
Mon. Not. R. Astron. Soc. 321, 723±732 (2001)

A large-eddy simulation of turbulent compressible convection: differential

rotation in the solar convection zone

Francis J. Robinsonw² and Kwing L. Chan
Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Accepted 2000 September 15. Received 2000 September 11; in original form 2000 June 15

AB S TRACT

We present the results of two simulations of the convection zone, obtained by solving the full

hydrodynamic equations in a section of a spherical shell. The first simulation has cylindrical

rotation contours (parallel to the rotation axis) and a strong meridional circulation, which

traverses the entire depth. The second simulation has isorotation contours about mid-way

between cylinders and cones, and a weak meridional circulation, concentrated in the

uppermost part of the shell.

We show that the solar differential rotation is directly related to a latitudinal entropy

gradient, which pervades into the deep layers of the convection zone. We also offer an

explanation of the angular velocity shear found at low latitudes near the top. A non-zero

correlation between radial and zonal velocity fluctuations produces a significant Reynolds

stress in that region. This constitutes a net transport of angular momentum inwards, which

causes a slight modification of the overall structure of the differential rotation near the top.

In essence, the thermodynamics controls the dynamics through the Taylor±Proudman

momentum balance. The Reynolds stresses only become significant in the surface layers,

where they generate a weak meridional circulation and an angular velocity `bump'.

Key words: turbulence ± Sun: rotation.

1 INTRODUCTION . OBSERVATIONS AND

SIMULATIONS

1.1 Observations

In the outer 28 per cent by radius of the Sun, known as the Solar

convection zone (SCZ), most of the vertical energy transport is by

convection. As a result of the combination of convection and

rotation, the gaseous body exhibits differential rotation, i.e. non-

uniform angular velocity. Helioseismology observations (Scherrer

et al. 1995; Libbrecht 1989) of the nearly 10 � 106 acoustic

p-modes that leak from the interior into the atmosphere, have

provided through frequency splittings, information on the angular

velocity distribution of the solar interior. The latest results suggest

that the isorotation surfaces in the solar convection zone are cone-

like (aligned radially), in disagreement with most numerical

simulations, which tend to produce cylindrical contours parallel to

the rotation axis. Specifically, such observations have revealed

that: the angular velocity near the equator first increases and then

gently decreases with depth, at mid-latitudes it is almost constant

with depth, while at high latitudes it increases with depth; on the

surface of the Sun, the angular velocity increases from the poles

(35-d period) to the equator (25-d period) and the meridional

circulation vu, is much weaker than differential rotation (zonal

velocity < 2 km s21; vu < 25m s21�:

1.2 Simulations

1.2.1 Computational hurdles

Modelling the SCZ is a formidable task. Observations suggest that

the SCZ is highly stratified, spanning about 19 pressure

scaleheights in depth, with the Mach number (the square of the

ratio of the flow velocity to the speed of sound) approaching unity

at the top; the Prandtl number (the ratio of the time-scales of

thermal to viscous diffusion) is extremely small (1026); the

equation of state is complex; and finally, the motion is highly

turbulent, as revealed by the large number of scales ranging from

0.1 km to 105 km (depth of SCZ). In the photosphere (near the top

of the SCZ) the kinematic viscosity of hydrogen is about

0.1 cm2 s21, while the root mean square (rms) velocity in the

SCZ is of the order of 100m s21. These values suggest a Reynolds

number, Re � velocity � length=kinematic viscosity, of at least

1012. As the number of degrees of freedom needed to represent a

flow is proportional to Re9/4, to resolve numerically the scales in

all three directions would require 1027 grid points. Even with

present technology the maximum Reynolds number modelled in

direct numerical simulations (DNS) is a few thousand (Brummel,
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Hurlbert & Toomre 1996). Alternatively, if one assumes most of

the energy to be contained in the resolved scales, which are much

larger than the viscous and thermal dissipation scales (unresolved

scales), and that the average energy transferred by these smaller

scales can be modelled by entropy diffusion, then a much larger

viscosity (smaller Re) can be used to model the turbulent flow.

This is the principle of large-eddy simulations (LES).

1.2.2 Numerical simulations of the SCZ

Explicit integration of the hydrodynamic equations requires the

time-step to be less than the time for a signal (sound wave) to

travel between two grid points. This is known the Courant±

Friedrichs±LeÂvy (CFL) stability criterion. Previous investigations

have solved approximate forms of the fully compressible

equations, in which sound waves do not exist. This circumvents

the use of restrictively small time-steps. Incompressible convec-

tion in a shell was studied by Gilman (1978) using the Boussinesq

approximation. This allows density variation only when coupled

with gravity. A better approximation is to exclude only temporal

variations in density, known as the anelastic approximation. This

still suppresses sound waves but allows the density to vary

vertically. The most recent anelastic simulation in a full shell

(global model) on massively parallel architectures are by Miesch

et al. (2000). Though there were significant improvements on

earlier work (Glatzmaier 1987), they were still unable to ade-

quately resolve the observed cone-like structure of the angular

velocity contours. Overall the isorotation contours were cylindri-

cal. Furthermore, the angular velocity shear layer near the top of

the convection zone could not be resolved. Near the top, vigorous

compressible motions have Mach numbers close to one and the

anelastic approximation breaks down.

The fully compressible equations have, however, been solved in

local models (boxes). By considering only a tiny section of a

spherical shell, Brummel et al. (1996) performed a DNS of

turbulent compressible convection in f-planes. In essentially the

same geometry, Chan (2001) performed a set of LES computa-

tions, in f-planes. The LES model emphasized efficient convection

(convective flux @ diffusive flux) as opposed to the inefficient

convection in the DNS models. In f-plane simulations the angle

between the rotation vector and gravity is considered to be

constant throughout the box. The problem with these local models

is that they have periodic horizontal boundaries. In such domains

the only possible source of differential rotation is the Reynolds

stress. Horizontal averaging removes latitudinal gradients of

thermal quantities which are a possible source of the differential

rotation. For example, in the model by Durney (1999), the lati-

tudinal entropy gradient (or baroclinicity) is essential in shaping

the isorotation contours. Additionally, the f-plane models do not

allow a realistic meridional circulation to develop; nor can Rossby

waves exist as the rotation vector is constant throughout the

domain. Rossby waves have been suggested as a possible source

of correlation between longitudinal and meridional motions

(Brummel et al. 1996).

Our model represents a compromise between the anelastic

global and compressible local simulations. We solve the full

Navier±Stokes equations in spherical coordinates in a domain

with a significant latitudinal coverage. In this way we are able to

resolve the upper shear layers and simultaneously include the

effects of meridional circulation and latitudinal gradients of

thermal quantities. To circumvent the CFL restriction on the time-

step, semi-implicit time integration is employed. We use the

alternating direction implicit method on a staggered mesh

(ADISM) (Chan & Wolff 1982) in conjunction with an explicit

method. Owing to computational restraints of three-dimensional

calculations, we are limited to studying a small section of the

entire shell. A full simulation on a 70 � 70 � 39 three-dimensional

mesh, spans just 608 in longitude and latitude. This calculation

requires about a month to run when parallelized on four processors

of the ORIGIN 2000.

This paper consists of a further four sections. Section 2

describes the overall physical setup, formulates the mathematical

model and describes the numerical approach. This is followed by

descriptions of the statistically averaged zonal and meridional

flows and the turbulent nature of the compressible convection.

Section 3 attempts to pin down the source of the differential

rotation and meridional circulation. The final section is a

conclusion.

2 MATHEMATICAL MODEL

2.1 Overall setup

The computational domain is a three-dimensional sector of a

spherical shell, symmetric about the equatorial plane. A long-

itudinal cross-section is shown in Fig. 1. The input energy flux at

the bottom (straight arrows), is transported mostly by convective

eddies (curly arrows) up to a height of 95 per cent of the total

depth. To pad out convective motions, a conduction layer is placed

in the upper 5 per cent of the shell (shaded region). We consider

two models that are identical apart from their longitudinal spans.

The first model, denoted A, spans 308 in longitude and 608 in

Figure 1. Longitudinal cross-section of the computational shell with

rotation axis V. The input energy flux (straight arrows) is transported by

convection (curly arrows) and then by radiation (shaded region), to the

conducting top.
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latitude, while the second, B, covers the same latitudinal range,

but 608 in longitude. Both cover a total depth of 0.72R to R, which

is the approximate depth occupied by the convection zone in the

Sun. R is equivalent to the radius of the Sun. As depth is scaled by

the total radius, the non-dimensional radius is between 0.72 and

1.0. Radial, meridional and zonal directions are labelled r

(increasing outwards), u (increasing southwards) and f (increas-

ing eastwards), respectively.

2.2 The equations

In the absence of motion �­=­t � 0; v � 0�; the equations

governing conservation of mass, momentum and energy in a

rotating stratified fluid (Chan 2001), reduce to the equations of

hydrostatic and thermal equilibrium. A solution of these, in

spherical coordinates, is a polytrope

T=T t � 1� Z�R=r 2 1�=�R=rb 2 1�; �1�
r=rt � �T=T t�n; �2�

p=pt � �T=T t�n�1; �3�

where r is the radial distance from the base, and n is the polytropic

index. The subscripts `t' and `b' denote a quantity measured at the

top and bottom of the shell, respectively. T, p and r are the

symbols for temperature, pressure and density. Z � �Tb 2 T t�=T t

describes the extent of the stratification.

Equations (1)±(3) provide a reference atmosphere from which

appropriate dimensionless units can be formed. Length is scaled

by the outer radius of the shell R, and time by R=
����������

pt=rt
p

: In such

units, velocity is scaled by the isothermal speed of sound at the

top,
����������

pt=rt
p

: From now on all quantities will be given in non-

dimensional units. Combining the equation of hydrostatic

equilibrium, dp=dr � 2rg and equation (1), gives in non-

dimensional units, gt � �n� 1�Zrb=�12 rb�: We will consider gt
as an independent parameter. As the total number of pressure

scaleheights is �n� 1� ln�1� Z�; the size of gt determines the

depth of the layer.

With such a scaling, the governing equations become

­r=­t � 27 ´ rv; �4�
­rv=­t � 27 ´ rvv2 7p� 7 ´ S2 rgr̂2 2rV0 � v; �5�

­E=­t � 2 7 ´
1

g2 1
rTv� pv� �rv2=2�v

� �

2 7 ´ �2v ´ S� f �2 rv ´ gr̂; �6�

p � rT; �7�

where V0, S and f are defined below. Equations (4)±(7) represent

a closed system of five dependent variables: density, radial mass

flux, meridional mass flux, zonal mass flux and total energy density,

denoted by r, rvr, rvu, rvf and E, respectively. In a particular

geometry (fixed r, u and f boundaries), each turbulent convection

simulation is specified by defining six non-dimensional parameters.

These are the reference rotation rate V0, the input energy flux at the

base fb, the turbulent Prandtl number Pr � n=k; the gravitational

acceleration at the top gt, the polytropic index n and the ratio of

the specific heats g .
We will now consider individual terms in equations (4)±(7).

Ignoring the coefficient of bulk viscosity (Becker 1968), the

viscous stress tensor for a Newtonian fluid is Sij � m�­vi=­xj �
­vj=­xi�2 2m=3�7 ´ v�dij: In DNS, the viscosity is determined

from the non-dimensional parameters characterizing the convec-

tion simulation (e.g. Pr, the Rayleigh number Ra, gt, n and g).
However, in LES, the dynamic viscosity m is increased so that it

represents the effects of Reynolds stresses on the unresolved or

subgrid scales (SGS) (Smagorinsky 1963),

m � r�cmD�2�2s : s�1=2: �8�

The colon inside the brackets denotes tensor contraction of the

rate of strain tensor sij � �7ivj � 7jvi�=2: The SGS eddy

coefficient cm , is set to 0.2, the value for incompressible

turbulence, and D2 � rDrDu is an estimate of the local mesh

size. Numerical experiments with different D and cm are described

in Chan & Wolff (1982). The present formulation ensures that the

grid Reynolds number D � v=n is of the order of unity

everywhere. To handle shocks, m is multiplied by 1�
2=c2s ��Dx­xvx�2 � �Dy­yvy�2�; where x and y denote meridional

and zonal directions (e.g. Dx � rDu and Dy � r sin uDf� and cs is

the isothermal speed of sound. As m is dependent on the

horizontal divergence, any large horizontal velocity gradients are

smoothed out by the increased viscosity.

The gravitational acceleration at a distance r from the centre of

the sphere is grÃ, where g � gt=r
2; and rÃ is a unit vector directed

radially outwards. The reference rotation vector is V0 � V0V̂;
where VÃ is a unit vector in the direction of the rotation axis, i.e.

V̂ ´ r̂ � cos u: The non-dimensional rotation rate V0, is equal to

the ratio of the solar rotational velocity, to the isothermal speed of

sound at the top of the convection zone. For the Sun V0 is about

0.3, so that the value of 2.91 used in the present computation, is

associated with rotational periods of about 1 day.

The total energy per unit volume E, is the sum of the internal

energy rT=�g2 1� and the kinetic energy rv2=2: The terms in the

brackets on the left-hand side of equation (6) are the various forms

of energy flux in to or out of a unit volume fluid parcel. The first

three terms constitute �E � p�v; which equals the convective flux

cprTv plus the kinetic energy flux rv2v=2: Away from the upper

and lower boundaries �E � p�v represents the energy transported

by the resolved large-scale eddies. The LES model is designed so

that this term carries most of the vertical energy flux. The other

fluxes from left to right, are the viscous flux and the diffusive flux,

f. The last term in the energy equation is the work done by

buoyancy.

At the base f has a positive constant value. This is the source

term of the vigorous turbulent convection, i.e. at r � rb � 0:72;
f � f br̂: At all other horizontal levels f acts as a diffusion term,

computed as f � 2k17S2 k27T : The values of k1 and k2
determine whether the layer is convective (unstable) or radiative

(stable). In the unstable layer �0:72 < r , 0:986�; k1 � mT=Pr
and k2 ! f b=j7Tjt�0: As k2 is very small, nearly all of the heat

transport is convective. In the upper layer �0:986 < r < 1:0�;
k1� 0 and k2 � f b=j7Tjt�0; allowing conduction to transport all

of the heat flux in the stable layer. The conduction layer emulates

radiation above the convection layer.

The horizontal boundaries are insulating, stress-free and

impenetrable in latitude, and periodic in longitude. The top and

bottom are both impenetrable and stress-free. The source term fb is

injected in at the bottom and conducted out through the top. This

requires the top to be maintained at a constant temperature.

2.3 LES versus DNS

In the SCZ, as the convective flux @ diffusive flux, efficient
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mixing reduces the superadiabatic gradient 72 7ad to just above

zero (<1028). This type of convection is simulated numerically,

by transferring energy from the base to the top of the

computational domain as follows. First, in the unstable layer

(from r � 0:72 up to r � 0:986� the gas conductivity is artificially

small, forcing convection to carry most of the heat flux across the

imposed temperature gradient. Secondly, the initial polytrope is

neutrally stable g � 5
3
; n � 1:5

ÿ �

: After the convection has

developed, the relaxed thermal structure remains very close to

this initial state, so that 7 is only slightly greater than 7ad (or

equivalently 7S is just below zero). This approach to modelling

the SCZ is very different from the DNS approach. The main

difference lies in the role of the diffusive flux. In the DNS by

Brummel et al. (1996), radiation transports 75 per cent of the

energy flux, while the resolved convective motions carry the rest

(via the kinetic and enthalpy fluxes). In the present LES, the

thermal conductivity is nearly zero, therefore even the entropy

diffusion of the SGS, is greater than radiative diffusion. As 7S < 0;
the resolved large eddies must carry the majority of the energy flux.

2.4 Angular momentum conservation

Owing to the non-zero reference rotation rate, after relaxation one

must ensure that there is no mean motion between the fluid in the

shell and the rotating frame of reference. After the start of the

computation, the compressible bulk can acquire some spurious

form of rotation caused by initial expansion or contraction.

Enforcing the condition krvflv � 0; where `v' denotes volume

averaging taken after thermal relaxation, ensures the total angular

momentum is zero in the reference frame. This is accomplished by

calculating the mean angular velocity of the shell, kVlv �
Srvfr sin u=Srr

2 sin2 u; and subtracting the residual angular

momentum from the total flow, rvf ! rvf 2 kVlvrr
2 sin2 u:

When the statistics are gathered, kVlv is less than 4 � 1024:

2.5 Numerical methods

After some transformations to make the numerical scheme

conservative and preserve second-order accuracy for the non-

uniform vertical grid (Chan & Sofia 1986), equations (4)±(7) are

discretized in spherical coordinates. Using a code developed by

Chan & Wolff (1982), an implicit scheme (the alternating

direction implicit method on a staggered grid or ADISM) relaxes

the fluid to a self consistent thermal equilibrium. The relaxation

time is of the order of a `Kelvin Helmholtz' time (<
�

rcvT dr=f b�:
In the fully relaxed layer, the energy flux leaving the top of the

shell is within 5 per cent of the input flux fb.

Next, a second-order explicit method (Adams±Bashforth time

integration) gathers the statistics of the time-averaged state. The

statistical integration time is over 500 turnover times, and requires

about 1:5 � 106 time-steps. For model A (longitudinal span of

308), there are 39 � 70 � 35 grid points, in the radial, latitudinal

and zonal directions, respectively. For model B, which has twice

the longitudinal span of A, there are twice as many points in the

longitudinal direction. The choice of grid comes from comparing a

simulation in a very small section of the shell (Robinson 1999)

�u^ 158�; with a physically similar LES computation in a small

box (Chan 2001). The box, which has an aspect ratio of 1.5, is

placed at the mid-latitude of the shell.

For a single processor on the ORIGIN 2000, the CPU time per

integration step is about 3 s in model B. Using automatic

parallelization on four processors, the speed up factor is about 3.

Numerical stability requires a non-uniform grid with the same

number of grid points per scaleheight and a very small input flux

fb of 0.25/64. These significantly increase the total (implicit plus

explicit) computation time. Consequently, the minimum time for a

full simulation is about a month.

3 RESULTS

3.1 Trials

After a series of numerical experiments (Robinson 1999) in a shell

spanning ^158 in latitude and longitude, a set of parameters

were found that generated a `Sun-like' rotation pattern. These

were V0 � 2:91; f b � 0:25=64; Pr � 1 and gt � 19 (about 5

pressure scaleheights). Fixing these parameters, the latitudinal

span was increased to 608 (308 above and below the equator).

Surprisingly, the rotation profile appeared to be in some kind of

`quasi-steady state'. Initially, a `Sun-like' profile was seen, but as

the computation progressed, the radial angular velocity gradient at

the equator, switched from positive to negative. This simulation

was run to completion and the averaged results are classified as

model A.

Increasing V0 did not improve matters, and only when the

longitudinal span was increased to 608, was a positive angular

velocity gradient sustained. The shell now covered the same

longitudinal as latitudinal extent. This simulation was run inde-

pendently of model A and the averaged results are classified as

model B. We found out later that the flow reversal in A, was

caused by a spurious meridional circulation. Strong downflows at

the impenetrable latitudinal boundaries generate a powerful flow,

pointed from the equator towards the poles. This feature is

described in Section 3.2.2.

3.2 Flow characteristics

In a turbulent fluid a quantity q can be split into a mean and a

fluctuating part,

q � �q�r; u� � q 0�r; u;f; t�: �9�

The overbar represents a combined longitudinal and temporal

average, i.e.

�q�r; u� � 1

t2 2 t1

�t2

t1

1

�f2 2 f1�

�

q df

� �

dt: �10�

t1 is the time after which the system has reached a self-consistent

thermal equilibrium, i.e. t1 .
�

e dr=f b: e is the internal energy at

each horizontal level. The time required for statistical convergence

�t2 2 t1� depends on the particular quantity being averaged. While

the mean velocities required about 100 turnover times, turbulent

quantities such as the velocity correlation v 0
rv

0
f; took about 5

times as long.

3.2.1 Mean zonal flow

The angular velocity averaged over time and longitude, relative to

the rotating frame of reference, is computed and shown in Figs 2

and 3 for model A, and in Figs 4 and 5 for model B. In model A,

the isorotation contours are parallel to the rotation axis. This

means the angular velocity of a fluid element at any point in the

shell is determined by its perpendicular distance from the rotation
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axis. Fig. 3 shows the angular velocity plotted against non-

dimensional depth (given as a fraction of the total solar radius, i.e.

r � r=R� in the Northern hemisphere. Colatitudes (908-latitude) of

908,858,798 and 67.58 are labelled by full, long-dashed, triple-dot-

dashed and chain curves, respectively. The plots show that the

angular velocity decreases radially outwards and away from the

equator, in direct contrast with the rotational profile found in the

SCZ.

If the simulation is repeated with twice the longitudinal span,

the differential rotation has a much more `Sun-like' appearance. In

model B, the shape of the isorotation contours resemble

helioseismology observations in two distinctive ways.

Firstly, an initial increase and then decrease in angular velocity

from the top inwards near the equator is found, as shown by

the two closed circular rotation contours (or equivalently, the

radial angular velocity profile in Fig. 5). Helioseismic results,

Kosovichev et al. (1997), show that the increase inwards of

angular velocity occurs at the equator and up to 608 colatitude, but

the behaviour at lower colatitudes is still unclear (Schou et al.

1999). As the computational shell only extends to about 608

colatitude, we will only consider behaviour away from the

boundaries as being representative of the actual convective flow.

In that sense, within ^88 about the equator, the computed angular

velocity `bump' is at least qualitatively similar to the observed

result.

Secondly, away from the equator towards mid-latitudes, the

contours are about half-way between the cylindrical contours

(Taylor columns) seen in most earlier global simulations (e.g.

Glatzmaier 1987), and the cone-like shape observed in the SCZ.

There is also good agreement with recent anelastic global LES by

Elliott, Miesch & Toomre (2000). Over the range of depth and

latitude in common with their simulation and the present

simulation, the isocontours are similar. The amount of variation

of angular velocity with latitude is also in agreement with the

SCZ. At the same colatitudes as in A, the mean angular velocity is

plotted against depth (Fig. 5). At the top of the shell the angular

velocity, drops by about 0.2 between the equator (full curve) and

colatitude of 67.58 (chain curve). As V0, is about 3, the drop

implies a 7 per cent variation in rotation rate over 22.58, or

extrapolating, a pole that spins 28 per cent faster than the equator.

Figure 2. Isorotation contours averaged over time and longitude in a shell

spanning 608 in latitude and 308 in longitude (model A).

Figure 3. Depth variation of mean angular velocity in a shell spanning 608

in latitude and 308 in longitude (model A). Colatitudes of 908, 858, 798

and 67.58 are denoted by full, broken, dotted and chain curves,

respectively.

Figure 4. Isorotation contours averaged over time and longitude in a shell

spanning 608 in latitude and longitude (model B).

Figure 5. Depth variation of mean angular velocity in a shell

spanning 608 in latitude and longitude (model B). Colatitudes of 908,

858, 798 and 67.58 are denoted by full, broken, dotted and chain curves,

respectively.
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This is in rough agreement with the rotation rate at the surface of

the Sun, which varies from 25 d at the equator to 35 d at the poles.

3.2.2 Mean meridional flow

The meridional flows are also very different. In A, a strong

meridional circulation develops, directed from the equator towards

the poles at the top, with strong downflows at the latitudinal

boundaries. The mean meridional velocity vu at the same

colatitudes as used for the zonal flow, is presented in Fig. 6. As

vu , 0 in the Northern hemisphere, the upper leg of the

circulation is directed from the equator to the pole. Moving

polewards from the equator, where by symmetry the meridional

velocity is zero, jvuj increases to a maximum near a colatitude of

67.58, and then reduces to zero as the flow approaches the lati-

tudinal boundary. At the boundary, the magnitude of the maximum

downward radial velocity (not shown) is about 0.2. The meridional

circulation is produced by strong downflows associated with the

stress free impenetrable boundaries. In early models of turbulent

compressible convection in a small box, Chan & Sofia (1986),

noticed that an impenetrable side boundary tends to attract

downflows and they made all side boundaries periodic in later

computations. In a shell that excludes the poles, impenetrable

boundaries are unavoidable. These strong downflows create an

artificially large meridional circulation.

Fortunately, the downflows can be almost eliminated by

widening the longitudinal span. While the magnitude of the

maximum radial velocity at the boundary is 0.2 in A, it is less than

0.005 in B (both being directed downwards). The impenetrable

boundaries have very little effect on the downflows in B. This is

because less restriction is placed on the flow direction. In A, the

narrowness of the slice enhances the meridional circulation,

enabling it to traverse the entire depth of the shell. In B, the

meridional flow is only significant in the upper part of the shell

�r . 0:95�; elsewhere it is close to zero. Fig. 7 shows that vu is

negative (poleward) at the top of the unstable layer, while just

above, in the stable layer, there is a returning (equatorward) flow.

The return flow is twice as fast as the poleward flow, because the

fluid at the top has half the density of the equatorward moving

fluid, i.e. momentum is conserved in the meridional velocity loop.

The point where vu changes sign �r � 0:975� is very close to the

beginning of the stable layer �r � 0:985�: Below a depth of about

0.95, vu is very small and the multicellular appearance is most

probably a residual effect.

3.2.3 Turbulent quantities

The root-mean-square (rms) variance of a quantity q is given by

q 00 �
���������������

q2 2 �q2
q

: �11�

We can remove the radial dependence by averaging over the

convection layer,

kq 00l � 1

d

�

q 00 dr; �12�

Figure 6. Depth variation of mean meridional velocity in a shell with a 308

longitudinal span (model A). Colatitudes of 908, 858, 798 and 67.58 are

denoted by full, broken, dotted and chain curves, respectively.

Figure 7. Depth variation of mean meridional velocity in a shell with a 608

longitudinal span (model B). Colatitudes of 908, 858, 798 and 67.58 are

denoted by full, broken, dotted and chain curves, respectively.

Table 2. Model B: turbulence characteristics in the `Sun-like' differential
rotation.

u 8 kv2l
1=2

kv 00l kv 00
rl kv 00

u l kv 00
fl Co Re Ta

67.5 0.157 0.105 0.056 0.053 0.070 7.4 440 2.9e108
84 0.238 0.122 0.065 0.063 0.080 6.3 480 2.6e108
90 0.250 0.121 0.066 0.060 0.079 6.4 460 2.5e108

Table 1. Model A: turbulence characteristics in the `non-Sun-like' differential
rotation.

u8 kv2l
1=2

kv 00l kv 00
rl kv 00

ul kv 00
fl Co Re Ta

67.5 0.361 0.094 0.064 0.059 0.035 8.6 330 2.1e108
84 0.569 0.076 0.056 0.043 0.024 10. 290 2.5e108
90 0.591 0.079 0.059 0.042 0.028 9.8 270 2.0e108
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where d � 12 rb is the total depth of the layer. The angled

brackets will be used to denote depth averages. Note kq 00l depends
only on latitude.

Turbulent velocity characteristics at colatitudes of 908, 848 and

67.58 are presented in Tables 1 and 2 for simulations A and B.

The total kinetic energy (mean plus turbulent) is proportional

to kv2l
1=2;

while the turbulent part of the kinetic energy is

measured by kv 00l, where v 00 �
����������������������������������

v 00
r2� v 00

u2� v 00
f2

p
: Columns 2

and 3 indicate the relative sizes of kv2l
1=2

and kv 00l. In A, kv2l
1=2

is more than 4 times greater than kv 00l, i.e. most of the kinetic

energy is in the mean circulation. Conversely, in B, kv 00l is

within a factor of 2 of kv2l
1=2

; implying that the kinetic energy is

split approximately equally between the mean and turbulent

scales. In model B, most of kv 00l is in the zonal component

kv 00
f l, while in A, kv 00

f l is the smallest component. The distri-

bution of kinetic energy between the mean and turbulent flow

may determine the nature of the differential rotation. By measur-

ing the autocorrelation function of the vertical velocity, we found

that the vertical scale of the turbulence is about 1.5 pressure

scaleheights (PSH), compared with a total shell depth of 5 PSH.

Non-dimensional parameters defining the importance of rota-

tion compared with other physical processes can be calculated

from the resultant flow. The strength of the turbulent convection

relative to rotation is characterized by the Coriolis number, Co �
V0d=kv

00l: The Reynolds number, Re, compares the relative

magnitudes of the advection and viscous terms, and is calculated

as kv 00ld=k �m= �rl: The importance of SGS viscosity relative to

rotation, is measured by the Taylor number, Ta, which is

4V2
0d

4=k �m= �rl2 For reference these non-dimensional parameters

are computed from the relaxed flow and presented in the last three

columns of Tables 1 and 2. The Coriolis numbers are larger in A

because the turbulent velocities are smaller. This suggests rotation

will have a greater effect on the large scales in A than in B. The

larger Reynolds numbers in B reflects the more turbulent nature of

the flow.

4 D ISCUSS ION . WHAT PRODUCES THE

DIFFERENTIAL ROTATION?

4.1 Taylor±Proudman balance (TPB)

Averaging the meridional momentum equation over longitude and

time, so that ­=­f � 0and ­=­t � 0; produces

1

r2
­

­r
�rvuvrr2� � 1

r sin u

­

­u
�sin urv2u� �

1

r
�rvuvr 2 cot urv2f �

� 1

r

­ �P

­u
2 2Vrvf cos u� Vu � 0: �13�

Measured at an arbitrary colatitude of 788, Figs 8 and 9 show the

relative sizes of terms in (13) computed from the averaged flows

in A and B. From left to right terms are labelled by pluses, stars,

diamonds, triangles, boxes and crosses, respectively. The third

term in each equation is split into two terms (denoted by the

diamonds and triangles). For the Co, Re and Ta values in the

present simulations, the viscous stress terms Vu are (equator

excluded) much smaller than other terms. Therefore, these terms

are not shown.

In both A and B the latitudinal pressure gradient (boxes) and the

Coriolis force (crosses) are in approximate balance. The terms

that contain the Reynolds stresses are insignificant. The overall

dominance of the pressure gradient and the Coriolis force

suggest the Navier±Stokes momentum equations can be

approximated by

7P

r
� g2 2V0 � v: �14�

The above equation is known as the Taylor±Proudman momentum

balance. Using entropy S � cv ln�p=rg� and the perfect gas

equation p � rRT ; the curl of the left-hand side of (14) produces

7 � 7P

r
� 2

1

r2
�7P � 7r� � 7T � 7S; �15�

so that the f component of the curl of equation (14) is equivalent

to

2V0 r cos u
­vf

­r
2 sin u

­vf

­u

� �

� ­T

­r

­S

­u
2

­T

­u

­S

­r
� 0: �16�

As g can be written as a potential, the buoyancy term disappears.

Measurements from the simulation show that ­T=­r is nearly 3

orders of magnitude greater than ­T=­u: The temperature field is

almost radial and does not alter much from the initial unperturbed

state. Assuming T < T�r�; the last term of (16) can be neglected,

Figure 8. Successive terms in averaged meridional momentum equation

measured at a colatitude of 788 in a shell with a 308 longitudinal span

(model A). Clearly, the largest terms are the latitudinal pressure gradient

(boxes) and the Coriolis force (crosses), while the Reynolds stresses are

relatively insignificant.

Figure 9. Successive terms in averaged meridional momentum equation

measured at a colatitude of 788 in a shell with a 608 longitudinal span

(model B). Similarly, the largest terms are the latitudinal pressure gradient

(boxes) and the Coriolis force (crosses) and again the Reynolds stresses are

very small.
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and the second term can be replaced by

dT

dr

­S

­u
� 2

g�r�
cp

­S

­u
�17�

which when substituted into (16), gives

2V0 r cos u
­vf

­r
2 sin u

­vf

­u

� �

2
g�r�
cp

­S

­u
� 0: �18�

This is equivalent to the rotation law obtained by Durney (1999).

Fig. 10 shows the mean entropy, kSÅl averaged over time,

longitude and depth, plotted against colatitude for models A

(triple-dot-dashed curve) and B (full curve). In A, the entropy is

almost independent of colatitude, suggesting that ­S=­u < 0; so
that equation (18) reduces to

r cos u
­vf

­r
2 sin u

­vf

­u
� 0: �19�

Equation (19) implies vf � f �r sin u�; i.e. vf is constant along

cylinders parallel to the rotation vector. In A because the pressure

gradient and Coriolis terms dominate the momentum balance, and

the latitudinal entropy gradient is approximately zero, Taylor

columns are seen in the interior. This explains the isorotation

contours in Fig. 3.

In contrast, in B the entropy varies significantly with colatitude.

This non-zero latitudinal entropy gradient is the reason why more

`Sun-like' isorotation contours are seen in model B. In other

words, the term 2g�r�=cp ´ ­S=­u shapes the differential rotation.

Following this line of reasoning, we computed the baroclinic term

2g�r�=cp ´ ­S=­u (denoted by boxes) and 2Vo�r cos u­vf=­r 2
sin u­vf=­u� (denoted by crosses) from the averaged flow. Fig. 11

shows the results at colatitudes of 908 (smallest magnitude), 828

and 728 (largest magnitude). Clearly, they are in approximate

balance, confirming that the thermal structure, i.e. S(r, u ), directly
controls the overall shape of the differential rotation profile. The

Reynolds stresses play only a minor role in the dynamics. As the

simulation is of `mildly', rather than fully developed turbulence, it

remains to be seen, whether the same is true in the Sun.

4.2 Meridional circulation and the Reynolds stress

4.2.1 Meridional circulation produces differential rotation in A

In model A, meridional circulation drives the convection to a

spurious equilibrium state (see sections 3.1 and 3.2.2). The

computation starts off with a Sun-like rotational state, but as it

progresses the layer relaxes to a completely different equilibrium.

We previously suggested that this is a consequence of the

artificially large downflows at the impenetrable latitudinal boun-

daries. We will now show that the direction and strength of the

meridional circulation in A is just enough to drive the differential

rotation.

Consider a fluid parcel in a Lagrangian frame of reference.

Ignoring the zonal pressure gradient and frictional effects, the only

force on the parcel is the Coriolis force associated with the

meridional circulation (vr,vu,0). The equation of motion of the

fluid parcel is then

dvf=dt < 22V0 cos uvu 2 2V0 sin uvr: �20�

Integrating with respect to time gives

Dvf < 22V0D�sin u�2 2V0 sin uDr: �21�

We can verify this relation by taking values of vf from Fig. 12

which shows how vf varies with depth in model A. At the top of

shell (constant r), Dvf=D�sin u� < 5:9: While at the equator

(constant u ), Dvf=sin uDr < 25: As V0 � 2:91; the meridional

circulation is about the right size and direction to produce the

zonal velocity variation in A. This expresses as a tendency of fluid

parcels to conserve their individual angular momentum.

Figure 10. Longitude, time and depth averaged entropy variation with

colatitude: simulations A and B are denoted by chain and full curves,

respectively. The entropy is almost constant in model A, but has a

significant latitudinal variation in B. In both cases the entropy gradient is

zero at the equator.

Figure 11. Averaged terms in the Taylor±Proudman balance for the

shell with a 608 longitudinal span (model B). 2g�r�=cp ´ ­S=­u and

2Vo�r cos u­vf=­r2 sin u­vf=­u�; are denoted by boxes and crosses,

respectively. Both expressions have the smallest magnitude at the equator

and successively larger values at colatitudes of 828 and 728.

Figure 12. Longitude and time averaged zonal velocity in the narrower

shell (model A). Colatitudes of 908, 858, 798 and 67.58 are denoted by full,

broken, dotted and chain curves, respectively.
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4.2.2 Reynolds stress produces meridional circulation in B

In model B, neither the meridional circulation, nor the Reynolds

stress, are sufficient to directly drive the differential rotation. As

previously described, it is the entropy distribution that produces

the differential rotation in B. The meridional circulation in B is

completely different to that in A. Equation (21) cannot be applied

to the radial and latitudinal variation of zonal velocity in B. Fluid

parcels do not appear to conserve their individual angular

momentum. In fact, they do, it is just that other forces are

involved, namely the Reynolds stresses.

In a turbulent fluid, the velocity can be split into its mean and

fluctuating part. Though the average of the fluctuation is zero, the

average of the product of two fluctuating quantities is not neces-

sarily zero. The Reynolds stress is the averaged correlation between

small-scale velocity fluctuations, in two component directions, and

the density. To reduce the order of the statistical moments, we

assume that density can be taken out of the correlation,

rv 0
iv

0
j � �rv 0

iv
0
j: �22�

This approximation is good because the density fluctuations are

small (of the order of the square of the turbulence Mach number).

This has been confirmed numerically. As the mean density only

depends on depth, the nature of the Reynolds stress can be

ascertained by looking at the velocity correlation, v 0
iv

0
j: Fig. 13

shows v 0
rv

0
f plotted at the same colatitudes and using the same

line markers as previous velocity plots. Fig. 14 shows v 0
uv

0
f; at

depths of 0.98, 0.95, 0.90 and 0.85, denoted by full, dotted, broken

and chain curves, respectively.

By comparing the plots of vu (Fig. 7) and the velocity

correlations, certain features become apparent. First, quantities are

only significant near the top of the shell (above r � 0:90�;
elsewhere they are close to zero. Secondly, at lower colatitudes

(specifically 798 and 67.58) the sign and order of magnitude of vu
closely matches negative the slope of v 0

rv
0
f: Thirdly, towards the

equator, ­=­r�v 0
rv

0
f� decreases, while ­=­u�v 0

uv
0
f� becomes

steeper (more negative).

The relation between vu and the Reynolds stresses (or velocity

correlations), can be traced to the zonal momentum balance. In a

rotating frame of reference, the axisymmetric zonal momentum

equation can be written as

1

r2
­

­r
�vrvfr2� � 1

r sin u

­

­u
�vuvf sin u� � N

� 2V0�vu cos u� vr sin u� < 0; �23�

where N denotes the additional non-linear terms and the

viscous terms are again excluded. Near the impenetrable top

boundary, vr is close to zero, so the last term can be excluded.

Clearly, the derivatives of v 0
rv

0
f and v 0

uv
0
f are capable of

driving vu: Away from the equator v 0
rv

0
f drives vu; while close

to the equator (specifically 858) v 0
uv

0
f becomes more important.

Overall, the Reynolds stresses produce a weak meridional

circulation concentrated in the uppermost part of the shell, but are

negligible elsewhere.

4.2.3 Reynolds stress produces an angular velocity `bump' near

the top

One other feature of the zonal velocity profile that cannot be

explained by the large-scale interaction of convection with

rotation (i.e. TPB), is the small angular velocity `bump' (see

Fig. 5). The initial increase in angular velocity moving inwards

can be considered as a small-scale feature of the flow �Dvf ,

1 per cent of the mean rotation rate). The `bump' cannot be

attributed to the large-scale entropy variation.

It seems likely that this small-scale feature could be caused by

the Reynolds stress. The plot of v 0
rv

0
f (Fig. 13), reveals a

connection between a negative drop in v 0
rv

0
f near the top of

the shell, and the zonal velocity variation (Fig. 5). The negative

trough near the equator at colatitudes of 908 and 858 (full and

broken curves) represents an inward transport of angular

momentum by the Reynolds stress. We suggest that this is the

cause of the slight increase in angular velocity (or `bump') moving

inwards from the top of the convection zone. Furthermore, the

maximum angular velocity at the equator, occurs at almost the

same position as the minimum of v 0
rv

0
f:

5 CONCLUSION

The aim of this work is to reproduce solar differential rotation, by

solving the equations of hydrodynamics, in a section of a spherical

Figure 13. Longitude and time average of the product of radial and zonal

velocity fluctuations v 0
rv

0
f (<Reynolds stress divided by mean density)

versus depth (model B). Colatitudes of 908, 858, 798 and 67.58 are denoted

by full, broken, triple-dot-dashed and chain curves, respectively. The

negative troughs near the equator (full and broken lines) represents an

inward transport of angular momentum by the Reynolds stress. The

positive peaks away from the equator (dotted and dot-dashed lines)

correspond to a change in the sign of the meridional velocity, indicating

that vu depends on the radial derivative v 0
rv

0
f:

Figure 14. Longitude and time average of the product of meridional and

zonal velocity fluctuations v 0
uv

0
f (<Reynolds stress divided by mean

density) versus colatitude (model B). Depths of 0.98, 0.95, 0.90 and 0.85

are denoted by full, dotted, broken and chain curves, respectively. Near the

top (full and dotted curves) the latitudinal gradient of v 0
uv

0
f increases

towards the equator.
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shell. To achieve this, we have performed two numerical simu-

lations. The first simulation initially has an angular velocity that

decreases inwards, in agreement with the solar case. However, as

the computation progresses, the radial angular velocity gradient

changes sign, and the rotation rate increases inwards. The mean

rotational structure consists of cylindrical isorotation contours and

a subrotating equator. The switch is caused by an artificially large

meridional circulation, which itself is a result of strong downflows

that occur at the impenetrable side boundaries.

In the second computation the longitudinal span is doubled, so

that it now equals the latitudinal span. The wider shell has much

weaker downflows and a more turbulent flow. Under these

conditions the rotation profile remains in the `Sun-like' state. The

angular velocity now bears a closer resemblance to solar case,

with a radial and latitudinal variation, both qualitatively and

quantitatively similar to the SCZ.

By using an implicit time-stepping scheme, we are able to run

the simulations for longer than a `Kelvin Helmholtz' time-scale.

The emphasis on complete thermal relaxation, could be the vital

ingredient, required to correctly model rotating convection.

Incomplete thermal relaxation, may be one reason why earlier

simulations failed to obtain the proper rotation pattern. In the

`Sun-like' simulation, it is the large-scale thermal structure

(specifically the entropy variation with latitude), rather than

small-scale motions (as in mean-field models or some numerical

models), that directly produces the differential rotation. The non-

zero latitudinal entropy gradient (baroclinicity) shapes the differ-

ential rotation. We note that in the `Sun-like' model, the kinetic

energy distributes roughly equally between the mean and turbulent

scales, in contrast to the non-`Sun-like' model, in which nearly all

of the energy is in the mean flow. Furthermore, the turbulent

kinetic energy is greatest in the zonal direction. This suggests the

turbulent nature of the SCZ, may have some indirect role in the

maintenance of solar differential rotation, but how it operates is

still unclear.

The Reynolds stresses are important in the upper 10 per cent of

the computational domain. This region contains the top of the

convection (unstable) layer and all of the radiative (stable) layer.

Here the velocity correlation v 0
rv

0
f; has a dual effect. First, it

provides an inward transport of angular momentum, which causes

the slight increase in angular velocity, just below the surface and

near the equator. Secondly, 2­=­r�v 0
rv

0
f� is principally respon-

sible for the poleward meridional circulation at the top of the

convection layer, and the accompanying return flow in the stable

layer. Closer to the equator (within about 58), 2­=­u�v 0
uv

0
f �

appears to drive the meridional flow. In the meridional momentum

equation (equator excluded) the only significant terms are the

pressure gradient and the Coriolis force. The Reynolds stresses are

only important in the zonal momentum equation, here they

generate the meridional circulation found at the top of the shell.

The key result is that the dynamics near the top (surface layers)

of the convection zone, are controlled by the Reynolds stresses,

while elsewhere, the differential rotation is determined by the

Taylor±Proudman momentum balance. A similar conclusion was

reached in the semi-analytical model of the SCZ by Durney

(2000) (and references therein).
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