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ABSTRACT

We extend the analysis of Penev et al. to calculate effective viscosities for the surface convective zones of three
main-sequence stars of 0.775 M�, 0.85 M�, and the present day Sun. In addition, we also pay careful attention to all
normalization factors and assumptions in order to derive actual numerical prescriptions for the effective viscosity
as a function of the period and direction of the external shear. Our results are applicable for periods that are too
long to correspond to eddies that fall within the inertial subrange of Kolmogorov scaling, but no larger than the
convective turnover time, when the assumptions of the calculation break down. We find moderately anisotropic
viscosity, scaling linearly with the period of the external perturbation, with its components having magnitudes
between three and ten times smaller than the Zahn’s prescription.
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1. INTRODUCTION

Turbulent (eddy) viscosity is often considered to be the main
mechanism responsible for the dissipation of tides and oscilla-
tions in convection zones of cool stars and planets (Goodman
& Oh 1997, from now on GO; and references therein). Cur-
rently existing descriptions have been used, with varying suc-
cess, to explain circularization cutoff periods for main-sequence
binary stars (Zahn & Bouchet 1989; Meibom & Mathieu 2005),
the red edge of the Cepheid instability strip (Gonczi 1982),
and damping of solar oscillations (Goldreich & Keeley 1977).
However, this hypothesis has been far more successful in
damping oscillations than damping tides, and different mecha-
nisms have been proposed for the latter, especially for planets
(see Wu 2005a, 2005b; Ogilvie & Lin 2004 and references
therein).

The standard treatment is to assume a Kolmogorov spectrum
in the convection zone and apply some prescription to model
the effectiveness of eddies in dissipating the given perturbation.
Two prescriptions have been proposed to describe the efficiency
of eddies in dissipating perturbations with periods (T) smaller
than the eddy turnover time (τ ).

The first prescription, due to Zahn (1966, 1989), assumes that
it is always the largest eddies that dominate the dissipation and
that they lose efficiency linearly with decreasing period:

ν = νmax min

[(
T

2τc

)
, 1

]
, (1)

where νmax is some constant which depends on the mix-
ing length parameter and τc is the local convective turnover
time (or the turnover time of the largest local eddies).
This prescription has been tested against tidal circulariza-
tion times for binaries containing a giant star (Verbunt
& Phinney 1995), and is, in general, in agreement with
observations.

The second prescription, due to Goldreich & Nicholson
(1977) and Goldreich & Keeley (1977), assumes that eddies with
periods longer than T/2π do not contribute to the dissipation.

In that case, for Kolmogorov scaling:

ν = νmax min

[(
T

2πτc

)2

, 1

]
. (2)

This prescription has been used successfully by Goldreich
& Keeley (1977); Goldreich & Kumar (1988); and Goldreich
et al. (1994) to develop a theory for the damping of the solar
p-modes. If the more effective dissipation was applied instead,
dramatic changes would be required in the excitation mechanism
in order to explain the observed p-mode amplitudes. However,
this inefficient dissipation is inconsistent with observed tidal
circularization for binary stars (Meibom & Mathieu 2005).
Additionally, Gonczi (1982) argues that for pulsating stars the
location of the red edge of the instability strip is more consistent
with Zahn’s description of the eddy viscosity than with that of
Goldreich and collaborators.

GO gave a consistent hydrostatic derivation of the convective
viscosity, using a perturbation approach. For a Kolmogorov
scaling, they obtained a result that is closer to the less-efficient
Goldreich & Nicholson viscosity than it is to Zahn’s, providing a
more sound theoretical basis for the former scaling. Of course,
the observational problem of insufficient tidal dissipation for
stellar pulsations and binaries remains unresolved, as GO point
out.

Both two-dimensional (2D) and three-dimensional (3D) nu-
merical simulations of the solar convection zone have revealed
that the picture of a Kolmogorov spectrum of eddies is too sim-
plified (Stein & Nordlund 1989; Robinson et al. 2003). These
simulations show that convection proceeds in a rather different,
highly asymmetric fashion. This suggests that the problem of in-
sufficient dissipation may be resolved by replacing the assump-
tion of Kolmogorov turbulence with the velocity field produced
from numerical simulations. More importantly, an asymmetric
and non-Kolmogorov turbulence might dissipate different per-
turbations differently, i.e., depending both on the frequency and
geometry of the perturbation. Such simulations have been used
to develop a better model for the excitation of solar p-modes
(Samadi et al. 2003).
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In Penev et al. (2007), we reconsidered the problem of tidal
dissipation in stellar convection zones of solar-type stars by
applying the approximation developed in GO to the turbulent
velocity field from a realistic 3D solar simulation and showed
that the scaling predicted by this procedure is very close to
linear. The shallower scaling is explained by the fact that on the
timescales captured by the simulation the largest eddies have
typical sizes comparable to the local pressure scale height and,
in this regime, the velocity power spectrum is much shallower
than Kolmogorov.

In this paper, we apply a more complete version of the
same scheme to three stellar convection models appropriate for
stars with masses of 0.775 M�, 0.85 M�, and 1 M�. We also
pay significantly more attention to the normalization and the
approximations which we introduce in addition to GO.

2. METHOD

2.1. The Perturbative Expansion for Discretely Sampled
Velocity Field

We follow the procedure outlined in GO and assume an
external perturbing velocity field given by GO’s Equation (8):

Vt = A(t) · x, (3)

where A(t) is some matrix that depends only on time, and not
space. This is appropriate when the spatial dependence of the
perturbation is on scales much larger than our simulation box
(e.g., tides). The matrix A(t) is assumed symmetric, since the
antisymmetric part corresponds to rotation, and is not expected
to contribute to the energy dissipation.

Introducing this velocity field will modify the convective flow
(v0). The time evolution of the change in the turbulent velocity
(δv) due to the presence of the above external field can be written
as in GO, Equation (19):

∂tδv(x, t) = −2A(t) · v0(x, t) − v0 · ∇δv − δv · ∇v0

− (pressure term). (4)

GO assumed incompressibility, and hence the pressure term
simply maintains that ∇ · δv = 0. We use the output of fully
compressible simulations, so for us the pressure term should be
much more complex. However, the only type of compressibility
that we can reasonably incorporate in the analysis is that due
to the stratification of the convective layer, and even that we
approximate by assuming a constant density scale height. This
is discussed in more detail in Section 2.3.

We then follow GO in writing Equation (4) in Fourier space.
However, since we are dealing with discretely sampled data, we
use discrete Fourier transforms:

δvl,m,n,p = 1

NxNyNzNt

∑
λ,μ,ν,φ

δ̂vλ,μ,ν,φe
2πi( λl

Nx
+ μm

Ny
+ νn

Nz
+ φp

Nt
)
,

v0l,m,n,p = 1

NxNyNzNt

∑
λ,μ,ν,φ

v̂0λ,μ,ν,φe
2πi( λl

Nx
+ μm

Ny
+ νn

Nz
+ φp

Nt
)
, (5)

A(t) = 1

2
[Â(Ω)e−iΩt + Â(−Ω)eiΩt ],

where 2π/Ω is the period of the external forcing.
For more details on how exactly the Fourier transform is

applied in the radial and time directions see Section 2.4.

In Fourier space to first order in A (the strength of the
perturbation) and Ωτc (the ratio of perturbation timescale to
convective turnover time), Equation (4) is written as

δv̂λ,μ,ν,φ = − i

ωφ

Pλ,μ,ν[Â(Ω) · v̂(ωφ − Ω, kλ,μ,ν)

+ Â(−Ω) · v̂(ωφ + Ω, kλ,μ,ν)], (6)

where Pλ,μ,ν ≡ I − k′
λ,μ,νk′

λ,μ,ν/k′2
λ,μ,ν , with k′

λ,μ,ν ≡ kλ,μ,ν +
iẑ/Hρ , is the discrete version of the projection operator GO
defined that imposes compressibility only due to a constant
density scale height.

We can then express the average rate of work done (per unit
volume) on the turbulent velocities by the tide to lowest non-zero
order as

Sρ,ρ ′ ≡ T

N 2Nz

∑
λ,μ,ν,ν ′

ρ∗
ν−ν ′vλ,μ,ν,ρPλ,μ,ν ′v∗

λ,μ,ν ′,ρ ′ ,

Ė(Ω = 2πR/T ) = Re{SR,−R + SR,R}
+

∑
r �=0

1

πr
Im{Sr+R,r−R + Sr+R,r+R}, (7)

where N ≡ NxNyNzNt . In keeping with GO, we have assumed
that all frequencies have an infinitesimal imaginary part, which
gives rise to the first term above. The second term is entirely
due to the density stratification in the box: in the case of
ρ(z) = const, it is zero. This term is the most important
difference between this calculation and GO.

In deriving Equation (7), we have assumed that the density is
only a function of depth. Keeping the radial dependence is nec-
essary because the simulation box encompasses several density
scale heights, while the horizontal and temporal dependence of
the density is a much smaller effect, entirely due to the turbulent
fluctuations in the box; and if we could average over different
realizations of the turbulence, they would not be present.

2.2. Anisotropic Viscosity

In order to extract an effective viscosity, we need to express
the energy dissipation rate that would occur in the presence of
actual anisotropic viscosity.

Most generally, viscosity is a fourth-order tensor relating the
strain, given by A(t) in this case, and the viscous stress:

σ visc
ij = KijmnAmn(t). (8)

With this definition the time-averaged dissipated power is
given by:

Ėvisc(Ω) = 1

2

∫ Lz

0
dzKijmn(z) Re{Aij (Ω)A∗

mn(Ω)}, (9)

where, in order to remain consistent with the Fourier transform
conventions, we simply replace the integral with a sum. To get
the different components of Kijmn, we evaluate Equation (7) with
A having non-zero elements at different locations, and use the
above equation to find the respective viscosity coefficients.

The viscosity tensor (Kijmn) obeys a set of symmetries that
dramatically reduce the number of independent components.
Since the strain rate is symmetric by definition, and the stress
must be symmetric in order to keep the viscous torque on
infinitesimal fluid elements finite, we must have

Kijmn = Kjimn = Kijnm. (10)
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In addition, the only distinct direction in the problem is that of
gravity (ẑ), so we expect the viscosity tensor to be symmetric
with respect to rotation around the vertical axis.

With all these symmetries we are left with only six indepen-
dent components of Kijmn: K1111, K3333, K1212, K1313, K1133, and
K3311. Since the last two of these always appear together in the
expression, for the energy dissipation we will assume them to be
equal. The remaining non-zero components can be found from
those as follows:

K2222 = K1111,
K1122 = K2211 = K1111 − 2K1212,
K1221 = K2121 = K2112 = K1212,

K3131 = K3113 = K1331 = K2323
K3232 = K3223 = K2332

}
= K1313,

K2233 = K1133,
K3322 = K3311.

(11)

A more physically meaningful set of five viscosity compo-
nents can be found by noting that under these symmetries the
strain rate has only four distinct components:

A0 ≡ A11 + A22; A0′ ≡ A33;
A1 ≡ A13 + iA23; A2 ≡ A11 − A22 + 2iA12,

(12)

along with their complex conjugates A−m = A∗
m, which

transform under rotation by angle θ around the ẑ-axis as
Am → eiθmAm.

Clearly then, if Ėvisc(Ω) is to be invariant under such rotations,
it must be of the form:

Ėvisc(Ω) = 1

2

∫ Lz

0
dz

[
4K1|A1|2 + K2|A2|2 + K0A2

0 + K0′A2
0′

+ 2K00′A0A0′
]
, (13)

where the five new viscosity coefficients can be expressed in
terms of Kijmn as follows:

K0 = 1
2 (K1111 + K1122),

K0′ = K3333,

K00′ = K1133,

K1 = K1313,

K2 = 1
2 (K1111 − K1122) .

(14)

Since in Equation (9), we allow the viscosity to depend on
depth, and there is no way to constrain this dependence, we have
to choose some radial profile a priori. Our choice is motivated
by mixing length theory:

Km(z) = K0
m(Ω)ρ〈v2〉1/2Hp, (15)

where K0
m are dimensionless constants that depend on the

frequency of the external shear (Ω), and Hp is the local pressure
scale height. This is reasonable, since the turbulent viscosity
should scale as some length scale times some velocity scale.
Clearly the relevant velocity scale is that of convection, and
in accordance with mixing length theory, we use the mixing
length as the length scale, which is assumed proportional to the
pressure scale height. If the mixing length is really the relevant
quantity, we expect that the value of K0

m will be proportional
to the mixing length parameter for the particular simulation.
This same scaling has been assumed for all previous effective
viscosity prescriptions (Zahn 1966, 1989; Goldreich & Keeley
1977; Goldreich & Kumar 1988; Goldreich et al. 1994).

2.3. The Pressure Term

In deriving the expression for Ė (Equation (7)), we assumed
that the perturbation to the convective velocity field due to the
tide will be anelastic: ∇ · δv + vz/Hρ = 0, with Hρ = const.
In this section, we define two diagnostics which measure how
important the ignored compressibility is.

There are two sources of compressibility in the convective
flow:

1. The convective flow carrying parcels of matter through
layers of different hydrostatic pressure, or in other words
due to the stratification.

2. Localized compression due to a possibly supersonic flow,
e.g., shocks.

Ignoring the second one is justified, as long as the flow
velocity is much less than the local speed of sound. In the
simulations we use, that condition is met by the unperturbed
flow for most of the box, with the exception of the supersonic
driving region near the top. If the unperturbed flow is subsonic
and hence incompressible, the perturbations due to a “small”
external field can safely be assumed incompressible as well. To
measure the compressibility in the simulation box, we introduce
the parameter:

ξ ≡ τc

[
∇ + ẑ

d ln ρ

dz

]
· v0, (16)

where, ρ is the density averaged over horizontal slices and time.
This quantity deviates from zero due to localized, transient

compressions (e.g., shocks). Since those are unlikely to live
longer than a convective turnover time, this quantity is a suitable
diagnostic for the importance of such effects.

Because we are measuring the mass-averaged dissipation, in
order for the perturbative treatment discussed above to be valid,
we can only have ξ � 1 for a negligible fraction of the mass. In
Figure 1, we plot the time-averaged fraction of mass that resides
in regions of the convective box which have ξ greater than some
value. The value of the convective turnover time, necessary
to evaluate ξ , was calculated as τc ≡ FWHM(vz)/ max(vz),
where FWHM(vz) is the thickness of the layer over which
vz > max(vz)/2.

As we can see, in all cases, ξ > 1 for less than 1% of the mass.
This compression is concentrated near the top of the box, where
the density, and hence the dynamic viscosity, is small. So, even
though compressibility and shocks are important in determining
the flow that develops, no appreciable dissipation occurs in
strongly compressible regions. The situation is further improved
by the fact that we apply a window in the vertical direction that
significantly reduces the importance, and completely ignores
part of the compressible driving region near the top of the box
in determining the effective viscosity (see Section 2.4).

We partially treat the first source of compressibility discussed
above by, imposing Hρ = const in the continuity equation.
However, this is not valid for most astrophysically interesting
convective zones. In fact in all cases considered here the density
scale height varies by a factor of a few between the top and
the bottom of the convective layer. In some sense, assuming
Hρ = const is not any better than assuming Hρ = ∞. We argue
that ignoring the stratification from the continuity equation is a
reasonable approximation.

The simplest way to justify this is to repeat the evaluation
of the viscosity with different values of Hρ within the range
encountered in the convective layer of interest.
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Figure 1. Compressibility of the unperturbed flow as a function of depth for the three simulation boxes (0.775 M�—top left; 0.85 M�—top right; and 1.0 M�—bottom).
The horizontal axis gives the time-averaged fraction of mass with compressibility greater than the vertical value.

We can also gauge the importance of the stratification by
comparing d ln ρ/dz to ∂ ln δvz/∂z. We evaluate d ln ρ/dz
directly, and estimate:

d ln δvz

dz
= 1

〈δvz
2〉 1

2

〈(
∂δvz

∂z

)2
〉 1

2

= 1〈
v2

z

〉 1
2

〈(
∂vz

∂z

)2
〉 1

2

.

(17)
The last expression comes from Equation (6), and is correct
when the last row of A(t) contains only a single non-zero entry.
Since those are the only cases we use, this expression is sufficient
for us.

In Figure 2, we compare d ln ρ/dz to ∂ ln δvz/∂z (estimated
as in the above expressions). We see that the logarithmic gradient
of the density is approximately 2 orders of magnitude smaller
than the typical logarithmic velocity gradient, and hence we are
justified in ignoring it.

2.4. Radial and Time Fourier Transforms

Using discrete Fourier transforms to represent a data set,
forces the assumption that the data is periodic in all dimensions.
While this holds for each horizontal slice, it is violated for
the radial and time dimensions. Ignoring the problem leads to
artificially introducing spectral power at the highest frequencies
because of the jumps at the boundaries. To avoid this, we need
a special way to deal with the non-periodic directions.

The usual solution is to window the data so that it goes
smoothly to zero at the edges of the domain. This has the effect
that it makes the values near the center of the domain relatively
more important than those near the boundaries. Incidentally,
this is exactly what we would like in the radial direction, since
the flow near the top and the bottom is affected by the artificial
boundary conditions and is not representative of the actual flow
that would occur in a star.

Further, as discussed in Section 2.3, we expect that the
compressibility of the flow that we neglect might be significant
in the upper end of the box, where the density is small and the
flow is supersonic. So making this region’s contribution to the
overall dissipation small is exactly what we would like. In fact,
in the radial direction we go a step further and limit the window

to completely exclude some part of the box near the top and
bottom boundaries (see Equations (18) and (19)).

In the time direction, as long as the time interval we have
simulated is “representative” of the actual convection that occurs
in a star, weighing the center of the interval more than the edges
should not be a problem.

To confirm that the chosen window function is not affecting
our final result, we derive the effective viscosity coefficient using
two common windows:

Welch : N
[

1 −
(

2t − T

T

)2
]

max

[
0, 1 −

(
2z − Lz

αLz

)2
]

,

(18)

Bartlett : N
[

1 −
∣∣∣∣2t − T

T

∣∣∣∣] max

[
0, 1 −

∣∣∣∣2z − Lz

αLz

∣∣∣∣] ,

(19)

where N is a normalization factor numerically equal to the
inverse of the average of the squares of the window function
at all the grid points, and α is a parameter determining what
fraction of the radial span of the box we include in the analysis;
that is, we exclude (1 − α) fraction of the linear size of the box,
half from the top and half from the bottom.

3. THE STELLAR MODELS

The three models used, represent the top 7–9 pressure scale
heights of the convective zones of the present Sun, a 0.775 M�
and a 0.85 M� stars. Table 1 shows the position of each model
in the log g − log Teff plane. The full details of the numerical
scheme and the properties of the solar simulation are discussed
in Robinson et al. (2003). For a comparison between the models
used here and the work of other groups, as well as observations
see Kupka (2005) and Hillebrandt & Kupka (2009). Here, we
present very briefly only the most important aspects of the
models.

The simulation boxes have periodic sidewalls and impenetra-
ble top and bottom surfaces with a constant energy flux fed into
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Figure 2. Logarithmic gradient of the density compared to the logarithmic gradient of vz, estimated as explained in the text for the three simulation boxes we
considered: 0.775 M�—top left; 0.85 M�—top right; and 1.0 M�—bottom.

Table 1
The Physical Characteristics of the Three Simulations Used to Derive

Effective Viscosities

Model Mass 1 M� 0.85 M� 0.775 M�
Age (Gyr) 4.55 7 2
log Teff 3.761 3.685 3.708
log g 4.44 4.592 4.592
R/R� 1.0 0.737 0.772
Size (Mm) (Lx × Ly × Lz) 5.42 × 2.8 2.72 × 1.8 2.92 × 1.9
Grid (Nx × Ny × Nz) 1142 × 170 1152 × 170 1152 × 170

Note. The units of Teff are K, and the units of g are cm s−2.

the base and a perfectly conducting top boundary. The imposed
flux was computed from a corresponding one-dimensional (1D)
stellar model with the chosen mass and age, thus was not arbi-
trary, but the correct amount of energy flux the computational
domain should transport outward in the particular star. The ini-
tial conditions of the 3D simulations were also derived from the
same 1D stellar models used to calculate the required flux.

3.1. Starting Models and Input Physics

The 1D stellar models used to initialize each run were
computed with the YREC stellar evolution code (Guenther et al.
1992). They were calibrated to the Sun and evolved from the
ZAMS. Both the 1D and 3D codes use the same realistic physics
as described by Guenther & Demarque (1997), most notably the
Alexander & Ferguson (1994) opacities at low temperatures, the
OPAL opacities and equation of state (Iglesias & Rogers 1996),
hydrogen and helium ionization and helium and heavy element
diffusion.

Some details of the three models are given in Table 1. The
fractional radius is given as R/R�, where R is radius of the

stellar body and R� is the radius of the Sun. Both are defined
at the point where T = Teff . The surface gravity and effective
temperature are in cgs units.

3.2. Box Dimensions

The horizontal dimensions of each computational box
(Row 5 in Table 1) were estimated by assuming that the granule
size will roughly scale inversely with g. The final row gives
the number of grid points in the two horizontal and vertical
directions in the square based box.

4. RESULTS

As discussed in Section 2.2, the anisotropic viscosity can
be parameterized by five independent components. Assuming
Equation (15), we evaluate those components using the two
window functions of Equations (18) and (19) each with two
different values of α: 0.8 and 0.9. In addition, we use two values
for the density scale height in each case: Hρ = ∞ and the
volume average density scale height.

The reason for using the volume-averaged value of Hρ instead
of the mass-averaged is that, this way, relatively more weight
is given to the less-dense top regions where the density scale
height is small, resulting in a larger range between the two cases
we consider.

The frequency dependence of the five viscosity coefficients
(K0, K0′ , K00′ , K1, and K2) is presented in Figure 3, the curves
correspond to a Welch window (Equation (18)) with α = 0.9;
and volume-averaged density scale height and the error bars
show the span among all the cases for which we evaluated the
effective viscosity.

The fact that the error bars in Figure 3 are small shows that
indeed the choice of the window function is not important and
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Figure 3. Five viscosity components, scaled by 〈v2〉1/2Hp for the three stellar models (0.775 M�—top left; 0.85 M�—top right; and 1 M�—bottom). The lines
correspond to the average of all curves representing the same component calculated using α = 0.9, Welch window (Equation (18)) and the volume-averaged density
scale height. The error bars correspond to the spread found among all the curves corresponding to the viscosity component with different windows, values of alpha
and density scale heights.

(A color version of this figure is available in the online journal.)

that ignoring the depth dependence of the density scale height,
and in fact the stratification altogether in the continuity equation
is a valid approximation.

We see that the same qualitative characteristics hold for the
estimated dissipation in all three of our simulation boxes: the
K0′ component is always approximately four times larger than
the K0, K1, and K2 components, which are in turn roughly four
to five times larger than the K00′ component and the scaling is
approximately the same for all components, close to the linear
scaling proposed by Zahn.

Quantitatively, the effective viscosity we calculate can be
written as

Km = K0
mρ〈v2〉1/2Hp

(
T

τc

)λ

, m ∈ {0, 0′, 00′, 1, 2}; (20)

where the parameters Km and λ take the values:

λ = 1.2 ± 0.3,

K0 = 0.022 ± 0.003,

K0′ = 0.080 ± 0.01,

K00′ = 0.0046 ± 0.0008,

K1 = 0.024 ± 0.003,

K2 = 0.018 ± 0.003,

(21)

with the errors corresponding to the range of values encountered
for different windows, values of α, density scale heights, and
stellar models. The above values were derived by performing
a least squares fit of Equation (20) to the calculated curves for
T < 0.5τc. The reason for restricting the fit to short periods is
that at long periods we do not expect the perturbative calculation
used in this work to be applicable, and hence the derived slope

is an artifact of the model rather than having any physical
significance.

Also there is no appreciable difference between the models
of the different stars. The spread in the dimensionless effec-
tive viscosities for the three models is not much larger than
the error bars at all frequencies, except the high end tails, where
the effects of the finite resolution and time sampling become
important. This suggests that at least for the range of conditions
encountered in the convective zones of low-mass stars, the dis-
sipation efficiency is not strongly dependent on the details of
the convective flow.

4.1. Anisotropy

The above splitting of the viscosity in five components was
done in order to allow for anisotropic dissipation. It is interesting
to see how anisotropic the derived effective viscosity really is.
The general isotropic case has only two viscosity components:
a bulk viscosity (ζ ) and a shear viscosity (η) (see Landau &
Lifshitz 1987). In terms of these components, the isotropic Kijmn
tensor is

Kijmn = η
(
δimδjn + δinδjm − 2

3δij δmn

)
+ ζ δij δmn. (22)

From this it can be seen that the five components of the viscosity
we calculate must obey the relations:

K1 = K2 = η,

K0 = K00′ + K1, (23)

K0′ = K0 + K1.

We see that the first two of these are clearly satisfied by the
viscosity coefficients of Equation (21) to within the quoted
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uncertainties. The degree to which the last equation is not
satisfied is

K0′

K0 + K1
− 1 = 0.74 ± 0.25. (24)

Considering the fact that the flows in our simulation boxes are
not exactly like those inside the stars, and the loosely estimated
errors in Equation (21); we can conclude that the effective
viscosity we find is only mildly anisotropic, and it is perhaps
reasonable to approximate it as completely isotropic bulk and
shear viscosities with the following values:

η = 0.020 ± 0.003,
ζ ∈ (0.018, 0.056). (25)

The reason for ζ not being well determined by the viscosity
coefficients of Equation (21) is that those coefficients do not
exactly correspond to an isotropic viscosity (see Equation (24)).

5. CONCLUSION

We have extended the analysis of Penev et al. (2007) to
calculate effective viscosities in the surface convective zones of
three main-sequence stars: 0.775 M�, 0.85 M�, and the present
day Sun. We have also modified the calculation to properly
account for all normalization factors.

The effective viscosity we find (given by Equations (20)
and (21)) scales linearly with the period of the external per-
turbation, with the shear viscosity being smaller than the linear
scaling proposed by Zahn (1966, 1989) by a factor of about
10, but in addition there is a significant bulk viscosity, which is
assumed zero in Zahn’s prescription.

This factor, in practice, does not have a dramatic effect on the
tidal circularization period, which scales as K3/16 (Zahn 1966,
1989). So, assuming that the above effective viscosity is correct
in the range of periods applicable to stellar binary orbits, and that
the saturation period is 2τ as assumed by Zahn (1966, 1989),
the circularization cutoff period based on our viscosity would
be within about 30% of the prediction with Zahn’s scaling.

The important difference between this effective viscosity and
Equation (1) is the presence of a significant bulk viscosity,
the possibility that the effective viscosity is not isotropic, and
that the linear scaling should apply only for a limited range of
frequencies.

The applicability of this result is limited by two fac-
tors: the range of applicability of the perturbative expansion
(Equation (7)) and the limits of the numerical simulations.

The external shear velocities are assumed, by the perturbative
expansion, to be small compared to the typical convective flow,
and the period of the external shear should be neither too long
nor too short.

On one hand, the limited spatial resolution of the numerical
simulations means that only sufficiently large turbulent eddies
are captured, which implies that our results do not apply to
external forcing with very short period, for which the dissipation
may be dominated by eddies that are too small to be reliably
simulated. However, sufficiently short periods fall within the
inertial subrange where Kolmogorov scaling holds and in that
case the same perturbational calculation predicts quadratic
scaling of the effective viscosity with period (Goodman & Oh
1997).

On the other hand, the perturbative expansion we use, assumes
that the perturbation period (T) is small compared to the turnover
time (τ ) of the largest local eddies. In particular, we expect that
the effective viscosity should reach a maximum value for some
perturbation period on the order of τ , and remains the same
for all longer periods. This saturation cannot be captured by
our perturbative approach since it is due to the neglected higher
order terms.

Penev et al. (2008) used a spectral, anelastic, ideal gas
convective box, which includes the external forcing as part of
the equations of motion, to find the effective viscosity directly
without a perturbative treatment. They confirm that the slope
of the perturbative viscosity is consistent with the directly
calculated values in the range of its applicability, although for
the x–z component they observe a period independent offset
between the perturbative and the direct viscosity which acts
to increase the anisotropy. They also find linear scaling of
the effective viscosity with period that saturates for T > 2τc.
The magnitude of the effective viscosity they found based on
the perturbative calculation described above is approximately
a factor of 2 larger than the results presented in this paper.
However, this is due to the fact that the Penev et al. (2008)
convective zone has a mixing length parameter of about 3:
double the value usually assumed for the Sun and appropriate
for the simulations used above.

We thank the anonymous referee for detailed discussion of the
parameterization of the viscosity which considerably improved
the paper. We also acknowledge the much helpful advice from
Jeremy Goodman that improved the quality of this work.
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