sound speed. This allowed a
Courant–Friedrichs–Lewy number of about 5.

In time-dependent calculations, the implicit scheme was
used to relax the convection layer. Relaxation was indicated
by regular periodic oscillations of the ratio of the vertical
heat flux at the top, to that at the base. Once the layer was
relaxed, a more accurate explicit code took over, incorporat-
ing second-order predictor–corrector~Adams–Bashforth!
time integration. For computations on a 140360360 (x3y
3z) grid on theORIGIN2000, the explicit scheme required 8 s
of central processing unit~CPU! time per time step. The
implicit code needed about 24 s per integration step, but it
can use a 25 times larger time step. Though the implicit
scheme has the advantage of allowing a large time step, there
is also heavy numerical damping of the signal. To ensure that
the numerical damping did not alter the final equilibrium, the
two highest Rayleigh number flows were also run from start
to finish using only the explicit code. We found little differ-
ence between a combined implicit–explicit computation and
a purely explicit computation. The computed bifurcation
points and frequencies were the same to at least two signifi-
cant figures.

III. RESULTS

A. Boussinesq convection

1. Steady rolls

The first Boussinesq simulation was of the interferomet-
ric experiment by Farhadieh and Tankin.9 In their experi-
ment, Pr,Gx , andGy , were 6.8, 32, and 12, respectively. As
the experiment used an incompressible liquid~water!, we set
Z equal to 0.02~small temperature contrast!, m equal to 0
~constant density in the initial state!, andg equal to 1.1. The
choice ofm equal to 0 is the most appropriate for an incom-
pressible fluid, as in the initial polytrope,r}Tm. Note, as
p5(g21)e ~where e is the specific internal energy!, if g
equals 1 the pressure is zero. The choice of 1.1 is close to the
value ofg for water at normal temperatures.28 This choice of
parameters ensures the transport properties are nearly con-
stant throughout the gas. Provided the stratification is small,
this is true for both the initial state, and the relaxed state of
the fluid. For larger stratifications, it may only be true for the
initial layer.

The number of grid points across sides of lengths 32, 12,
and 1, respectively, and the corresponding Nusselt number
~Nu!, are given in Table I. The steady state was reached,
once the average Nusselt number at the cold and hot wall
were within six significant figures of each other. As the ex-
perimental value of Nu was 1.45, the numerical convergence
suggests a 160320320 grid should be adequate at these low
Rayleigh numbers. For Ra56450, we found that Nu was
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exactly 2.18 on a 160320320 grid. This is the same as the
value of Nu recorded in the laboratory experiment.

In a region close to the critical point Rac , the Nusselt
number should grow linearly with (Ra2Rac)/Rac .30 By
measuring Nu for Ra just above Rac , and extrapolating to
unit Nu, we found Rac to be about 1709. For an infinite layer
with rigid top and bottom boundaries, Rac51707.76. The
experimental value9 was 1700620.

2. Oscillatory rolls

In one of the convection experiments by Gollub and
Benson,8 the external temperature gradient was increased un-
til a supercritical Hopf bifurcation31 from steady to oscilla-
tory convection occurred. The corresponding numerical
simulation was done on a 70330330 grid, along sides with
aspect ratios, 3.5, 2.1, and 1, respectively. To ensure ad-
equate resolution, the simulations with the highest Ra~which
had the thinnest thermal boundary layers!, were also com-
puted on a 140360360 grid. The flow character was un-
changed. The parameters Pr,Z, m, andg, were 2.5, 0.02, 0,
and 1.1, respectively.

The initial flow perturbation was a pair of two-
dimensional rolls, parallel to the shorter side. When Ra was
above 30 000, and the numerical fluid had relaxed, the fluid
velocity varied sinusoidally with a constant amplitude and
frequency. To locate the bifurcation point, the amplitude of
the vertical velocity was measured for different Rayleigh
numbers. Starting at 31 000, Ra was incremented in steps of
2000. In the experiments, when the temperature was in-
creased, the fluid required several thermal diffusion times to
reach a steady state.32 Each numerical simulation took about
50 h of CPU time on theORIGIN 2000to reach the next equi-
librium ~or asymptotic state!. At each stage, once the flow
had relaxed, the vertical component of velocity at the center
and left-hand side of the box, were measured. Results were
taken only after the oscillation frequency measured at the
side, matched the value at the center of the box, to two deci-
mal places. Once the flow has relaxed, the frequency was
found to be independent of position.

Close to the bifurcation point, the oscillation amplitude
squared shows a linear dependence on the distance of the
Rayleigh number from the Hopf bifurcation point. This func-
tional dependence is consistent with stability theory for a
horizontally infinite layer.33 It appears that it is still valid for
small aspect ratio containers. The Hopf bifurcation point can
be found by extrapolating to zero amplitude. This marks the

transition from steady rolls to oscillatory convection. The
bifurcation point computed this way was about 29 150. In
Gollub and Benson,8 Ra was expressed in units of the critical
Rayleigh number in an infinite layer, Rac . The relative Ray-
leigh number at the bifurcation point was Ra/Rac51761
and Rac51707.76. Thus, the experimental value was 29 000
61708, in excellent agreement with our result. For a Ray-
leigh number of about 35 000, Gollub and Benson recorded
an oscillation frequency of about 25~in units of inverse ther-
mal diffusion times!. We found a value of 23.8.

B. Non-Boussinesq convection

In most experiments, the Rayleigh number is increased
further until the next bifurcation is found. Instead of this, we
increased the initial stratification~by increasing eitherZ or
m!, used a value of Ra large enough to be in the oscillatory
regime, and ran the new simulation to its asymptotic state.
Once we had found steady oscillations, we estimated the
bifurcation point in the same manner as in the previous sec-
tion. We shall denote the walls parallel and perpendicular to
the roll axis, respectively, as the side walls and the end walls.
Unless otherwise stated, all simulations from now on, are
done in a 3.532.131 box with rigid walls.

Convection characteristics for various stratifications in
boxes with rigid walls, are given in Table II. The last row is
for a resolution of 140360360, while the other simulations
each have a resolution of 70330330. The superscript ‘‘h’’
denotes high resolution. Column 3 is the Rayleigh number
evaluated at the top of the box, Rat . Columns 4 and 5 are the
Rayleigh number at the Hopf bifurcation point Rah , mea-
sured at the midplane~mp!, and at the bottom~bm! of the
box. As the Hopf bifurcation point was only computed for
simulations in which the polytropic index was zero, the other
simulations have no entries in columns 4 and 5. The results
in column 4 suggest that increasing the temperature contrast
Z from 0.02 to 0.8 causes the Hopf bifurcation to occur at a
higher Rayleigh number. However, column 5 suggests that
the transition Rayleigh number at the bottom is almostinde-
pendent of the temperature stratification. At the Hopf bifur-
cation, the Rayleigh number at the base, most closely re-
sembles the Boussinesq value.~Note the Rayleigh numbers
in Table II are only given to two significant figures.!

Columns 6 and 7 are concerned with the criteria for a
Boussinesq fluid.34 For a Boussinesq fluid bothaDT and
d/Hp are much less than unity. The quantitiesa andHp , are
the volume expansion coefficient at constant pressure and the
isothermal pressure scale height~in dimensional units! of the
initial polytrope, respectively. For a slightly compressible
perfect gas,a is close to the reciprocal of the temperature at
the center of the layer. As the temperature at the midplane of
the initial polytrope is 11Z/2,

aDT'Z/~11Z/2!, ~18!

while Eq. ~3! implies that

d/Hp'~m11!ln~11Z!. ~19!

Turbulent convection experiments in liquid helium5 found
non-Boussinesq effects ifaDT was about 0.4.

TABLE I. Grid refinement study: Nusselt number Nu dependency on mesh
resolution for Ra equal to 2410. The first column is the number of grid
points in thex3y3z direction and the second is the computed Nusselt
number. The experimental value was 1.45.

Grid Nu

80320315 1.514
160320315 1.454
320320315 1.445
160330315 1.444
160320310 1.544
160320320 1.447
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Column 8 in Table II is the oscillation periodTosc mea-
sured from the velocity time series at an arbitrary point in the
box. Column 9 is the root-mean-square~rms! velocity Vrms

averaged over time and volume. As the velocity has been
scaled by the sound speed,Vrms provides an estimate of the
Mach number~ratio of flow speed to sound speed!. Column
10 is an estimate of the number of complete oscillations
occurring in one roll circulation. The turnover timeTTOT was
estimated as 4/Vrms. The validity of this estimate is shown in
Sec. III B 2. Column 11 is the wavelengthly of the standing
waves, that oscillate perpendicular to the roll axis. The mea-
surement of the wavelength is described in Sec. III B 3.

The last two columns are the fractional variation of the
kinematic viscosity and the volume expansion coefficient at
constant pressure. These are all computed from the relaxed
simulation. The overbar denotes a combined horizontal and
temporal average, and the subscript ‘‘mp’’ signifies that the
denominators were evaluated at the midplane. The variation
in kinematic viscosity with depth is due to the change in
density with depth. Even if the density is constant in the
initial state~i.e., for the cases withm50), it is not constant
when the fluid is relaxed. As the Prandtl number is constant,
the thermal diffusivity has exactly the same variation with
depth as the molecular diffusivity.

The main inferences that can be drawn from Table II are
the following:

~1! There is a significant change in the dynamical character
of the flow whend/Hp>0.5.

~2! The value ofTTOT /Tosc approximately halves, when the
wavelength halves.

~3! The rms velocity~or Mach number! increases with in-
crease in stratification.

~4! The oscillation period is inversely proportional to the
rms velocity.

These observations suggest that the roll circulation time and
the period of the oscillations are directly related. During the
time of a single roll circulation, there are between two and
three full oscillations in the first four simulations, while for

the remaining simulations there is only about one oscillation.
The change in oscillation mode is accompanied by a halving
of the wavelength of the standing waves formed parallel to
the roll axis. For low stratifications, the preferred wavelength
is 2.4, while for high stratifications the preferred wavelength
is 1.2.

1. Boundary conditions at the side walls

If the walls perpendicular to the roll axis are rigid, then
waves that travel along the rolls are reflected at the walls,
and standing waves~SWs! are created. If the same walls are
replaced by periodic boundaries, then either SWs or traveling
waves~TWs! are allowed. The details of convection in boxes
with different boundary conditions at the vertical walls, are
summarized in Table III. The last two columns describe the
type of wave and the wall boundary condition. The labels PP,
PR, and RP denote vertical walls that are all periodic, peri-
odic in the x-direction, and periodic in the y-direction, re-
spectively.

The main inferences that can be drawn from the table are
the following:

~1! The wavelength and the ratioTTOT /Tosc are close to 2 if
the end walls are periodic.

~2! The change in wavelength andTTOT /Tosc, that was
found for the larger stratifications in Table II, only oc-
curs if the walls perpendicular to the roll axis are rigid.

~3! Either SWs or TWs can occur if the walls perpendicular
to the roll axis are periodic.

The wavelength of the oscillations that travel along the
roll axis depend on the boundary condition at the reflecting
end walls. When those walls are removed, the fluid adjusts so
that a complete wavelength fills the box. As the aspect ratio
is 2.1, the wavelength is very close to its maximum allowed
value.

2. Estimate of turnover time

To check if 4/Vrms is reasonably close toTTOT , massless
tracer particles were tracked over two oscillation periods,

TABLE II. Simulations of stratified Rayleigh–Ben´ard convection in a box of dimensions 3.532.131, with impenetrable nonslip side walls. Experimental
values of temperature contrastZ; polytropic indexm; Rayleigh number at the top Rat ; Rayleigh number for the Hopf bifurcation evaluated at the midpoint
Rah (mp) and at the bottom Rah (bm); product of volume expansion coefficient at constant pressure and temperature change over the layeraDT; ratio of box
depth to pressure scale heightd/Hp ; oscillation time periodTosc; root-mean-square velocityVrms; ratio of turn-over time to oscillation periodTTOT /Tosc;
wavelength of the oscillations that travel along the roll axisly ; relative variation of kinematic viscosity with depthDn̄/ n̄mp and relative variation ofa with
depth. The values ofaDT andd/Hp are for the initial stratification, whileDn̄/ n̄mp andDā/āmp are computed from the relaxed~convecting! state. The overbar
denotes a horizontal and temporal average, the mp denotes evaluation at the midplane. The computation in the last row~with the superscripth! was performed
on a 140360360 grid, while all the others were computed on 70330330 grids. By comparing the last row and the seventh row, we can see that the lower
resolution is adequate. The results are taken after the flow has relaxed.

Z m Rat Rah (mp) Rah (bm) aDT d/Hp Tosc Vrms TTOT /Tosc ly Dn̄/ n̄mp Dā/āmp

0.02 0 35 000 29 000 29 000 0.02 0.02 656 0.0023 2.7 2.4 0.01 0.02
0.04 0 35 000 29 000 29 000 0.04 0.04 330 0.0044 2.8 2.4 0.02 0.04
0.08 0 35 000 30 000 28 000 0.1 0.1 167 0.0085 2.8 2.4 0.04 0.08
0.32 0 37 000 31 000 28 000 0.3 0.3 44 0.032 2.8 2.4 0.13 0.28
0.64 0 47 000 35 000 28 000 0.5 0.5 53 0.061 1.2 1.2 0.23 0.53
0.8 0 52 000 36 000 28 000 0.6 0.6 44 0.075 1.2 1.2 0.26 0.64
0.32 1.5 28 000 ¯ ¯ 0.3 0.7 70 0.047 1.2 1.2 0.43 0.29
0.64 1.5 24 000 ¯ ¯ 0.5 1.0 39 0.087 1.2 1.2 0.78 0.54
0.32h 1.5 28 000 ¯ ¯ 0.3 0.7 68 0.048 1.2 1.2 0.43 0.29
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starting at a few random points in the box. Figure 1 shows
the trajectories of three particles for the case described in the
third row of Table III. The speed of the particles is propor-
tional to the distance between the points in the figure. If the
particles got too close to the viscous horizontal boundaries,
then they almost came to a halt. Away from the boundaries,
the particles circulated once in two oscillation periods. This
agrees roughly with the value ofTTOT /Tosc in column 7 of
the third row in Table III.

3. Estimate of wavelength

To estimate the wavelengthly of the SWs, we computed
the maximum amplitude of the vertical velocity averaged
over thex direction and over time. The amplitude versus
distance along the roll axisy, is plotted in Figs. 2~a!–2~d!.
The value ofZ, m, and Rat for each simulation is given as a
header to each plot. The variation with heighth reveals that
the oscillations are strongest near the midplane of the box.
The wavelength is twice the distance between two mini-
mums on either side of the central maximum. For TWs, as
the whole wave passes through every point in the box, the
time averaged amplitude is zero. To find the wavelength, the
velocity was averaged over thex direction at one instant in
time. One result is shown in Fig. 3. From the amplitude and

velocity plots, it is clear that the wavelength was about 2.4
for the weak stratifications, and about 1.2 for the higher
stratifications. With periodic end walls, the wave adjusted to
fill the box and had a wavelength of 2, regardless of stratifi-
cation.

4. Wave number and aspect ratio dependence

The maximum growth rate for a particular oscillatory
instability depends on the wave numbers parallel (ay) and
perpendicular (ax) to the roll axis.35 In Bolton et al.,35 the
value ofay which produced the maximum growth rate was
called the maximizing wave number.

If we increase the length of the box along the rolls, then
the observed wavelength should gradually increase until one
more half-wavelength can fit along the roll axis. Then, the
corresponding wave number should jump back near the ideal
value~i.e., the maximizing wave number!. So for a particular
simulation, while it may not be guaranteed that the wave
number maximizing the growth rate will correspond to the
observed wave number, because of the quantization imposed
by the aspect ratio of the experiment, we could expect it to
be close.

In our box of dimensions 3.532.131, if the end walls
were periodic, thenly52. This means the wave number of
the oscillationsay52p/ly was about 3.1. This is the same
as the maximizing wave number found by Boltonet al. ~who
also employed periodic boundaries!,35 for the B02 instability
with a Prandtl number of 2.5~see Fig. 10 of Boltonet al.!.
Table IV lists experiments with different aspect ratios. By
measuringVrms and Tosc, we estimatedTTOT /Tosc. If the
aspect ratio along the rollsGy , was 1.5 or 1.8, then
TTOT /Tosc was about 2.8. This was true even for higher
stratifications. However, ifGy52.1, 2.35, or 2.6, then the
ratio TTOT /Tosc was about 1.2 for the highly stratified cases,
while it was 2.8 for the weakly stratified cases~not shown!.
It seems thatGy needs to be bigger than 2, and the end walls
rigid, for the stratification to influence the quantization of the
observed wave number.

IV. ANALYSIS

For a Prandtl number of 2.5, the possible forms of oscil-
latory convection are cross roll, Knot, B02, BE1, Zigzag, E
oscillatory, and skewed varicose.36 Guided by the work of

TABLE III. Experimental values of temperature contrastZ; polytropic indexm; Rayleigh number at the top Rat ; oscillation periodTosc; root-mean-square
velocity Vrms; ratio of turn-over time to oscillation periodTTOT /Tosc; wavelength of the oscillationsly ; type of wave formed~denoted SW or TW for
standing and traveling waves, respectively! and side wall boundary condition. The labels PP, PR, and RP denote vertical walls that are all periodic, periodic
in the x direction, and periodic in they direction, respectively. The results are taken after the flow has relaxed. Each box has dimensions 3.532.131.

Z m Rat Tosc Vrms TTOT /Tosc ly Wave type Boundary condition

0.08 0 35 000 173 0.01 2.3 2 SW PP
0.32 0 37 000 45 0.038 2.3 2 TW PP
0.64 0 47 000 25 0.071 2.3 2 TW PP
0.32 1.5 26 000 32 0.055 2.3 2 TW PP
0.08 0 35 000 170 0.009 2.6 1.8 SW PR
0.64 0 47 000 49 0.067 1.2 1.6 SW PR
0.08 0 35 000 164 0.0095 2.6 2 SW RP
0.64 0 47 000 23.5 0.067 2.5 2 TW RP

FIG. 1. Trajectories of massless tracer particles in a plane perpendicular to
the roll axis that is located near the center of the box. The ordinate and
abcsissa are the nondimensional vertical and horizontal sides of the box. The
total time of each trajectory is two oscillation periods. The box has periodic
side walls.
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Bolton et al.,35 we plotted contours of the disturbance of the
temperature field in the vertical plane (y5Gy/2) perpendicu-
lar to the roll axis. The disturbance of the temperature field is
equal to the actual temperature, minus the time averaged
~over one cycle! temperature.

For simulations in whichly was close to 2, the contours
look like those in Figs. 4~a!–4~d!. The four frames are
equally spaced over one time period. As the start and end of
the cycle have the same pattern, the end frame is not in-
cluded. There appears to be two hot blobs~lightest regions!,
and two cold blobs~darkest regions!, circulating around each
roll. Each figure contains two adjacent rolls, the left one
rotates clockwise and the right one anticlockwise. If we fol-
low a particular blob, we can see that over the whole cycle, a
blob only travels about half way round a roll, i.e., the roll
turnover time is about twice the oscillation period. This type
of convection looks very much like the BO2 instability.35

Figures 5~a!–5~d! show the corresponding patterns for simu-
lations in whichly was close to unity. In this case, only one
hot and one cold blob circulate around each roll. A blob goes
fully round a roll in one time period, i.e., the turnover time is
close to the oscillation period. This type of convection looks
like the BE1 instability.35

The main difference between the two types of instability
lies in the symmetry of the temperature perturbations about
the roll centers. Consider the white regions located in the
bottom right and top right of Fig. 4~a!. These two hot blobs
are on opposite sides of the roll. This roll is spinning anti-
clockwise. If one considers all four frames@Figs. 5~a!–5~d!#,
one can see that the two hot blobs are always opposite each
other. They are just like opposite spokes on a wheel. These

FIG. 2. Maximum nondimensional amplitude of vertical oscillations of SWs
vs distance along the rollsy. The amplitude has been averaged over the
horizontal direction perpendicular to the rolls and over time. The first three
plots are for boxes with rigid boundaries, while the last is for a box with
periodic boundaries. The height above the base is denotedh. At the top of
each figure are the temperature contrastZ, the polytropic indexm, and the
Rayleigh number at the top, Rat .

FIG. 3. Nondimensional vertical velocity averaged over the horizontal di-
rection perpendicular to the rolls vs the distance along the rolls,y. The side
walls are periodic. The height above the base is denotedh. At the top of the
figure are the temperature contrastZ, the polytropic indexm, and the Ray-
leigh number at the top, Rat .

TABLE IV. Experimental values of temperature contrastZ; polytropic index
m; along roll aspect ratioGy ; observed wave number along the rollsbo ;
time periodTosc, and ratio of time period to turn-over timeTTOT /Tosc. The
simulations have an aspect ratio perpendicular to the roll axis of 3.1 and
rigid ~no-slip! walls.

Z m Gy bo Tosc TTOT /Tosc

0.08 0 1.5 4.8 174 2.8
0.08 0 2.1 2.7 167 2.8
0.08 0 2.6 2.1 163 2.8
0.32 1.5 1.8 3.1 32 2.7
0.32 1.5 2.1 5.2 70 1.2
0.32 1.5 2.35 4.7 68 1.2
0.32 1.5 2.6 4.2 66 1.3
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thermal perturbations are symmetric with respect to the roll
center. When the stratification is increased, the symmetry is
broken. In Fig. 5~a!, the temperature perturbation at the bot-
tom right-hand side~white blob! is of opposite sign to the
one at the top-center~black blob!. This remains true through-
out the cycle. These thermal perturbations are antisymmetric
with respect to the roll center.

The symmetry requirements for B02 and BE1 are de-
scribed by Busse and Clever.21 According to their criteria,
the B02 mode can dominate if there is reflectional symmetry
about the midplane, while the BE1 mode can prevail, if the
midplane reflectional symmetry is broken.

A convection layer needs to be purely Boussinesq to
have midplane reflectional symmetry. However, in a strati-
fied fluid, there is always some asymmetry between the up-
flows and downflows. The amount of asymmetry depends on
the amount of stratification. From Table II, it appears that the
first unstable mode~after steady rolls!, changed from B02 to
BE1, when the physical depth of the layer was greater than
about one-half an isothermal pressure scale height. While
this suggests that stratification influences the instability, it
does not tell us how. What we want to know is which par-
ticular property of the stratified convection, determines the
dominant oscillatory instability~i.e., whether it is B02 or
BE1!. In the following sections, we will attempt to answer
this.

A. Pressure fluctuations

For small perturbations, the equation of a perfect gas can
be written as

dr/r52dT/T1dp/p. ~20!

For a quantityq, the rms fluctuation can be computed as

q95Aq22q̄2, ~21!

where the overline denotes horizontal and temporal averag-
ing over one oscillation period. The relative rms fluctuation
q9/q̄ is used to estimatedq/q.

Figures 6~a!–6~d!, respectively, showr9/ r̄, T9/T̄, and
p9/ p̄, for four different stratifications. The values ofZ, m,
and Ra are given as a header to each plot. As the top and
bottom surfaces were maintained at a constant temperature,
the temperature fluctuations had to drop to zero there. On the
other hand, pressure was free to respond to the interaction of
the upflows and downflows with the horizontal surfaces. As a
consequence, the pressure fluctuations were greatest near the
top and bottom of the box. Near the midplane, the density
and temperature fluctuations were about the same.

As the stratification was increased the pressure fluctua-
tions, became more significant. In the last two cases, the
pressure fluctuations cannot be ignored. This type of convec-
tion is non-Boussinesq. In both cases,d/Hp>0.5.

FIG. 4. Temperature disturbance in the vertical plane perpendicular to the
roll axis for a typical B02 case. The frames are equally spaced over one time
period. As the end of the cycle has exactly the same pattern as the first
frame, it has not been included. The light and dark regions correspond to
fluid that is, respectively, hotter or colder than the time averaged tempera-
ture.

FIG. 5. Temperature disturbance in the vertical plane perpendicular to the
roll axis for a typical BE1 case. The frames are equally spaced over one time
period. As the end of the cycle has exactly the same pattern as the first
frame, it has not been included. The light and dark regions correspond to
fluid that is, respectively, hotter or colder than the time averaged tempera-
ture.

1328 Phys. Fluids, Vol. 16, No. 5, May 2004 F. Robinson and K. Chan

Downloaded 19 Jun 2007 to 130.132.167.22. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



In a box with rigid walls, the change in the nature of the
convective instability from B02 to BE1 seems to be accom-
panied by a significant increase in the pressure fluctuations
near the top and bottom of the box. This is probably because
the higher stratifications have higher Mach numbers or,
equivalently, faster rolls.

B. Variable thermal conductivity

To test the effect of a temperature-dependent thermal
conductivity k on the BE1/B02 instabilities, we forcedk in
the initial layer to vary linearly with height. Keeping the
parameterCm constant, the term in front of¹T in Eq. ~13!,
was multiplied by (W12(12z)(12W)), whereW50.9 or
0.85 ~corresponding to a 20% and 30% variation!, andz is
the nondimensional depth, (0,z,1). We then ran some of
the simulations again.

This was done for small and large stratifications. ForZ
50.04 andm50, with a 30% variation ink, the flow was
almost the same, as that with no variation. Ask5k/rcp ,
this suggests the change from B02 to BE1, was probablynot
related to a change ink or k, with depth. ForZ50.8, m
50, with a 30% variation ink, the oscillation frequency was
still 44, i.e., the BE1 instability prevailed. A particular insta-
bility seemed to be stable to significant variation ofk with
depth.

C. Variable viscosity

Non-Boussinesq experiments of turbulent convection in
glycerol, described an up–down flow asymmetry, related to
the strong dependence of the viscosity on temperature.4,12 It
was shown that the velocity field adjusted, so that the stress
was the same at the top and bottom boundary layers, and the
temperature field adjusted, so that the top and bottom heat
fluxes matched.

In our case, the kinematic viscosityn varied with depth
because of density stratification (n5Cm /r). Could the
variation of n with depth be the reason for the change in
instability? To answer this, we chose the highest stratification
which exhibited the B02 instability, (Z50.32, m50), and
multiplied the dynamic viscosityCm in Eqs. ~12! and ~13!,
by @W12(12z)(12W)#, to mimic a viscosity that in-
creased with temperature, and byW12z(12W) to mimic a
viscosity that decreased with temperature.

The new simulations were then run to equilibrium. For
W50.9 and 0.85~20% and 30% variation over the layer!,
with increasing or decreasing viscosity, the ratioTosc/TTOT

was between 2.5 and 2.8. By plotting the oscillation ampli-
tude along the rolls~not shown!, we found that these were all
B02 simulations. As the flow had not changed from B02 to
BE1, even when a significant viscosity variation was en-
forced, it does not seem that the change to BE1 is related to
viscosity.

D. Flow speed

The change from B02 to BE1 seemed to be related to an
increase in the speed of the flow. This produces significant
pressure fluctuations. But is this the reason for the flow
change? To test this hypothesis, we tried to speed up the flow
without increasing the stratification. To do this, we replaced
the rigid horizontal boundaries by stress free boundaries. For
the stratificationZ50.32, m50, we found that with stress
free horizontal walls, the oscillation period was 65, and the
turnover time was about 60. By plotting the oscillation am-
plitude along the roll axis~not shown!, we confirmed that

FIG. 6. Relative rms fluctuation of density, temperature, and pressure. AsZ
or m are increased, the contribution of pressure fluctuations to buoyancy,
becomes non-negligible. At the top of each figure are the temperature con-
trastZ, the polytropic indexm, and the Rayleigh number at the top, Rat .
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this simulation was BE1. Additional simulations showed
that, forZ50.16, 0.08, 0.04~with m50), the flow was also
BE1. However, if only the top was stress free, then the os-
cillation period was about 30 and the flow pattern was B02.

To see how the boundary condition affects the flow, the
mean horizontal velocityVx , perpendicular to the rolls, is
shown in Fig. 7. The first, third, and fifth cases, all have rigid
horizontal boundaries, while the second and fourth have
stress free~denoted ‘‘s-free’’! boundaries. With stress free
boundaries, even a smallVx is enough for BE1 to dominate.
For rigid boundaries, to get BE1, the forcing or stratification,
needs to be much larger. The simulationZ50.08,m50, with
the stress free boundaries, had almost negligible pressure
fluctuations. They were similar to theZ50.04, m50 case
with rigid boundaries~see the first frame of Fig. 6!. So it
does not seem that pressure fluctuations caused the change
from B02 to BE1. Rather, the change in instability seems to
occur when the horizontal velocity close to the lower bound-
ary exceeds a critical value.

E. Sound waves

Finally, we note that the change does not appear to be
related to any acoustic phenomena. With periodic side walls,
the wavelength was 2 and the highest frequency in Table III
is 1/23.5. Thus,

max@cphase#52/23.5!cs51. ~22!

As the phase speedcphase was an order of magnitude less
than the sound speed, the change from B02 to BE1 was
probably not related to acoustic effects.

V. DISCUSSION: LOW-TEMPERATURE HELIUM
EXPERIMENTS

One motivation of this paper was to get a benchmark for
real laboratory experiments of stratified convection. Typical
values of fluid properties for a cryogenic helium experiment
are given in Table V.37 The temperature at the top and bot-
tom of the convection cell are 4 K and 6 K, respectively, and
the Rayleigh number Ra is about 33104.

The proposed convection cell has a height of 15 cm, and
the helium a mean density of 0.002 kg/m3. At such low den-
sities and pressures, the fluid should behave like a perfect~or
ideal! gas. Using the values in Table V, we find thatDp/ p̄,
Dn/ n̄, Dk/k̄, Da/ā, andDk/ k̄, are 0.38, 0.35, 0.38, 0.42,
and 0.34, respectively. The overbar denotes the value of a
particular quantity evaluated at the mean temperature. As the
variation of density with temperature,dr/ r̄'āDT50.4, the
relative variation ofn andk are probably due to the change
in density with depth. This was true for the numerical simu-
lations as well. Table I of Niemela and Sreeinivasan6 shows
that if n is reduced by a factor of 4 then the dynamic viscos-
ity changes by less than 1%.

In the last section, we showed that a 30% variation ofk,
or n or k, had little effect on the frequency of the oscillations.
As the frequency characterizes the type of instability, we
might expect the variation ofk or n in the helium experiment
to have little effect on observed instability. Rather, it is the
net forcing or the temperature contrast that determines the
outcome. Note, in a helium experiment by Niemelaet al.,2

even ifk was varied by 20%, the Nusselt number was hardly
affected at all.

Does helium at these cryogenic temperatures behave like
a perfect gas? To address this issue, the reciprocal ofaT is
plotted for three typical cryogenic helium experiments in
Fig. 8. For a perfect~or ideal! gas,aT51, so that at a Ray-
leigh number of;33104, we should be comfortably within
the perfect gas regime. It should also be possible to construct
a gas tank for a polytropic gas. The dimensional acceleration

FIG. 7. Horizontal and temporal average of the horizontal velocity perpen-
dicular to the roll axis, versus height, for five relaxed simulations.Z is the
temperature contrast and each simulation has the polytropic index set to
zero. The first and third simulations exhibit the B02 instability, while the rest
exhibit the BE1 instability. The terms free denotes a simulation which has
stress free horizontal boundaries.

TABLE V. Properties for a laboratory convection experiment in helium gas.
Tabulated quantities are temperatureT, pressurep, kinematic viscosityn;
thermal diffusivityk; volume expansion coefficient at constant pressurea,
and thermal conductivityk. The Rayleigh number Ra;33104.

T (K) p (bar) n ~cm2/s! k ~cm2/s! a ~K21! k (W/mK)

4 1.7E24 5.11 7.401 0.250 0.0077
5 2.1E24 6.25 9.195 0.200 0.0096
6 2.5E24 7.31 10.87 0.167 0.011

FIG. 8. The reciprocal of the product of the coefficient of volume expansion
at constant pressurea and mean temperatureT, as a function of Rayleigh
number Ra. For a perfect~or ideal! gas (aT)2151. Solid squares are data of
Chavanneet al. ~Ref. 5! for a 20 cm high cell; solid circles are from
Niemela and Sreenivasan~Ref. 6! for a 50 cm high cell, and open triangles
are from Niemelaet al. ~Ref. 2! for a 100 cm high cell.
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due to gravityg5(m11)DTR/d, whereR is the gas con-
stant. In reality,g is fixed so that a polytropic distribution is
nothing more than a layer with a constant temperature gra-
dient. By adjusting the depth, total mass of gas, and tempera-
ture contrast, one should be able to generate a situation that
is compatible with a certain polytropic indexm. A value ofm
slightly greater than21 should be accessible to experimen-
talists. Additional numerical simulations withm520.9 pro-
duced B02 and BE1 under conditions similar to previously
documented cases. Helium gas38 at 5.5 K and a pressure of
2.8 bar has a Prandtl number of 5. By varying the tempera-
ture or pressure, while still remaining reasonably far away
from the critical point, the Prandtl number of 2.5 used in the
simulations might be achievable.

How might the instabilities be observed in such experi-
ments? Consider two points that are on diametrically oppo-
site points of a roll at grid locations, P15~10,15,3! and P2
5~25,15,27!, on a 70330330 grid. Figure 9 shows the
relative instantaneous temperature, (T2To)/To versus time
~in units of sound travel times!. T is the temperature at a
fixed location andTo is the time average ofT. The B02
stratification (Z50.32, m50), has P1 and P2 denoted by
thick and thin solid lines, respectively, while the BE1 strati-
fication (Z50.64, m50), has P1 and P2 denoted by thick
and thin dashed lines, respectively. There are three points to
note from Fig. 9. First, the change in stratification fromZ
50.32 to 0.64 does not cause much change in the time pe-
riod. If both stratifications were B02, then we would expect
the period to halve whenZ is doubled. Second, the tempera-
ture oscillations are almost exactly in phase for the B02 case
and about 180° out of phase for the BE1 case. Third, the
amplitude of the oscillations is about 0.3% for the B02 case
and about 1% for the BE1 case.

In the experiments, thermal probes can be placed at vari-
ous locations in the cryogenic convection cell.2 The tempera-
ture can then be accurately measured to within 1 mK. As the
mean temperatures are a few K, these effects should be mea-
surable in the actual experiments.

VI. CONCLUSION

Under laboratory conditions~i.e., in a cell with rigid
walls!, stratification can determine the nature of the second-
ary convective instability~the oscillatory instability!. This is
the first unstable mode after steady rolls. For small stratifi-
cations, two hot and two cold blobs circulated each convec-
tion roll. The same temperature perturbation blobs were al-
ways diametrically opposite each other on a roll. The
instability produced oscillations that traveled along the roll
axis. As the walls perpendicular to the roll axes were rigid,
SWs were formed in the box. They had a wavelength close to
the along roll length of the box. If the stratification was
greater than about one-half a pressure scale height and the
along-roll length greater than twice the depth, then the insta-
bility was characterized by a single hot and cold blob circu-
lating with the convection velocity. In this case, blobs of
opposite temperature perturbation were diametrically oppo-
site, and the wavelength of the SWs was about half the along
roll length of the box.

Summarizing:

~1! At the Hopf bifurcation, the Rayleigh number at the base
most closely resembled the Boussinesq value of 29 000.
This is in contrast to the first bifurcation~linear theory!,
in which the Rayleigh number at the center was closest
to the Boussinesq value.

~2! The change in the nature of the secondary instability did
not appear to be affected by a 30% transport property
variation with temperature.

~3! While large pressure fluctuations at the base seem to
accompany the change in instability, they do not appear
to be the cause of the change in instability.

~4! Rather, it is the horizontal velocity near the base that
seems to determines which instability prevails.

~5! Our results may be recoverable in a convection experi-
ment in cryogenic helium.
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APPENDIX: CAN THE SAME CONVECTIVE FLOWS
BE MODELED WITH THE ANELASTIC
EQUATIONS?

One other commonly used set of equations sometimes
used to study convection in gases are the anelastic
equations.39 The anelastic approximation assumes that the
relative fluctuations in the thermodynamic variables are
small and that the thermodynamic variables fluctuate over
time periods of the order of the roll~eddy! turn-over time,

FIG. 9. Time variation of the relative temperature, (T2To)/To vs time ~in
units of sound travel times!. T is the instantaneous temperature andTo is the
time average ofT. The solid and dashed lines are for a low~B02! stratifi-
cation and a high~BE1! stratification, respectively. Both simulations have
impenetrable no-slip walls. The thin lines denote a temperature measured at
grid location ~10,15,3! while the thick lines are for the temperature mea-
sured at~25,15,27!. This is on a 70330330 grid. For the low stratification,
the temperature at the two points is almost in phase, while for the higher
stratification the temperatures are almost completely out of phase.
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i.e., a convective time scale. Provided the Mach number is
small, the turn-over time will be much longer than the acous-
tic time, and it would appear that sound waves would play a
minor role. One consequence of this is that the partial time
derivative of density can be excluded. This allows a much
larger time step to be used in numerical simulations, com-
pared to a time step limited by acoustic motions.

In the present study, the fully compressible equations
predict two types of instability, namely the two blob~BE1!
and four blob~BO2! convective instabilities. To see how the
anelastic equations might do in computing BE1 stratified
convection, the partial time derivative of density divided
by the velocity divergence multiplied by density,
(]r/]t)rms/(r“"v)rms, is plotted for a typical highly strati-
fied case in Fig. 10. The time derivative (]r/]t)rms was com-
puted as2(¹•rv)rms. The plot suggests that]r/]t is non-
negligible near the top and bottom. The analysis in Sec. IV
suggests that the blob instabilities are created in the horizon-
tal thermal boundary layers. Replacing the full mass conser-
vation law by¹•~rv!50 ~as in the anelastic approximation!,
may mean that diverging flows at the horizontal surfaces,
which seem to determine the type of instability, are incor-
rectly modeled. Under such conditions, the anelastic equa-
tions might not predict the same oscillatory flow as the fully
compressible equations. For this reason, the anelastic ap-
proximation may have difficulty in resolving the instabilities
documented in this paper. A comparison of the anelasic and
compressible equations was done by Van der Borght and
Fox.40 They found marked differences between the results
obtained from numerical integration of the full nonlinear
compressible equations and the anelastic equations.

To investigate this topic further, we will try to mimic the
anelastic equations by incrementally reducing the size of
]r/]t, compared to other time derivatives. This will require
tweaking the time integration so that]r/]t becomes small
while the other four time derivatives remain relatively un-
touched. The numerical scheme integrates the five dependent
variables,r, rvx , rvy , rvz , andE @see Eqs.~11!–~13!#. We
can write an integration step for a typical quantityq as

qn115qn1C3Dt3]q/]t. ~A1!

For q5r, we increasedC above unity, each time relaxing
the flow and measuring the time period of the oscillations.
This means that the density should vary over a longer time
scale than the other quantities.

Consider the simulationZ50.32, m51.5. This had an
oscillation period of 70 sound travel times. We find that forC
equal to 1, 1.5, 1.75, and 2.0, the oscillation period is 70, 50,
44, and 40, sound travel times. WhenC51, we are solving
the fully compressible Navier–Stokes equations, and asC is
increased the equations should behave more and more like
the anelastic equations. Figure 11 shows (]r/]t)rms divided
by the depth average of (r¹•v)rms versus height. AsC in-
creases, the relative size of]r/]t term is getting smaller and
smaller. This is especially true near the horizontal bound-
aries.

For each value ofC, the relative thermodynamic fluctua-
tions ~not shown! were always less than 0.1, and the corre-
sponding oscillation period is within a factor of 2 of the
convective turn-over time. These oscillation periods are at
least 40 times greater than the sound travel time. Under such
conditions, the anelastic equations should be able to predict
the same results as the fully compressible equations~i.e., an
oscillation period of 70!. But these preliminary results sug-
gest otherwise.
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