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ABSTRACT

The development of two-dimensional and three-dimensional simulations of solar convection has lead to a picture
of convection quite unlike the usually assumed Kolmogorov spectrum turbulent flow. We investigate the impact of
this changed structure on the dissipation properties of the convection zone, parameterized by an effective viscosity co-
efficient. We use an expansion treatment developed by Goodman & Oh, applied to a numerical model of solar
convection, to calculate effective viscosity as a function of frequency and compare this to currently existing pre-
scriptions based on the assumption of Kolmogorov turbulence. The results quite closely match a linear scaling with
period, even though this same formalism applied to a Kolmogorov spectrum of eddies gives a scaling with a power-
law index of 5/3.
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1. INTRODUCTION

Turbulent (eddy) viscosity is often considered to be the main
mechanism responsible for dissipation of tides and oscillations
in convection zones of cool stars and planets (Goodman&Oh1997
and references therein). Currently existing descriptions have been
used, with varying success, to explain circularization cutoff periods
formain-sequence binary stars (Zahn 1977; Zahn&Bouchet 1989;
Meibom & Mathieu 2005), the red edge of the Cepheid insta-
bility strip (Gonczi 1982), and damping of solar oscillations
(Goldreich & Keeley 1977). However, this hypothesis has been
far more successful for damping oscillations than for damping
tides, and different mechanisms have been proposed for the lat-
ter, especially for planets (see Wu 2005a, 2005b; Ogilvie & Lin
2004 and references therein). In this paper we reconsider the
problem of tidal dissipation in stellar convection zones of solar-
type stars using the turbulent velocity field from a realistic three-
dimensional solar simulation.

The standard treatment is to assume a Kolmogorov spectrum
in the convection zone and apply some prescription to model the
effectiveness of eddies in dissipating the given perturbation. Two
prescriptions have been proposed to describe the efficiency of
eddies in dissipating perturbations with periods smaller than the
eddy turnover time.

First, according to Zahn (1966, 1989), when the period of the
perturbation (T ) is shorter than the eddy turnover time (�) the dis-
sipation efficiency is decreased because in half a period the eddy
only completes T /2� of its churn, and hence the dissipation (vis-
cosity) should be inhibited by the same factor,

� ¼ �max min
T

2�

� �
; 1

� �
; ð1Þ

where �max is some constant that depends on the mixing-length
parameter. In this assumption large eddies dominate the dissipa-
tion. This prescription has been tested against tidal circularization

times for binaries containing a giant star (Verbunt&Phinney 1995)
and is in general agreement with observations.
Second, Goldreich & Nicholson (1977) and Goldreich &

Keeley (1977) argue that the viscosity should be severely sup-
pressed for eddies with � 3T , and hence the dissipation should
be dominated by the largest eddies with turnover times less than
T /2�. From Kolmogorov scaling the viscosity on a given time-
scale is quadratic in the timescale, or

� ¼ �max min
T

2��

� �2

; 1

" #
: ð2Þ

This description has been used successfully by Goldreich &
Keeley (1977), Goldreich & Kumar (1988), and Goldreich et al.
(1994) to develop a theory for the damping of the solar p-modes.
If the more effective dissipation was applied instead, severe
changes would be required in the excitation mechanism in order
to explain the observed p-mode amplitudes. However, this in-
efficient dissipation is inconsistent with observed tidal circular-
ization for binary stars (Meibom & Mathieu 2005). In addition,
Gonczi (1982) argues that for pulsating stars the location of the
red edge of the instability strip is more consistent with Zahn’s
description of eddy viscosity than with that of Goldreich and
collaborators.
However, Goodman & Oh (1997) gave a consistent hydro-

static derivation of the convective viscosity, using a perturbational
approach. For a Kolmogorov scaling they obtained a result that is
closer to the less efficient Goldreich & Nicholson viscosity than it
is to Zahn’s. While providing a more sound theoretical basis for
the former scaling, this does not resolve the observational problem
of insufficient tidal dissipation.
Both two-dimensional (2D) and three-dimensional (3D) numer-

ical simulations of the solar convection zone have revealed that the
picture of a Kolmogorov spectrum of eddies is too simplified (Stein
&Nordlund 1989; Robinson et al. 2003). The simulations showed
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that convection proceeds in a rather different, highly asymmetric
fashion. This suggests that the problem of insufficient dissipation
may be resolved by replacing the assumption of Kolmogorov tur-
bulence with the velocity field produced from numerical simu-
lations. More importantly, an asymmetric and non-Kolmogorov
turbulence might dissipate different perturbations differently, i.e.,
depending on both the frequency and geometry of the perturba-
tion. Such simulations have been used to develop a better model
for the excitation of solar p-modes (Samadi et al. 2003).

Our approach is to apply the Goodman & Oh (1997) formal-
ism to the velocity field obtained from realistic 3D solar surface
convection in a small box. The 3D simulation was able to repro-
duce the frequency spectrum of solar p-modes. Themain result is
that we find a scaling relation with frequency that is in better
agreement with the more efficient scaling proposed by Zahn,
albeit for different reasons.

2. METHOD

We apply the Goodman & Oh (1997) treatment of convection
to the velocity field of a 3D simulation of the outer layers of the Sun.
Goodman & Oh assume that a steady state convection zone ve-
locity field (v) is perturbed by introducing an external velocity (V ).
They also assume that the convection occurs on scales that are
small compared to the perturbation and further assume that the
convection is approximately incompressible and isentropic. As-
suming that the convective length scales are small compared to
the perturbation allowed them to consider a volume small enough
to accommodate all convective scales, but over that volume the
perturbation velocity field can be assumed to be linear in the
Cartesian coordinates (x):

V ¼ A tð Þ = x: ð3Þ

In other words, we define the matrix A as the derivative matrix
of V,

Ai; j ¼
@Vi

@x j
;

and keep only the first term in the Taylor series of V.
Under this assumption the results will only be applicable to per-

turbations that are large compared to the size of the simulation
domain. In particular this prevents us frommaking any statements
about the 5minute solar oscillations because the penetration depth
of those is smaller than the box we use, and the coarse resolution
prevents us from looking at only the upper part of the box.

Assuming incompressible and isentropic convection allows
one to use the Eulerian equations for fluid motion:

@tvþ V = 999999999vþ v = 999999999V þ v = 999999999vþ 999999999w ¼ 0; ð4Þ
999999999 = v ¼ 0; ð5Þ

where 999999999w incorporates pressure and gravitational acceleration,
assumed to be gradients of scalar fields.

The problem has two dimensionless parameters: the tidal
strain ��1 Aj j and (��c)

�1, where � is the frequency of the per-
turbation and �c � Lc/Vc. The characteristic convective length
scale is Lc, and Vc is the characteristic convective velocity. In the
case of hierarchical eddy structured convection �c is the eddy
turnover time.

Thus, by using equations (4) and (5) one can express the per-
turbation in the convection velocity field in a coordinate system
movingwith the perturbation. Expanding in powers of the above

dimensionless parameters and keeping only first-order terms
gives

�1;1v
0 k; !ð Þ

¼ � i

!
Pk = A �ð Þ = v0 !� �; kð Þ þ A ��ð Þ = v0 !þ �; kð Þ½ �:

ð6Þ

The subscripts of �1;1v
0(k; !) indicate that only first-order terms

in the dimensionless parameters have been included, primes in-
dicate quantities expressed in a coordinate system moving with
the perturbation, and v0 is the convective velocity field in the ab-
sence of the perturbation. All of the above quantities are in Fourier
space because there the incompressibility is simply imposed by
the projection operator:

Pk � I � kk

k2
:

Equation (6) can then be used to express the energy dissipation
rate again as a power series in the two dimensionless quantities.
The treatment of Goodman&Oh implicitly assumes that the box
is small enough for the density not to vary significantly, so it is
sufficient to write the energy per unit mass as v = vh i and assume
that to be independent of position.

In our case the simulation encompasses about eight pressure
scale heights so that the density varies significantly between the
top and bottom. This means we need to use the dissipation per
unit volume, �v = vh i, instead.

In order to avoid taking a seven-dimensional integral, which
would be prohibitive in terms of computation time, we replace
the density with its horizontal and temporal average, leaving only
the most important vertical dimension. Taking the time derivative
of the energy per unit volume using that density and the perturbed
convective velocity, our expression for the rate of dissipation per
unit volume to lowest order becomes

Ė2;2 ¼ Re

�Z �
d 3k dk 0z

2�ð Þ4
�� kz þ k 0z
� �

;
h
v0 k;��ð Þ = A �ð Þ = Pk 0 = A �ð Þv0 k0;��ð Þh i

þ
�
v0 k;��ð Þ = A �ð Þ = Pk 0 = A ��ð Þv0 k0;�ð Þ

	i
�
;

ð7Þ

where k0 ¼ (�kx;�ky; k
0
z), the subscripts (as above) denote the

order in the two dimensionless parameters characterizing the tide
and the convection, and � (kz) is the Fourier transform of the
density averaged over x, y, t. The normalization is such that �(0)
is the average density over all space and time.

Equation (7) gives an anisotropic viscosity, for which we can
obtain the different components by setting all terms of A to 0 ex-
cept for one and comparing to the equivalent expression for the
molecular viscosity:

Ėvisc ¼
1

2
��h iTr A �ð Þ = A� �ð Þ½ �; ð8Þ

where the average is over the volume and over time.

3. REALISTIC THREE-DIMENSIONAL
SOLAR SURFACE CONVECTION

The 3D simulation of the Sun is case D in Robinson et al.
(2003). This has dimensions 2700 km ; 2700 km ; 2800 km on
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a 58 ; 58 ; 170 grid. A detailed one-dimensional (1D) evolu-
tionary model (e.g., see Guenther et al. 1992) provided the start-
ing model for the 3D simulation. Full details of the numerical
approach and physical assumptions are described in Robinson
et al. (2003).

The simulation extended from a few hundred kilometers
above the photosphere down to a depth of about 2500 km below
the visible surface (photosphere). This is about eight pressure scale
heights. The box had periodic side walls and impenetrable top and
bottom surfaces with a constant energy flux fed into the base and
a conducting top boundary. The flux was computed from the 1D
stellar model and thus was not arbitrary but the correct amount
of energy flux that the computation domain should transport out-
ward in a particular star.

To get a thermally relaxed system in a reasonable amount of
computer time, they used an implicit numerical scheme, ADISM
(alternating direction implicit on a staggered mesh), developed
by Chan & Wolff (1982). Careful attention was paid to the geo-
metric size of the box. It was important for the domain to be deep
enough and wide enough to ensure that the boundaries had
minimal effect on the bulk of the overturning convective eddies
(or on the flow statistics). The convection simulation was run
using the ADISM code until it reached a statistically steady state.
This was checked by confirming that the influx and outflux of the
boxwerewithin 5%of each other and that the run of themaximum
velocity had reached an asymptotic state.

After the model was relaxed they sampled the entire 3D ve-
locity field at 1 minute intervals. The data set used in this paper
consists of 150 minutes of such solar surface convection. This is
about 20 granule turnover lifetimes. An example velocity snap-
shot of the convective flow is presented in Figure 1.

4. RESULTS

We implement equations (7) and (8) by taking fast Fourier
transforms (FFTs) of the velocity field and the averaged (hori-
zontally and over time) density. In doing so it is important to ver-
ify that the windows introduced by the limited time and space
extent of the simulation box do not dominate the results. This
was done by repeating the calculation with the raw results, with-
out any windowing and with Welch and Bartlett windows ap-
plied to all the dimensions simultaneously. As expected this has
little or no effect on the frequency scaling (see below).
As the viscosity tensor defined by equations (7) and (8) is clearly

symmetric, it only contains six independent real valued compo-
nents. Figure 2 displays the values of the viscosities we calculated.
Figure 2a shows that the off-diagonal terms are completely

insignificant compared to the diagonal terms. Since in all the
situations that concern us the divergence of the perturbation field
is never small compared to the other derivatives of the perturbing
velocity field, the dissipation will be dominated by the diagonal
terms. Hence, their scaling with frequency will determine how
the dissipation scales.
Figure 2b shows that all the diagonal components scale roughly

the same way with frequency and are dominated by the z-z com-
ponent, although not by that dramatic a difference. Furthermore,
for perturbations such as tides the z-derivative of the z-component
of the perturbation velocity is the largest element of the matrix A
and hence is the term that will determine the frequency scaling of
the dissipation.
In Figure 2cwe see the comparison between the different scal-

ings with frequency suggested so far. We also show the scaling
that we obtain by applying the Goodman&Oh (1997) method to

Fig. 1.—Sample snapshot of the convective flow. Dark gray arrows indicate downward flow, while light gray arrows indicate upward flow. The arrows show the
velocity normalized to the sound speed. The pale gray line represents the convective surface (i.e., where the entropy gradient is 0). [See the electronic edition of the Journal
for a color version of this figure.]
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a simulated 3D convection velocity field. The lines shown are
least-squares fits to the curve that we obtain from the simulation
velocities. They seem to all intersect at the upper right corner
because the fits were done in linear space, not logarithmic space,
and hence do not tolerate even small deviations in the upper
portion of the log-log plot. The best-fit slope for our curve (not
shown) is

� / �1:1�0:1

regardless of whether we do the fit in linear or logarithmic space.
What are the possible sources of error in this result? First, we

have assumed an incompressible flow in order to simplify the
treatment. However, the fluid simulations used are not incom-
pressible because at the top of the convection zone, where most
of the driving of the convection occurs, the flow velocities reach
very close to the speed of sound, and hence the flow is necessarily
compressible. However, even though that layer is extremely im-
portant for the flow established below, it only contributes insig-
nificantly to the turbulent dissipation because it only contains a
few percent of the total mass. To verify that only a small fraction
of the mass lies in a compressible region for each grid point, we
define a compressibility parameter � � �c 999999999 = vj j, where �c is the
eddy turnover time in our box. In Figure 3 we plot the mass frac-
tion with � less than certain value. It is clear that the incom-
pressibility assumption is violated only for a negligible fraction
of the mass. As we noted above, the flow is compressible only
near the top of the box. To confirm that the presence of this re-
gion does not significantly affect our results, we repeated the
analysis separately for the top and bottom halves of the simu-
lation box. The two new scalings obtained this way were com-

pletely consistent with the scaling of viscosity with frequency for
the entire box.

Next, the fact that we have a finite (small) portion of the con-
vection zone, both in time and in space, could be important. We
only treat the top portion of the solar convection zone and hope
that the result is not very sensitive to depth. Of course it would be
ideal to have the entire depth of the convection zone covered, but
with current computational resources this is way beyond reach.

The finite span of the simulations may also be introducing
edge effects that can be treated by applying some sort of window
function. We tried Welch, Bartlett, and square window (no win-
dow). To verify that the time window available is large enough,
we tried ignoring the last approximately one-third of the data.
We carried out all those tests on two independent runs of the

Fig. 2.—(a) Off-diagonal terms of the viscosity tensor compared to the z-z component. (b) Diagonal terms of the viscosity tensor. (c) The z-z component of the viscosity
tensor (solid line) computed using eqs. (7) and (8) compared to the frequency scalings proposed by Zahn, Goldreich et al., and Goodman & Oh. The horizontal axis for all
the plots is the frequency in cycles per minute.

Fig. 3.—Fraction of the total mass residing in a region with compressibility
parameter � � �c999999999 = v less than the given value.
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model. The slopes this produced ranged from � / �0:98 to
/�1.19, where most of the difference originated from the two
independent runs.

In addition, the finite resolution might be leading to aliasing
that could change our result, in particular by making it flatter
than it really is, by basically dumping additional power into the
frequencies for which the dissipation is smallest (the places with
higher values of the dissipation are less likely to be affected sig-
nificantly). The effects of this can be seen in the diagonal viscosity
components. The tails of their curves become flatter toward the
end. The fact that this is restricted to the ends of the curves is
encouraging as it suggests only the high-frequency end of the
curve is affected. We have also looked at cross sections of the
Fourier-transformed velocity field, and they do tail off at high jkj,
which gives us confidence that the resolution is sufficient to
capture most of the spectral power and that aliasing effects will
be small.

Finally, there are statistical errors associated with every point.
Those can be estimated by noting the difference between �xx and
�yy in Figure 2b. Physically one expects that there should be no
differences between the two horizontal directions of the simula-
tion box, so the differences between them is some sort of mea-
sure of the error. In particular, from there one can see that the first
few points (at the low-frequency end) are significantly less re-
liable than the rest, but apart from the first few points those errors
become small. The average fractional uncertainty is�3%, which
leads to an overall error in the slope of 0.01.

Abandoning theKolmogorov picture of turbulence clearly has
a large effect on the result. Even though we use the approach of
Goodman & Oh, which gives a power-law index of 5/3 for a
Kolmogorov turbulence, our results give a scaling, rather differ-
ent from the previous prescriptions. We also find that the vis-

cosity is no longer isotropic. This is due to the significant differ-
ence in scaling between the velocity power spectrum with fre-
quency and wavenumber in our simulation and the Kolmogorov
prescription (see Fig. 4). There are two important distinctions
that are apparent. First, the frequency spectrum of our box is
much shallower than in the Kolmogorov prescription. This is
responsible for the slower loss of efficiency of viscosity with
frequency that we observe. Second, the radial direction is clearly
very different from the two horizontal directions: vx and vy be-
have very differently from vz, and the dependence of v on x and y
is different from the z-dependence (Figs. 4a and 4b); of course,
this results in the anisotropy of the viscosity tensor we calculate.
Even though the spatial dependence of the horizontal velocity
components is much different from the radial velocity spatial de-
pendence, the frequency power spectrum of all three compo-
nents scales roughly as P / ��1 (Fig. 4c). From equation (7) we
see that if all the components of v have the same scaling with fre-
quency, then that same scaling will also apply for the viscosity,
which is indeed what we observe.

5. DISCUSSION

Our result is somewhat unexpected. It apparently stems from
the fact that the structure of the convection velocity field produced
by the 3D simulations is very different from simple isotropic
Kolmogorov turbulence. The picture that emerges from these
simulations consists of large-scale slow upflows penetrated by
relatively fast and very localized downdrafts that are coherent
over a significant portion of the simulation box and persistent for
extended periods of time. This is what causes the anisotropy and
also seems to conspire to change the scaling with frequency and
make it relatively flat. This makes our results appear closer to
Zahn’s prescription, which is coincidental, given the different

Fig. 4.—(a) Spatial power spectrum of the horizontal velocities. Only one of the horizontal components is plotted, but the power spectrum of the other horizontal
component is identical. (b) Spatial power spectrum of the radial velocity. (c) Frequency power spectrum of the three velocity components. The straight solid line,P / !�1,
gives a good approximation to all three scalings.
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physical assumptions. The question of what exactly is the reason
for the shallower frequency dependence of the dissipation is of
course a very interesting one. However, using a perturbative ap-
proach limits us in our ability to answer it. To properly address this
question one would need to create a consistent hydrodynamic
simulation that allows for the perturbation velocity field to be put
directly into the equations of motion and not treated by a pertur-
bative approach after the fact. This would also address the ques-
tions of whether the expansion is actually converging andwhether
taking the first nonzero term is a good approximation, which is
currently only our hope.

This enhanced dissipation is in better agreement with data on
the circularization of the orbits of Sun-like main-sequence stars
and the location of the instability strip as discussed above. We
currently cannot make any statements about the dissipation of
p-modes because those do not satisfy the assumption of linearity
and incompressibility of the perturbation velocity over the sim-

ulation box. However, we have used a solar 3D convection sim-
ulation that is consistent with the solar p-mode spectrum.

Note that our approach here is more appropriate to tides raised
by a planet on a slow (nonsynchronized) star (Sasselov 2003). The
problem of binary star circularization will require a detailed treat-
ment and understanding of the feedback on the convection zone.
On the other hand, the tidal dissipation in fast-rotating fully con-
vective planets and stars might be dominated by inertial waves
(Wu 2005a, 2005b;Ogilvie&Lin 2004). They are sensitive to tur-
bulent viscosity, however, and the linear scaling has a strong effect
on their dissipation (Wu 2005b). This issue deserves further study.

We would like to acknowledge Jeremy Goodman’s valuable
contribution to this work. This research was supported in part
by the NASA EOS/ IDS Program (F. R.) and by NASA grant
NAG5-13299 (P. D.).
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