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We present direct numerical simulations of Boussinesq and non-Boussinesq Raylaighd-Be
convection in a rigid box containing a perfect gas. For small stratifications, which includes
Boussinesq fluids, the first instability after steady rolls was an oscillatory instal@itidopf
bifurcation. The resulting convection was characterized by two hot and two cold blobs circulating
each convective roll. The same sign thermal perturbatibihsbs are at diametrically opposite
points on the circular rolls, i.e., they are symmetric about the roll center. The time for(arlomid)

blob to circulate a roll was between two and three roll turnover times. When the stratification was
of sufficient strength, there was a dramatic change in the nature of the bifurcation. The sign of the
thermal perturbations became antisymmetric with respect to the roll center, i.e., a hot blob was
diametrically opposite a cold blob. In this case, a hot or cold blob circulated around each roll in
about one turnover time. In a stratified layer, the Rayleigh number varies with height. We found that
at the Hopf bifurcation, the Rayleigh number at the base was closest to the Boussinesq value. The
change in instability appeared to be related to an increase in the spebthch number of the
circulating rolls. It did not seem to be affected by the transport property variation with temperature.
If the along roll aspect ratio was less than 2 or the walls perpendicular to the roll axis periodic, then
only the symmetric instability could be found. We describe how our results might be reproduced in
a laboratory experiment of convection in cryogenic helium gas.2@®4 American Institute of
Physics. [DOI: 10.1063/1.1689350

I. INTRODUCTION compressible gases, with much smaller diffusion times, and
) ) therefore a much greater range of Prandtl numifexso of

Due to the very low temperaturés-5 K) involved in  thermal to viscous time scal&' In convection experiments
cryogenic helium convection experimentsjt is now pos- in water, one typically has\T/T~0.01. Such a value is
sible to get much closer to a specific type of stratified conyjthin the Boussinesq regime. Past laboratory experiments
vection, in which the vertical temperature differenk® is a  paye provided good benchmarks for Boussinesq studies of
significant fraction of the mean gas temperatliteThis is  onyection, but there are few laboratory experiments of non-
one example of non-Boussinesq convection, other examplq§0ussinesq convectidr+1223|n fact, experimentalists gen-
are deep mantle convectibar convection in the presence of erally try to minimize non-Boussinesq effects in order to
strong viscocity variation$ At the low pressures and densi- simplify their analysid*15
ties involved, the experiments can operate in the perfect gas Incompressible fluids are commonly modeled using a set
limit.>*° This means that convection in a perfect gas, withy partial differential equations known as the Oberbeck—
say AT/T~0.5, can be modeled experimentally. This paperggssinesq equatioriéThe two most often used approaches
describes numerical simulations of this type of non-io model the equations are the Galerkin method and finite
Boussinesq convection. To properly account for such noNgigerence method¥’ Early analytical/numerical studies con-
Boussinesq effects, we solved the fully compressiblegnirate on the transition from the static conductive state to
Navier—Stokes equations in a perfect gas. To simulate 1abasy a1 amplitude convective rolls. This first bifurcation is
ratory conditions, the gas was enclosed in a threepq,ght ahout by increasing a control parameter called the

dimensional box with rigid walls. _ , Rayleigh number Ra, above a critical value.R&or incom-
Most convection experiments work with Boussinesq flu-p essible convection, the bifurcation to steady motion is a

ids in which the material properties are constant and thefgationary instability. However, in the fully compressible
mally induced density fluctuations provide buoyafidarly  cace. the onset can be in the form of gravity waves or as an
laboratory experiments typically used air or water as theysqstic modé? In the region of the critical point, as the
working fluid,"while more recent experiments have usedyg|qcity is small, linear analysis and weakly nonlinear analy-
sis are possibl&’ Analytical studies of finite amplitude com-
dElectronic mail: marjf@astro.yale.edu pressible convection have been done in the case of fixed heat
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flux at the base of the convection Iaf&but not in the case d(InT) d(InT)

of fixed temperatures on the horizontal boundaries. d(inp) d(In p)ad>0- 4
Highly nonlinear convection (RalORa) is generally

studied numerically, typically in boxes with periodic side Using Eq.(3) and the equation for an adiabatic process,

boundarieg! As the characteristic time scale in liquid con- pocTY/ 71 (5)

vection is the thermal diffusion time, while in gases it is the ’

much shorter sound travel time, it has, until recently, beerfor the first and second parts of E@), the instability crite-

numerically prohibitive to solve the full Navier—Stokes fion reduces to

equations near the transition from incompressible to com- |, U(y—1). (6)
pressible convection. Direct numerical simulations can gen- _ _
erally be split into two groups, those of Boussinesq fitids Equations(1)—(3) provide a reference atmosphere from

and those of fully compressible fluid¥In the simulations of ~Which convenient dimensionless units can be formed. Length

fully compressible convectiof??* as periodic sides and IS scaled byd, and time byd/\(p./p). p; and p, are the
stress free upper and lower walls were used, Rayleigh nunressure and density at the top of the box. In such units,
bers of a few hundred times critical were possible. Whilevelocity v is scaled by the isothermal sound speeg,
being highly nonlinear, the convection was still laminar. :Zth/Pt and the acceleration due to graviyis scaled by
There have been some numerical studies of departures frofa/d. In the rest of the paper, unless otherwise specified, all
the Boussinesq approximation in the two-dimensional periguantities are nondimensional.

odic Rayleigh—Beéard problent®>2®but there are few studies Using the nondimensional forms of Ed4) and(3) that

of the transition region between incompressible and comdescribe the initial polytrope, gives

pressible convection in real convection experiments. The nu- dp dp dT

merical experiments in this paper are in boxes with rigid FERE E:_(m+ nHTm-Z. (7)
walls and cover the full range of stratifications of the transi-
tion region, for example, 0.62AT/T=<0.8. As the initial layer is in hydrostatic equilibrium
The outline of the paper is as follows. In the first section,
we describe the mathematical model and the numerical SP _ - pg. (8)

scheme. Then, we describe how well convection characteris- dz

tics measured from laboratory experimeridusselt num-  combining Egs(7) and(8) gives
bers, transition Rayleigh numbers, and oscillation pejiods
are reproduced by the numerical simulations. In later sec- g=(m+1)p—z 9)
tions, we describe how and why stratified convection is af- pT’

fected by changes in the stratification or the aspect ratio, a”\g/hich for the nondimensional perfect gas equatipr:pT,
how the results might be reproduced in cryogenic he”umbecomes

experiments. The final section is a conclusion.

g=(m+1)Z. (10
As g depends omandz, it is not an independent parameter.
Il. NUMERICAL METHODS The horizontal sides of the box are scaled by the dimensional
A. Mathematical model depthd, so thatL,=I',d andL,=I",d. Herel', andI'y are

h ical fluid i ined i losed | known as the aspect ratios, abdandL, are the geometric
The numerical fluid is gontalne In a close rectangu arIengths perpendicular parallel to the roll axis.

box. In the absence of motion, and assuming a constant ther- “\yi the above scalings, the governing equations be-
mal conductivity, the equations of compressible convectiorbOme '

in conservation fornd! reduce to the equations for hydro-

static and thermal equilibrium, a solution of which is dpldt=—=V-pv, (11
TITi=1+2Z(1-2/d), .Y dpvldt=—V-pw—Vp+C,[VA+ 1V(V-V)]
plp=(TITY™, ) —p(m+1)Za, (12
p/pe=(T/TY™" 4, 3 JE .

whereZ=(T,—T,)/T, is the external temperature contrast, Gt~ VT y=1)+ptpri2v=—v-X]

is the vertical distance from the baskjs the depth of the

box, mis the polytropic indexp is the pressure, anglis the 4y. Cuy VT|—pv-(m+1)Ze, (13)

density. The subscriptst* and “ b” denote the top and bot- (y=1)Pr ’

tom of the box. This is thénitial state of the gas. Equations o=pT (14)

(1)—(3) describe a polytrope. The ratio of the specific heats
y=cplc,, wherec, andc, are the specific heats at constantwhereg, is a unit vector directed vertically upwards.

pressure and volume, respectively.and m determine the The viscous stress tensar;; = C,(dv;/dx;+ dv;/dx;)
convective stability of the layer. For an inviscid fluid, the —(2C,/3)(V-V) §;; .28 Additional terms in the equations are
layer is convectively unstable if the nondimensional dynamic viscosi§, and the Prandtl
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number Pr. ASC, = u/(cdp;) (Whereu is the dimensional simulation of both steady and time-dependent flows in a per-
dynamic viscosity, it is equal to the ratio of the sound cross- fect gas. The method has also been applied to nonideal gases,
ing time, d/\/p,/p,, to the viscous diffusion timed?p, /. for example, to model granulation in the StirFor compu-
The total energy per unit volumE in a fluid parcel, tation of steady flows, time accuracy is unimportant and the
equals the internal energy per unit volum&/(y—1), plus implicit time-stepping method can be employed. Using an
the kinetic energy per unit volume of the fluid pargel®/2. implicit method, the restriction on the time stéfor accu-
Equation(13) describes the time rate of change Bf The  racy) comes from the flow spedgvhich is small for subcriti-
right-hand side consists mainly of fluxes of energy in or outcal flows, rather than the sound speed. This allowed a
of the control volume by different physical processes. Con-Courant—Friedrichs—Lewy number of about 5.
sidering the terms operated on By operator consecutively, In time-dependent calculations, the implicit scheme was
the first two terms added together represent the enthalpy flunsed to relax the convection layer. Relaxation was indicated
(sometimes called the convective fluthe third term is the by regular periodic oscillations of the ratio of the vertical
kinetic energy flux, the fourth is the viscous flux, and theheat flux at the top, to that at the base. Once the layer was
fifth is the conductive heat flux. The last term in the energyrelaxed, a more accurate explicit code took over, incorporat-
equation is the work done by gravity. Equatiofisd)—(14) ing second-order predictor—correctdAdams—Bashforth
are the coded equations. A particular compressible convedime integration. For computations on a 2480X60 (xXy
tion experiment can be defined by specifying seven nondix z) grid on theoriGIN200g the explicit scheme required 8 s
mensional parameters,,, Pr,Z, m, y, Iy, andT’y . of central processing unifCPU) time per time step. The
The compressible Rayleigh number Ra must take intdmplicit code needed about 24 s per integration step, but it
account both the stability criterion E(6), and the variation can use a 25 times larger time step. Though the implicit
of fluid properties with depth. For the initial polytrope, scheme has the advantage of allowing a large time step, there
=1/T, v=C,/T™, and k=v/Pr. This means the compress- is also heavy numerical damping of the signal. To ensure that
ible Rayleigh number is the numerical damping did not alter the final equilibrium, the
two highest Rayleigh number flows were also run from start
Rae @sz*l(l—(y— Lm)/y. (15 o finish using only the explicit code. We found litte differ-
c ence between a combined implicit—explicit computation and
a purely explicit computation. The computed bifurcation

72" and (1~ (y—1)m)/y account for the fluid property points and frequencies were the same to at least two signifi-
variation with depth, and the static stability criteria, respeccant figures.

tively.
To define a particular convection experiment, we must
specify Ra at some point in the box. Using Ej0) and the  !ll. RESULTS
fact thatT=1 at the top, we define Ra at the top of the boxa. Boussinesq convection
as

1. Steady rolls
(m+1)Z%Pr . . . . .
Ra=—5——(1-(y—1m)/y, (16) The first Boussinesq simulation was of the interferomet-

u ric experiment by Farhadieh and TanKinn their experi-
ment, Prl'y, andl’y, were 6.8, 32, and 12, respectively. As
{he experiment used an incompressible liglvichten, we set

Z equal to 0.02(small temperature contrasim equal to 0
(constant density in the initial stateandy equal to 1.1. The
choice ofm equal to 0 is the most appropriate for an incom-
C.= JP(m+1)Z%(1—(y—1)m)/yRa. (17)  pressible fluid, as in the initial polytrop@>=T™. Note, as
=(y—1)e (wheree is the specific internal energyif y

This sugge;ts th‘f’lt characteristic t!me_ scalgs such as the.th rc]uals 1 the pressure is zero. The choice of 1.1 is close to the
mal relaxation time, or the oscillation time period, will

e . . value of y for water at normal temperatur&This choice of
lengthen as the stratificatidine., Z) is reduced. Solving the Y b

full ibl i b i ing arameters ensures the transport properties are nearly con-
ully compressible equations can be very ime consuming 10k, ¢ throughout the gas. Provided the stratification is small,
small stratifications.

uni therwi tated. all surf H0). th this is true for both the initial state, and the relaxed state of
_-niess otherwise stated, afl surraces are rigiel0), € the fluid. For larger stratifications, it may only be true for the
sides are insulatingdT/dn;=0, wheren; is the normal di-

. ) initial layer.
rection to the side wal] and the top and bottom surfaces are The number of grid points across sides of lengths 32, 12
perfect conductors. o

and 1, respectively, and the corresponding Nusselt number
(Nu), are given in Table I. The steady state was reached,
once the average Nusselt number at the cold and hot wall
The coded equations were solved in three dimensionsere within six significant figures of each other. As the ex-
using finite differences. The numerical scheme we used wagerimental value of Nu was 1.45, the numerical convergence
the alternating direction implicit method on a staggeredsuggests a 1692020 grid should be adequate at these low
mesh?’ This method was applied to the direct numerical Rayleigh numbers. For Re6450, we found that Nu was

where the subscrigtdenotes top.

We can now define a particular compressible convectio
experiment by specifying RaPr, Z, m, y, Iy, and T’ .
Rearranging Eq(16) gives

B. Numerical schemes
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TABLE I. Grid refinement study: Nusselt number Nu dependency on meshransition from steady rolls to oscillatory convection. The
resolution for Ra equal to 2410. The first column is the number of gridbifurcation point Computed this way was about 29 150. In
points in thexXyXz direction and the second is the computed Nussel'[GoIIub and Bensof Ra was expressed in units of the critical
number. The experimental value was 1.45. . o RN p .

Rayleigh number in an infinite layer, RaThe relative Ray-

Grid Nu leigh number at the bifurcation point was Ra/Rd 7+ 1
80X 20X 15 1514 and R@=_ 1707.76. Thus, the experjmental value was 29 000
160X 20X 15 1.454 +1708, in excellent agreement with our result. For a Ray-
320x20x15 1.445 leigh number of about 35000, Gollub and Benson recorded
160x30x15 1.444 an oscillation frequency of about ZB units of inverse ther-
160x20X10 1.544

160X 2020 Laa7 mal diffusion time$. We found a value of 23.8.

B. Non-Boussinesq convection

In most experiments, the Rayleigh number is increased
further until the next bifurcation is found. Instead of this, we
increased the initial stratificatiotby increasing eitheZ or
m), used a value of Ra large enough to be in the oscillatory
regime, and ran the new simulation to its asymptotic state.
Once we had found steady oscillations, we estimated the
bifurcation point in the same manner as in the previous sec-
tion. We shall denote the walls parallel and perpendicular to
the roll axis, respectively, as the side walls and the end walls.
Unless otherwise stated, all simulations from now on, are
done in a 3.%2.1X1 box with rigid walls.

In one of the convection experiments by Gollub and  cqnyection characteristics for various stratifications in
Bensorf, the external temperature gradient was increased urlsoyes with rigid walls, are given in Table II. The last row is

til a supercritical Hopf bifurcatioft from steady to oscilla- for a resolution of 148:60x 60, while the other simulations
tory cqnvection occurred. The corr.esponding_ num(_aricagach have a resolution of XB0x30. The superscript H”
S|mulat|on.was done on a KB0xX30 gnd,_along sides with  genotes high resolution. Column 3 is the Rayleigh number
aspect ratios, 3.5, 2.1, and 1, respectively. To ensure adyajyated at the top of the box, R&Columns 4 and 5 are the
equate resolution, the simulations with the highest\Raich Rayleigh number at the Hopf bifurcation point ;Ramea-
had the thinnest thermal poundary layersere also com- ¢ red at the midplanémp), and at the bottontbm) of the
puted on a 14860x60 grid. The flow character was un- yy As the Hopf bifurcation point was only computed for
changed. The parameters Er,m, andy, were 2.5, 0.02, 0, gimylations in which the polytropic index was zero, the other
and 1.1, respectively. _ _ simulations have no entries in columns 4 and 5. The results
~ The initial flow perturbation was a pair of tWo- i, column 4 suggest that increasing the temperature contrast
dimensional rolls, parallel to the shorter side. When Ra wasg from 0.02 to 0.8 causes the Hopf bifurcation to occur at a

above 30000, and the numerical fluid had relaxed, the ﬂUicil]igher Rayleigh number. However, column 5 suggests that
velocity varied sinusoidally with a constant amplitude andi,q transition Rayleigh number at the bottom is alminge-

frequency. To locate the bifurcation point, the amplitude Ofyengent of the temperature stratificatiokt the Hopf bifur-
the vertical ve_l00|ty was measured _for different Rayle'ghcation, the Rayleigh number at the base, most closely re-
numbers. Starting at 31000, Ra was incremented in steps @ ples the Boussinesq valyblote the Rayleigh numbers

2000. In the experiments, when the temperature was iny, Taple || are only given to two significant figurgs.
creased, the fluid required several thermal diffusion times o ~4jumns 6 and 7 are concerned with the criteria for a

reach a steady staté Each numerical simulation took about Boussinesq fluid* For a Boussinesq fluid boteAT and

50 _h of CPU time on th®RIGIN 2000to reach the next equi- d/H,, are much less than unity. The quantitiesndH,, are
librium (or asymptotic staje At each stage, once the flow e yolume expansion coefficient at constant pressure and the
had relaxed, thg vertical component of velocity at the centejgyihermal pressure scale heigint dimensional unitsof the

and left-hand side of the box, were measured. Results Wergjsia| polytrope, respectively. For a slightly compressible
taken only after the oscillation frequency measured at theye fect gasg is close to the reciprocal of the temperature at

side, matched the value at the center of the box, to two deCie center of the layer. As the temperature at the midplane of
mal places. Once the flow has relaxed, the frequency wag,q initial polytrope is ¥ Z/2

found to be independent of position.

Close to the bifurcation point, the oscillation amplitude aAT~Z/(1+2/2), (18
squared shows a linear dependence on the distance of the . o
Rayleigh number from the Hopf bifurcation point. This func- While Ed.(3) implies that
tioqal deper.lde_n.ce is consistent with st:?\b'ility.theo_ry fora 4/ ~(m+1)IN(1+2). (19)
horizontally infinite layer It appears that it is still valid for P
small aspect ratio containers. The Hopf bifurcation point carifurbulent convection experiments in liquid helitifound
be found by extrapolating to zero amplitude. This marks thenon-Boussinesq effects #AT was about 0.4.

exactly 2.18 on a 16020xX20 grid. This is the same as the
value of Nu recorded in the laboratory experiment.

In a region close to the critical point Rathe Nusselt
number should grow linearly with (RaRa,)/Ra..*° By
measuring Nu for Ra just above Raand extrapolating to
unit Nu, we found Rato be about 1709. For an infinite layer
with rigid top and bottom boundaries, Ral707.76. The
experimental valuewas 1706-20.

2. Oscillatory rolls

Downloaded 19 Jun 2007 to 130.132.167.22. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 16, No. 5, May 2004 Non-Boussinesqg simulations 1325

TABLE Il. Simulations of stratified Rayleigh—Band convection in a box of dimensions %3.1x1, with impenetrable nonslip side walls. Experimental
values of temperature contrastpolytropic indexm; Rayleigh number at the top RaRayleigh number for the Hopf bifurcation evaluated at the midpoint
Ra, (mp) and at the bottom R&bm); product of volume expansion coefficient at constant pressure and temperature change over ¢h€Tlayatio of box

depth to pressure scale heighiH , ; oscillation time periodT,s.; root-mean-square velocity,,s; ratio of turn-over time to oscillation perioGiror/Tosc;
wavelength of the oscillations that travel along the roll axjs relative variation of kinematic viscosity with deptfw/v,,, and relative variation o with

depth. The values afAT andd/H,, are for the initial stratification, whilé v/ v, andA a/ a,, are computed from the relaxgdonvecting state. The overbar
denotes a horizontal and temporal average, the mp denotes evaluation at the midplane. The computation in tHeitstirewuperscrip) was performed

on a 140x60x60 grid, while all the others were computed on<X@Dx30 grids. By comparing the last row and the seventh row, we can see that the lower
resolution is adequate. The results are taken after the flow has relaxed.

z m Ra Ra, (mp) Ra, (bm) aAT d/H, Tosc Vims Tror/ Tose Ay AV vy Aol g,
0.02 0 35000 29 000 29 000 0.02 0.02 656 0.0023 2.7 2.4 0.01 0.02
0.04 0 35000 29 000 29 000 0.04 0.04 330 0.0044 2.8 2.4 0.02 0.04
0.08 0 35000 30000 28 000 0.1 0.1 167 0.0085 2.8 2.4 0.04 0.08
0.32 0 37000 31000 28 000 0.3 0.3 44 0.032 2.8 2.4 0.13 0.28
0.64 0 47 000 35000 28 000 0.5 0.5 53 0.061 1.2 1.2 0.23 0.53
0.8 0 52 000 36 000 28 000 0.6 0.6 44 0.075 1.2 1.2 0.26 0.64
0.32 15 28000 0.3 0.7 70 0.047 1.2 1.2 0.43 0.29
0.64 15 24000 0.5 1.0 39 0.087 1.2 1.2 0.78 0.54
0.32 15 28 000 0.3 0.7 68 0.048 1.2 1.2 0.43 0.29

Column 8 in Table Il is the oscillation perioti,sc mea-  the remaining simulations there is only about one oscillation.
sured from the velocity time series at an arbitrary point in theThe change in oscillation mode is accompanied by a halving
box. Column 9 is the root-mean-squdrens) velocity V,,s  of the wavelength of the standing waves formed parallel to
averaged over time and volume. As the velocity has beethe roll axis. For low stratifications, the preferred wavelength
scaled by the sound speéd,,s provides an estimate of the is 2.4, while for high stratifications the preferred wavelength
Mach number(ratio of flow speed to sound spee€olumn is 1.2.

10 is an estimate of the number of complete oscillations

occurring in one roll circulation. The turnover tiffieoy was 1. Boundary conditions at the side walls

estimated as ¥,,,s. The validity of this estimate is shown in If the walls perpendicular to the roll axis are rigid, then
Sec. llIB2. Column 11 is the wavelengtly of the standing waves that travel along the rolls are reflected at the walls,
waves, that oscillate perpendicular to the roll axis. The meaand standing wavel$SW9 are created. If the same walls are
surement of the wavelength is described in Sec. IlI B 3. replaced by periodic boundaries, then either SWs or traveling

The last two columns are the fractional variation of thewaves(TWs) are allowed. The details of convection in boxes
kinematic viscosity and the volume expansion coefficient atvith different boundary conditions at the vertical walls, are
constant pressure. These are all computed from the relaxedimmarized in Table 1. The last two columns describe the
simulation. The overbar denotes a combined horizontal antype of wave and the wall boundary condition. The labels PP,
temporal average, and the subscript “mp” signifies that thePR, and RP denote vertical walls that are all periodic, peri-
denominators were evaluated at the midplane. The variatioodic in the x-direction, and periodic in the y-direction, re-
in kinematic viscosity with depth is due to the change inspectively.
density with depth. Even if the density is constant in the  The main inferences that can be drawn from the table are
initial state(i.e., for the cases witm=0), it is not constant the following:
when the fluid is relaxed. As the Prandtl number is constant .
the thermal diffusivity has exactly the same variation with (1) The wavelength and the ratibror/Tos, are close to 2 if

depth as the molecular diffusivity the end walls are periodic.
' (2) The change in wavelength anbyor/Tos, that was

The main inferences that can be drawn from Table Il are found for the larger stratifications in Table II, only oc-

the following: . : . .
curs if the walls perpendicular to the roll axis are rigid.
(1) There is a significant change in the dynamical characte(3) Either SWs or TWs can occur if the walls perpendicular
of the flow whend/H,=0.5. to the roll axis are periodic.
(2) The value ofT1o1/Tosc approximately halves, when the
wavelength halves. The wavelength of the oscillations that travel along the
(3) The rms velocity(or Mach numberincreases with in- ol axis depend on the boundary condition at the reflecting
crease in stratification. end walls. When those walls are removed, the fluid adjusts so
(4) The oscillation period is inversely proportional to the that a complete wavelength fills the box. As the aspect ratio
rms velocity. is 2.1, the wavelength is very close to its maximum allowed
value.

These observations suggest that the roll circulation time and

the period of the oscillations are directly related. During the2- EStimate of turnover time

time of a single roll circulation, there are between two and  To check if 4¥,,sis reasonably close td;o7, massless
three full oscillations in the first four simulations, while for tracer particles were tracked over two oscillation periods,
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TABLE Ill. Experimental values of temperature contr@stpolytropic indexm; Rayleigh number at the top Raoscillation periodT,; root-mean-square
velocity Vips; ratio of turn-over time to oscillation perio@iror/Tosc; Wavelength of the oscillations, ; type of wave formeddenoted SW or TW for
standing and traveling waves, respectiyeind side wall boundary condition. The labels PP, PR, and RP denote vertical walls that are all periodic, periodic
in the x direction, and periodic in thg direction, respectively. The results are taken after the flow has relaxed. Each box has dimensi@n®<a.5

4 m Ra Tosc Vims Tror/Tose Ay Wave type Boundary condition
0.08 0 35000 173 0.01 2.3 2 SW PP
0.32 0 37000 45 0.038 2.3 2 T™W PP
0.64 0 47000 25 0.071 2.3 2 T™W PP
0.32 15 26 000 32 0.055 2.3 2 T™W PP
0.08 0 35000 170 0.009 2.6 1.8 SW PR
0.64 0 47 000 49 0.067 1.2 1.6 SW PR
0.08 0 35000 164 0.0095 2.6 2 SW RP
0.64 0 47 000 235 0.067 25 2 T™W RP

starting at a few random points in the box. Figure 1 showsrelocity plots, it is clear that the wavelength was about 2.4
the trajectories of three particles for the case described in thior the weak stratifications, and about 1.2 for the higher
third row of Table Ill. The speed of the particles is propor- stratifications. With periodic end walls, the wave adjusted to
tional to the distance between the points in the figure. If thdill the box and had a wavelength of 2, regardless of stratifi-
particles got too close to the viscous horizontal boundaries;ation.

then they almost came to a halt. Away from the boundaries,

the particles circulated once in two oscillation periods. This4. Wave number and aspect ratio dependence

agrees roughly with the value Gfror/Tosc in column 7 of The maximum growth rate for a particular oscillatory
the third row in Table III. instability depends on the wave numbers paralte})(and
perpendicular &) to the roll axis*® In Bolton et al.* the
value of ay, which produced the maximum growth rate was
3. Estimate of wavelength called the maximizing wave number.
) If we increase the length of the box along the rolls, then
To estimate the wavelengity, of the SWs, we computed  the observed wavelength should gradually increase until one
the maximum amplitude of the vertical velocity averagedmore half-wavelength can fit along the roll axis. Then, the
over thex direction and over time. The amplitude VErsUs corresponding wave number should jump back near the ideal
distance along the roll axig, is plotted in Figs. &)-2(d).  yalue(i.e., the maximizing wave numbeiSo for a particular
The value ofZ, m, and Rafor each simulation is given as a sjmylation, while it may not be guaranteed that the wave
header to each plot. The variation with heighteveals that mber maximizing the growth rate will correspond to the
the oscillations are strongest near the midplane of the boxphserved wave number, because of the quantization imposed

The wavelength is twice the distance between two miniyy the aspect ratio of the experiment, we could expect it to
mums on either side of the central maximum. For TWs, as,e close.

the whole wave passes through every point in the box, the |n our box of dimensions 3:82.1x1, if the end walls
time averaged amplitude is zero. To find the wavelength, thg,ee periodic, them,=2. This means the wave number of
velocity was averaged over thedirection at one instant in e oscillationsw,=27/\,, was about 3.1. This is the same
time. One result is shown in Fig. 3. From the amplitude andyg the maximizing wave number found by Boltenal. (who
also employed periodic boundarjgs for the B02 instability
with a Prandtl number of 2.8see Fig. 10 of Boltoret al.).
0 , . . : . . . Table 1V lists experiments with different aspect ratios. By
1 measuringV,,s and Tyg,, We estimatedl o7/ T e If the
1 aspect ratio along the rolld’y, was 1.5 or 1.8, then
Tro71/Tose Was about 2.8. This was true even for higher
stratifications. However, if’y=2.1, 2.35, or 2.6, then the
ratio Tro1/Tosc Was about 1.2 for the highly stratified cases,
while it was 2.8 for the weakly stratified cas@®t shown.
It seems that’y needs to be bigger than 2, and the end walls
rigid, for the stratification to influence the quantization of the
observed wave number.
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FIG. 1. Trajectories of massless tracer particles in a plane perpendicular tl)v' ANALYSIS

the r_oII axis that is Io_cated_near the_ center of t_he box._The ordinate and For a Prandtl number of 2.5, the possible forms of oscil-
abcsissa are the nondimensional vertical and horizontal sides of the box. The

total time of each trajectory is two oscillation periods. The box has periodic ato'ry convection are cross 'r0||, KI’IOT[, B02, BE1, Zigzag, E
side walls. oscillatory, and skewed varicod& Guided by the work of
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FIG. 3. Nondimensional vertical velocity averaged over the horizontal di-
rection perpendicular to the rolls vs the distance along the wpllEhe side
walls are periodic. The height above the base is denatéd the top of the
figure are the temperature contr&stthe polytropic indexm, and the Ray-
leigh number at the top, Ra

For simulations in which\, was close to 2, the contours
look like those in Figs. @)—4(d). The four frames are
equally spaced over one time period. As the start and end of
the cycle have the same pattern, the end frame is not in-
cluded. There appears to be two hot blglghtest regiong
and two cold blobgdarkest regions circulating around each
roll. Each figure contains two adjacent rolls, the left one
rotates clockwise and the right one anticlockwise. If we fol-
low a particular blob, we can see that over the whole cycle, a
blob only travels about half way round a roll, i.e., the roll
turnover time is about twice the oscillation period. This type
of convection looks very much like the BO2 instabifify.
Figures %a)—5(d) show the corresponding patterns for simu-
lations in which\, was close to unity. In this case, only one
hot and one cold blob circulate around each roll. A blob goes
fully round a roll in one time period, i.e., the turnover time is
close to the oscillation period. This type of convection looks
like the BE1 instability®®

The main difference between the two types of instability
lies in the symmetry of the temperature perturbations about
the roll centers. Consider the white regions located in the
bottom right and top right of Fig.(4). These two hot blobs
are on opposite sides of the roll. This roll is spinning anti-
clockwise. If one considers all four framfBigs. 5a)—5(d)],
one can see that the two hot blobs are always opposite each
other. They are just like opposite spokes on a wheel. These

FIG. 2. Maximum nondimensional amplitude of vertical oscillations of SWs TABLE IV. Experimental values of temperature contrZspolytropic index

vs distance along the rollg. The amplitude has been averaged over the m: along roll aspect ratid’, ; observed wave number along the rdiis;
horizontal direction perpendicular to the rolls and over time. The first threetime periodT .., and ratio of time period to turn-over tineyo7/Tos.. The
plots are for boxes with rigid boundaries, while the last is for a box with simulations have an aspect ratio perpendicular to the roll axis of 3.1 and

periodic boundaries. The height above the base is derotatithe top of
each figure are the temperature cont@sthe polytropic indexm, and the

rigid (no-slip walls.

Rayleigh number at the top, Ra 4 m ry b, Tosc Tror/Tose
0.08 0 15 438 174 2.8
0.08 0 21 2.7 167 2.8
Bolton et al.® we plotted contours of the disturbance of the  0.08 0 2.6 2.1 163 2.8
temperature field in the vertical plang<TI",/2) perpendicu- 8-3; ig ;i g; % i;
lar to the roll axis. The disturbance of the temperature field is is 535 47 68 12
equal to the actual temperature, minus the time averaged 35 15 26 4.2 66 13

(over one cyclgtemperature.
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(d) (d)

FIG. 4. Temperature disturbance in the vertical plane perpendicular to the|G. 5. Temperature disturbance in the vertical plane perpendicular to the
roll axis for a typical BO2 case. The frames are equally spaced over one timgy| axis for a typical BE1 case. The frames are equally spaced over one time
period. As the end of the cycle has exactly the same pattern as the firgleriod. As the end of the cycle has exactly the same pattern as the first
frame, it has not been included. The light and dark regions correspond trame, it has not been included. The light and dark regions correspond to
fluid that is, respectively, hotter or colder than the time averaged temperafiuid that is, respectively, hotter or colder than the time averaged tempera-
ture. ture.

thermal perturbations are symmetric with respect to the roljn. pressure fluctuations
center. When the stratification is increased, the symmetry is
broken. In Fig. %a), the temperature perturbation at the bot-
tom right-hand sidgwhite blob is of opposite sign to the
one at the top-centéblack blob. This remains true through- oplp=—56TIT+ plp. (20)
out the cycle. These thermal perturbations are antisymmetri
with respect to the roll center.

The symmetry requirements for BO2 and BE1 are de- n— 22 21)
scribed by Busse and ClevérAccording to their criteria, q a-an
the B0O2 mode can dominate if there is reflectional symmetryvhere the overline denotes horizontal and temporal averag-
about the midplane, while the BE1 mode can prevail, if theing over one oscillation period. The relative rms fluctuation
midplane reflectional symmetry is broken. q"/q is used to estimatéq/q. o

A convection layer needs to be purely Boussinesq to  Figures 6a)—6(d), respectively, show"/p, T"/T, and
have midplane reflectional symmetry. However, in a stratip”/p, for four different stratifications. The values @f m,
fied fluid, there is always some asymmetry between the upand Ra are given as a header to each plot. As the top and
flows and downflows. The amount of asymmetry depends obottom surfaces were maintained at a constant temperature,
the amount of stratification. From Table Il, it appears that thehe temperature fluctuations had to drop to zero there. On the
first unstable modéafter steady rolls changed from B02 to other hand, pressure was free to respond to the interaction of
BE1, when the physical depth of the layer was greater thathe upflows and downflows with the horizontal surfaces. As a
about one-half an isothermal pressure scale height. Whileonsequence, the pressure fluctuations were greatest near the
this suggests that stratification influences the instability, itop and bottom of the box. Near the midplane, the density
does not tell us how. What we want to know is which par-and temperature fluctuations were about the same.
ticular property of the stratified convection, determines the  As the stratification was increased the pressure fluctua-
dominant oscillatory instability(i.e., whether it is BO2 or tions, became more significant. In the last two cases, the
BEY). In the following sections, we will attempt to answer pressure fluctuations cannot be ignored. This type of convec-
this. tion is non-Boussinesg. In both caseéH,=0.5.

For small perturbations, the equation of a perfect gas can
be written as

Ieor a quantityg, the rms fluctuation can be computed as
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(a) Z=0.04,m=0,Ra,=35000 B. Variable thermal conductivity
g LN I AL EELRE AL I
% ggz: 3 I E To test the effect of a temperature-dependent thermal
37 conductivity k on the BE1/B02 instabilities, we forcddin
3 0.004F E the initial layer to vary linearly with height. Keeping the
E 0.003E Density — . parametelC,, constant, the term in front & T in Eq. (13),
o 0.002F Temperature ... i was multiplied by W+2(1—-2)(1-W)), whereW=0.9 or
2 0.85 (corresponding to a 20% and 30% variajioand z is
= 0001F Pressure o E the nondimensional depth, €0z<1). We then ran some of
® 0.000 e e T the simulations again.

0.0 0.2 0.4 0.6 0.8 1.0

i . . This was done for small and large stratifications. Eor
Nondimensional Height

=0.04 andm=0, with a 30% variation irk, the flow was
(b) Z=0.32,m=0,Ra,=37000 almost the same, as that with no variation. As «/pc,,
L B B L L I

5 °'°5§ this suggests the change from B02 to BE1, was probabty
E 0.04F 3 related to a change ik or «, with depth. ForZ=0.8, m

§ E § =0, with a 30% variation irk, the oscillation frequency was
= 0035 Density still 44, i.e., the BE1 instability prevailed. A particular insta-
E 002E Temperature  _._. 3 bility seemed to be stable to significant variationkoWith

g ; Pressure P E depth .

2 0.01E 3

g 0.00 e S s il 3 C. Variable viscosity

[

0.0 0.2 0.4 0.6 0.8 .0

Nondimensional Height Non-Boussinesq experiments of turbulent convection in

glycerol, described an up—down flow asymmetry, related to
(c) 2=0.64,m=0,Ra,=48000 the strong dependence of the viscosity on temperdttfré.
A ' ' was shown that the velocity field adjusted, so that the stress
was the same at the top and bottom boundary layers, and the
temperature field adjusted, so that the top and bottom heat
fluxes matched.

0.08

0.06

vl Lo 1wy

Relative rms fluctuation

0.04 "' Density R

/ Temperature  __-. In our case, the kinematic viscosityvaried with depth

0.02 -/ Pressure ... because of density stratificationv{C,/p). Could the
Ceee variation of » with depth be the reason for the change in
0.00 0+ o Tt L instability? To answer this, we chose the highest stratification

00 02 04 06 08 10 which exhibited the B02 instability,4=0.32, m=0), and

Nondimensional Height multiplied the dynamic viscosit€, in Egs.(12) and (13),

(d) Z=0.64,m=1.5Ra,=24000 by [W+2(1-2)(1-W)], to mimic a viscosity that in-

0.08[ T T T T pendity T "7 T LT T T creased with temperature, and Wi+ 2z(1—W) to mimic a

Temperature ... viscosity that decreased with temperature.

0.06

Pressure

The new simulations were then run to equilibrium. For
W=0.9 and 0.8520% and 30% variation over the layer
with increasing or decreasing viscosity, the rafig./Ttort
was between 2.5 and 2.8. By plotting the oscillation ampli-
tude along the roll$not shown, we found that these were all
B02 simulations. As the flow had not changed from B02 to

0.04

0.02

Relative rms fluctuation

0.00 A N R

o.o‘ ‘o.2l 04 06 08 10 BE1, even when a significant viscosity variation was en-
Nondimensional Height forced, it does not seem that the change to BEL1 is related to
viscosity.

FIG. 6. Relative rms fluctuation of density, temperature, and pressui@. As
or m are increased, the contribution of pressure fluctuations to buoyancy,
becomes non-negligible. At the top of each figure are the temperature corD. Flow speed
trastZ, the polytropic indexm, and the Rayleigh number at the top,;Ra
The change from B02 to BE1 seemed to be related to an

increase in the speed of the flow. This produces significant
pressure fluctuations. But is this the reason for the flow
change? To test this hypothesis, we tried to speed up the flow
In a box with rigid walls, the change in the nature of the without increasing the stratification. To do this, we replaced
convective instability from BO2 to BE1 seems to be accom-he rigid horizontal boundaries by stress free boundaries. For
panied by a significant increase in the pressure fluctuationghe stratificationZ=0.32, m=0, we found that with stress
near the top and bottom of the box. This is probably becausfree horizontal walls, the oscillation period was 65, and the
the higher stratifications have higher Mach numbers orfurnover time was about 60. By plotting the oscillation am-
equivalently, faster rolls. plitude along the roll axignot shown, we confirmed that
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and thermal conductivitk. The Rayleigh number Ra3x 10%.

o107 L B AL TABLE V. Properties for a laboratory convection experiment in helium gas.
C (1) 2=0.04 —_ e Tabulated quantities are temperatdrepressurep, kinematic viscosityy,
[ (2) Z=0.08 (s—free) __. 7 TN 4 . . k . .

0.05 _iaz %=8'§§( ree) =7 s N thermal diffusivity x; volume expansion coefficient at constant pressure

. | {4} Z=0. s—free} _. o <
[ {8) Z=084 ]

> _oon-d
§ 0.00 ﬂ\—————/‘:‘ﬁ 7 T(K) p(ba) vemds xendsy  a(KH  k(WmK)
= AMW---" et 7
0.05 N T j,‘.?';'/ E 4 17E-4 5.11 7.401 0.250 0.0077
TUTTE N ] 5 2 E-4 6.25 9.195 0.200 0.0096
F ] 6 2.E-4 7.31 10.87 0.167 0.011
~-010C, o vt b b
00 02 04 06 08 1.0

Nondimensional Height

FIG. 7. Horizontal and temporal average of the horizontal velocity perpen- Th(_a proposed convection cell has a height of 15 cm, and
dicular to the roll axis, versus height, for five relaxed simulatighis the  the helium a mean density of 0.002 kg/mt such low den-
temperature contrast and each simulation has the polytropic index set tgities and pressures, the fluid should behave like a peidect

zero. The first and third simulations exhibit the BO2 instability, while the rest; ; ; . T~
exhibit the BEL1 instability. The terra free denotes a simulation which has idea) gas. Using the values in Table V, we find ttigp/p,

stress free horizontal boundaries. AV/Z AK/Z ACY/E, andAk/k, are 0.38, 0.35, 0.38, 0.42,
and 0.34, respectively. The overbar denotes the value of a
particular quantity evaluated at the mean temperature. As the
this simulation was BE1. Additional simulations showed “2/1ation of density with temperaturép/p=~aAT=0.4, the
relative variation ofv and « are probably due to the change

that, for2=0.16, 0.08, 0.04with m=0), the flow was also in density with depth. This was true for the numerical simu-
BE1. However, if only the top was stress free, then the os; y PEn.

f— . lations as well. Table | of Niemela and Sreeinivasanows
cillation period was about 30 and the flow pattern was B02 P .
- that if v is reduced by a factor of 4 then the dynamic viscos-
To see how the boundary condition affects the flow, the
. : ) .~ ity changes by less than 1%.
mean horizontal velocity/,, perpendicular to the rolls, is

) 0 .
shown in Fig. 7. The first, third, and fifth cases, all have rigid In the Iast.sectlon, we showed that a 30% vana_noﬁ,of

. . ; or v or k, had little effect on the frequency of the oscillations.
horizontal boundaries, while the second and fourth hav

stress free(denoted “s-free’) boundaries. With stress free s the frequency characterizes the type of instability, we

boundaries, even a small, is enough for BE1 to dominate. might expect the variation & or v in the helium experiment

o . . .. . to have little effect on observed instability. Rather, it is the
For rigid boundaries, to get BEL, the forcing or Str‘fjltmcatlon’net forcing or the temperature contrast that determines the
needs to be much larger. The simulatibr 0.08,m=0, with g P

. - outcome. Note, in a helium experiment by Niemelzal.?
the stress free boundaries, had almost negligible pressure . ) 0
: o even ifk was varied by 20%, the Nusselt number was hardly
fluctuations. They were similar to th2=0.04, m=0 case
with rigid boundaries(see the first frame of Fig.)6So it affected at all.
9 : 9. Does helium at these cryogenic temperatures behave like
does not seem that pressure fluctuations caused the Changeperfect gas? To address this issue, the reciprocalTois
from BOZ to BEL. Rather, the cr_lange in instability seems toplotted for three typical cryogenic helium experiments in
occur when the horizontal velocity close to the lower bound-Fig 8. For a perfector idea) gas,aT=1, so that at a Ray-
ary exceeds a critical value. leigh number of~3x 10%, we should be comfortably within
the perfect gas regime. It should also be possible to construct
a gas tank for a polytropic gas. The dimensional acceleration
Finally, we note that the change does not appear to be
related to any acoustic phenomena. With periodic side walls,

E. Sound waves

the wavelength was 2 and the highest frequency in Table 1lI T ildeaigg;___
is 1/23.5. Thus,
MaX Cppasd = 2/23.5<Cs=1. (22
As the phase speet}scWas an order of magnitude less "~ oal ____‘m i
than the sound speed, the change from B02 to BE1 was E ) ""_.,:o s
probably not related to acoustic effects. "ol 4
=14
A Niemela, ot al (2000) .
0.01 @ Chavanne, et al (2001) e, 7
V. DISCUSSION: LOW-TEMPERATURE HELIUM O Memela & Sroonivasen (200%) wa®® "~
EXPERIMENTS 10° 10 10° 10% 10" 10" 10"

One motivation of this paper was to get a benchmark for Ra
real laboratory experiments of stratified convection. TypicalFIG. 8. The reciprocal of the product of the coefficient of volume expansion
values of fluid properties for a cryogenic helium experimentat constant pressure and mean temperaEule as a_function of Rayleigh
are given in Table \#” The temperature at the top and bot- "UmPer Ra. For a perfecr idea) gas T)  =1. Solid squares are data of
. ' Chavanneet al. (Ref. 5 for a 20 cm high cell; solid circles are from
tom of the convection cell ar4 K and 6 K, respectively, and Niemela and SreenivasaRef. 6 for a 50 cm high cell, and open triangles

the Rayleigh number Ra is abouk30". are from Niemeleet al. (Ref. 2 for a 100 cm high cell.
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0.015F™ 7T T T T T T VI. CONCLUSION
0010E A DA A Under laboratory conditiongi.e., in a cell with rigid
0008\ A/ VALY - walls), stratification can determine the nature of the second-

ary convective instabilitythe oscillatory instability. This is

(T-To)/To

o.oooé I :' | the first unstable mode after steady rolls. For small stratifi-
=005 1y RVANAVAN \ 7 cations, two hot and two cold blobs circulated each convec-
-0.010 :%J/ ‘\JI \‘J’ \‘J’ E tion roll. The same temperature perturbation blobs were al-
C0015F e e ways diametrically opposite each other on a roll. The
0 50 100 150 200 instability produced oscillations that traveled along the roll

t axis. As the walls perpendicular to the roll axes were rigid,

FIG. 9. Time variation of the relative temperatur&~T,)/T, vs time (in SWs were formed in the box. They had a wavelength close to
units of sound travel timgsT is the instantaneous temperature dds the  the along roll length of the box. If the stratification was
ti"l_e aVEfgge ﬁﬂﬁggi)sot“dt?ndtq%hed “”et? alfe g’ftﬁ '(_’BOZI) t$"atif;]' greater than about one-half a pressure scale height and the
cation and a hi stratification, respectively. Both simulations have . .
impenetrable ng-slip walls. The thin Iinespdenoteya temperature measured 2{9”9'“’” Iength grgater than t\,Nlce the depth, then the I_nSta_
grid location (10,15,3 while the thick lines are for the temperature mea- Dility was characterized by a single hot and cold blob circu-
sured af(25,15,27. This is on a 76¢30x 30 grid. For the low stratification, lating with the convection velocity. In this case, blobs of
the t_e_mpgrature at the two points is almost in phase, while for the highebpposite temperature perturbation were diametrically oppo-
stratification the temperatures are almost completely out of phase. site, and the wavelength of the SWs was about half the along

roll length of the box.

Summarizing:

due to gravityg=(m+1)ATR/d, whereR is the gas con- (1) Atthe Hopf bifurcation, the Rayleigh number at the base
stant. In realityg is fixed so that a polytropic distribution is most closely resembled the Boussinesq value of 29 000.
nothing more than a layer with a constant temperature gra- This is in contrast to the first bifurcatiainear theory,
dient. By adjusting the depth, total mass of gas, and tempera- in which the Rayleigh number at the center was closest
ture contrast, one should be able to generate a situation that to the Boussinesq value.

is compatible with a certain polytropic index A value ofm  (2) The change in the nature of the secondary instability did
slightly greater than-1 should be accessible to experimen- ~ not appear to be affected by a 30% transport property

talists. Additional numerical simulations with=—0.9 pro- variation with temperature.
duced BO2 and BE1 under conditions similar to previously(3) While large pressure fluctuations at the base seem to
documented cases. Helium g&at 5.5 K and a pressure of accompany the change in instability, they do not appear

2.8 bar has a Prandtl number of 5. By varying the tempera- to be the cause of the change in instability.

ture or pressure, while still remaining reasonably far away4) Rather, it is the horizontal velocity near the base that

from the critical point, the Prandtl number of 2.5 used in the ~ seems to determines which instability prevails.

simulations might be achievable. (5) Our results may be recoverable in a convection experi-

How might the instabilities be observed in such experi- ~ ment in cryogenic helium.

ments? Consider two points that are on diametrically oppo-

site points of a roll at grid locations, P110,15,3 and P2 ACKNOWLEDGMENTS
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riod. If both stratifications were B02, then we would expect

the period to halve whe® is doubled. Second, the tempera-

ture oscillations are almost exactly in phase for the B02 cas@PPENDIX: CAN THE SAME CONVECTIVE FLOWS

and about 180° out of phase for the BE1 case. Third, th(gESAAQr?CI)EIL_EE WITH THE ANELASTIC

amplitude of the oscillations is about 0.3% for the B0O2 case Q '

and about 1% for the BE1 case. One other commonly used set of equations sometimes
In the experiments, thermal probes can be placed at varissed to study convection in gases are the anelastic

ous locations in the cryogenic convection ¢ellhe tempera-  equations® The anelastic approximation assumes that the

ture can then be accurately measured to within 1 mK. As theelative fluctuations in the thermodynamic variables are

mean temperatures are a few K, these effects should be mesmall and that the thermodynamic variables fluctuate over

surable in the actual experiments. time periods of the order of the roleddy) turn-over time,
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FIG. 10. Distribution of @p/dt),ms/(pV-V)ms Vs height for a typical BEL  FIG. 11. (9p/dt),ms divided by the depth average of density multiplied by
case. Individual grid points are marked by crosses. Cleagygt is non- velocity divergence gV -v), for three values ofC. The paramete€ is a
negligible near the top and bottom. As the anelastic approximation excludeactor involved in the numerical integration. The dengitat the i+ 1)th
dpldt, it may not be able to correctly model the physics of the thermaltime step equalp at thenth time step pluX AtX dp/t, whereAt is the
boundary layer. At the top of the figure are the temperature cordyase size of the time step. At the top of the figure are the temperature cofrast
polytropic indexm, and the Rayleigh number at the top,;Ra the polytropic indexm, and the Rayleigh number at the top,;Ra

i.e., a convective time scale. Provided the Mach number i§0r = p, we increaseC above unity, each time relaxing
small, the turn-over time will be much longer than the acousthe flow and measuring the time period of the oscillations.
tic time, and it would appear that sound waves would play alhis means that the density should vary over a longer time
minor role. One consequence of this is that the partial timegscale than the other quantities.

derivative of density can be excluded. This allows a much ~ Consider the simulatioZ=0.32, m=1.5. This had an
larger time step to be used in numerical simulations, comoscillation period of 70 sound travel times. We find that@r

pared to a time step limited by acoustic motions. equal to 1, 1.5, 1.75, and 2.0, the oscillation period is 70, 50,

In the present study, the fully compressible equationg#4, and 40, sound travel times. Whér=1, we are solving
predict two types of instability, namely the two bi¢BE1)  the fully compressible Navier—Stokes equations, an@ &
and four blob(BO2) convective instabilities. To see how the increased the equations should behave more and more like
anelastic equations might do in computing BE1 stratifiedthe anelastic equations. Figure 11 showp/@t) s divided
convection, the partial time derivative of density divided by the depth average op¥ - V) s versus height. A< in-
by the velocity divergence multiplied by density, creases, the relative size @b/4t term is getting smaller and
(9pl 3t)yms! (PV V) 1ms, is plotted for a typical highly strati- Smaller. This is especially true near the horizontal bound-
fied case in Fig. 10. The time derivatived/ t) s was com- ~ aries.
puted as— (V- pV)ms. The plot suggests thalp/dt is non- For each value o€, the relative thermodynamic fluctua-
negligible near the top and bottom. The analysis in Sec. I\ions (not shown were always less than 0.1, and the corre-
suggests that the blob instabilities are created in the horizorsponding oscillation period is within a factor of 2 of the
tal thermal boundary layers. Replacing the full mass conseiconvective turn-over time. These oscillation periods are at
vation law byV-(pv)=0 (as in the anelastic approximatipn least 40 times greater than the sound travel time. Under such
may mean that diverging flows at the horizontal surfacesconditions, the anelastic equations should be able to predict
which seem to determine the type of instability, are incor-the same results as the fully compressible equatipes an
rectly modeled. Under such conditions, the anelastic equa@scillation period of 7@ But these preliminary results sug-
tions might not predict the same oscillatory flow as the fullygest otherwise.
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