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ABSTRACT

Non-local models of stellar convection usually rely on the assumption that the transfer of
convective heat flux, turbulent kinetic energy and related quantities can be described as a
diffusion process or that the fourth-order moments of velocity and temperature fluctuations
follow a Gaussian distribution (quasi-normal approximation). The latter is also assumed in
models of solar p-mode excitation.

We have used realistic numerical simulations of solar granulation and of granulation in a K
dwarf to test the quasi-normal approximation and several alternatives. For the superadiabatic
layer of the Sun and for the quasi-adiabatic zone underneath, we find that the hypothesis of
quasi-normality is a rather poor approximation. In the superadiabatic layer, it overestimates
some of the fourth-order moments of vertical velocity and temperature by up to a factor of
2 while it underestimates them in the quasi-adiabatic layers by up to a factor of 3.5. The
model proposed by Gryanik & Hartmann and Gryanik et al. reduces the discrepancies within
the quasi-adiabatic zone to typically less than 30 per cent and is partially comparable and
partially in better agreement with the simulation data than two earlier models by Grossman
& Narayan. Simulation data for the K dwarf confirm these results. However, none of the
proposed models works well in the superadiabatic layer nor in the photospheric layers above.
For the Sun, we provide evidence that the fourth-order moments of horizontal velocity fields
can be estimated to within about 30 per cent with the quasi-normal approximation despite the
complexity of the horizontal flow. Comparing our results to those from solar simulations with
idealized microphysics and with related studies of geophysical convection zones confirms our
conclusions about the quasi-normal approximation and the new models.

The improvements come from including the effects of coherent structures (such as granules
or plumes), while the limitations are tied to the transition regions or boundaries such as the
rapid radiative cooling that occurs at the top of the convection zone. Incorporating the model
of Gryanik & Hartmann and Gryanik et al. into non-local convection models may well produce
a significant improvement in the modelling of convection or of solar-like p-mode excitation
in the quasi-adiabatic part of convection zones. For application to entire convection zones,
modifications are necessary which can account for the change in background properties of the
convective medium near boundaries or transition regions.

Key words: convection – turbulence – Sun: atmosphere – Sun: interior – stars: atmospheres –
stars: interiors.

1 I N T RO D U C T I O N

Convective heat transport and convective mixing are still a ma-
jor source of uncertainty in the theory of stellar structure and evo-

⋆E-mail: fk@mpa-garching.mpg.de

lution. Models currently used to describe these processes provide
order of magnitude estimates and entail parameters which require
case-dependent adjustments. One of the main shortcomings of these
models is the assumption of locality. It presupposes that kinetic en-
ergy, heat flux and other quantities at a given radius in the star
depend on the physical state of the star and on gradients of the mean
structure at that radius alone. Another shortcoming is related to the
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assumption of homogeneity and isotropy of the flow which is used in
most of these models. Observations of solar surface granulation and
numerical simulations of stellar convection have demonstrated that
convection overshoots into stably stratified layers and is inhomo-
geneous and anisotropic, particularly in transition regions between
stable and unstable stratification. None of these features is accounted
for in standard local convection models (e.g. the mixing-length the-
ory as defined in Böhm-Vitense 1958 or Cox & Giuli 1968, and also
the models of Canuto & Mazzitelli 1991 and Canuto, Goldman &
Mazzitelli 1996).

To overcome these difficulties, non-local models of stellar convec-
tion have been proposed. As with the standard models, the non-local
models cannot be derived from the basic hydrodynamical equations
without introducing additional assumptions. Hydrodynamical mo-
ment equations are currently the most systematic approach for de-
riving such models. Their purpose is the prediction of ensemble
averages of velocity, temperature and density – or more precisely,
the computation of moments of the ensemble-averaged fluctuations
of these fields around their mean values. For applications in stellar
structure calculations, one-point averages are the most convenient,
because they are just a function of location (and time). In this pa-
per, we restrict ourselves to the discussion of one-point averages.
The non-linearities in the hydrodynamical equations mean that the
hierarchy of ensemble-averaged equations is unclosed so to obtain
a finite number of moment equations requires additional closure
approximations. These include geometrical approximations which
result in averages that are functions of depth (or radius) and time
and other approximations introduced by truncating the moment ex-
pansion at a certain order.

Most models of convection treat the non-local transfer as a diffu-
sion process. In which case, the flux of a physical quantity can be
approximated by the gradient of the transported quantity times a tur-
bulent diffusivity. As an example, consider a second-order moment
(SOM), the turbulent kinetic energy per unit mass

K =
1

2
q2, with q2 = u2 + v2 + w2, (1)

where u, v and w are the fluctuating parts of the three components
of the instantaneous velocity, (vx , vy , vz). The ensemble average of
the latter is defined as (vx , vy, vz), thus (vx , vy, vz) = (vx , vy, vz) +
(u, v, w). The flux of turbulent kinetic energy can be approximated
as

Fk
z ≈ −(1/2) ρ κt

(

∂q2/∂z
)

, (2)

where ρ is the mean density. The turbulent diffusivity κ t is computed
from local properties of the flow which typically include w2 and a
length-scale l or a time-scale τ to account for the influence of strat-
ification, compressibility and domain size. For instance, one could
use κt = [(w2)0.5lt], where lt = αHp is a mixing length based on the
local pressure scaleheight Hp. This approach is also known as the
down-gradient approximation. Systematic derivations of convec-
tion models using this type of approximation have been suggested
by Xiong (1980) and Kuhfuss (1986), but its ingredients have also
been used by many others (see Canuto 1993, for a summary of such
models). Unfortunately, down-gradient type models only work well
for part of the convection zone even if adjustments to the turbulent
diffusivities are made. Zeman & Lumley (1976) discussed the limi-
tations of these models for the case of the planetary boundary layer
(PBL) and proposed a more complete model, while Chan & Sofia
(1996) used numerical simulations of deep compressible convection
to show that several suggested gradient models of w3 were out by
a factor of 2 or 3 over several pressure scaleheights. This was even

after least-square optimization of an adjustable factor that had been
placed in front of the turbulent diffusivity.

To avoid diffusion-type approximations, it has been suggested to
consider the full dynamical equations for the third-order moments
(TOMs). Astrophysical examples of this strategy include Canuto
(1992, 1993, 1997), Grossman & Narayan (1993) and Xiong, Cheng
& Deng (1997). These models are confronted with the closure prob-
lem for fourth-order moments (FOMs) and rely on the assumption
that the FOMs of velocity and temperature fluctuations are Gaussian
correlated (i.e. the quasi-normal approximation). While this idea is
attractive due to its mathematical simplicity, there are also several
caveats (see Section 3). The most well known among them origi-
nates from the possibility of violating physical realizability. Orszag
(1970) proposed the concept of eddy damping to avoid that problem.
In this approach, the dynamical equations of the TOMs are modified
to ensure realizability whereas the FOMs themselves are left unal-
tered, i.e. during their derivation the quasi-normal approximation is
still used for these models. Such methods have been used, e.g. in
Canuto (1992, 1993, 1997).

An alternative to eddy damping methods is the direct improve-
ment of the approximation used for the FOMs themselves. Gryanik
& Hartmann (2002) proposed a new model for the FOMs of verti-
cal velocity and temperature fluctuations. It is based on a two-scale
mass-flux approach and has recently been extended by Gryanik et al.
(2005) to include horizontal velocities and all cross-correlations to
fourth order. In contrast to diffusion-type models or the quasi-normal
approximation, the new model accounts for the fact that convec-
tion zones have a coherently structured large-scale flow (e.g. up-
and downdrafts, plumes and granules) which plays a dominant role
in non-local transport. Successful tests of the model based on air-
craft data and numerical simulations of the PBL were presented in
Gryanik & Hartmann (2002) and Gryanik et al. (2005). Losch (2004)
used numerical simulations of convection in the ocean to investigate
the model of Gryanik & Hartmann (2002) and Gryanik et al. (2005)
and found good agreement with his simulation data. Moreover, pre-
liminary tests based on numerical simulations indicate that the same
improvements over the quasi-normal approximation should hold for
the case of solar surface convection (Kupka 2005a). The model of
Gryanik & Hartmann (2002) and Gryanik et al. (2005) has some
similarities to earlier proposals by Grossman & Narayan (1993),
but a direct comparison of all these models for the case of the Sun
or another star has not yet been done.

The goal of this study is to find out how well these models rep-
resent FOMs for the case of surface convection in the Sun and in
cool stars. What we want to know is how much they can improve
non-local convection models and other applications which to date
have had to rely on the quasi-normal approximation. For that reason,
we use data from numerical simulations that have thoroughly been
tested against observed solar data (reproducing solar-sized granules
and p modes within a few microhertz of observed values) and in-
dependently performed simulations (see Section 2.1 and also the
discussion in Kupka 2005b). Conceptually, they are large eddy sim-
ulations (LES), since they only resolve the scales that transport most
of the kinetic energy (and heat) of the convective flow, a currently
inevitable restriction for any simulation of stellar convection with
realistic microphysics. For the quasi-adiabatic part of convection
zones, the new models provide a significant improvement over the
quasi-normal approximation which is found to be inadequate for
the photosphere, superadiabatic layer and top few pressure scale-
heights of the solar convection zone. The same results are found
for a K dwarf. In Table 1, we present the extent of these different
zones for both simulations in terms of pressure scaleheights (i.e. as
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Table 1. Boundaries of different regions measured in ln P for the Sun and
K dwarf simulations. Note that the pressure at the top and bottom of each
simulation box will be different from the initial stellar models because of the
effects of turbulent pressure and temperature fluctuations. The influence of
the upper and lower boundaries on the convection statistics is small between
Z1 (the top of the convection zone defined as where ∇ = ∇ad) and Z3 (where
∇ − ∇ad is ∼0.5 per cent of its peak value). Both are about 1.5–2 pressure
scaleheights away from the vertical boundaries of the box. The base of the
superadiabatic layer is indicated by Z2 which we define, where ∇ − ∇ad

is ∼5 per cent of its peak value, since at that point its change with depth
becomes small.

Model Top Z1 Z2 Z3 Bottom

Sun 10.3 11.6 13.1 16 17.7
K dwarf 10.2 12.4 14.4 17 18.5

functions of ln P). The upper boundary of the superadiabatic
layer (Z1) is defined by the physical condition of local stability
(Schwarzschild criterion), while the lower one (Z2) is located at
the level at which ∇ − ∇ad is 5 per cent of its maximum value.
The quasi-adiabatic stratification is influenced by the lower bound-
ary only for layers below Z3 which are neglected in most of our
discussion.

The rest of the paper is laid out as follows. First, we give an outline
of the numerical simulations (Section 2) followed by a description
of the various models to be tested (Section 3). The results are then
presented in Section 4 followed by a comparison with studies in
related fields in Section 5. We end with a discussion of our results
and conclusions (Section 6).

2 3 D N U M E R I C A L S I M U L AT I O N O F S U R FAC E
C O N V E C T I O N I N T H E S U N A N D A K DWA R F

The 3D simulation of the Sun we have used for our study is case D
in Robinson et al. (2003). This box has dimensions 2900 × 2900 ×
3000 km3 on a 58 × 58 × 170 grid.

A detailed one-dimensional (1D) evolutionary model, e.g. see
Guenther (1994), provides the starting model for the 3D simula-
tion. In particular, the low-temperature opacities of Alexander &
Ferguson (1994) and the OPAL opacities and equation of state were
used (Iglesias & Rogers 1996). Hydrogen and helium ionization,
and the diffusion of both helium and heavy elements are included.
The values of the parameters, X, Z and α, in the calibrated standard
solar model (SSM) are (X, Z, α) = (0.7385, 0.0181, 2.02), where X

and Y are the hydrogen and helium abundances by mass, Z = 1 − X

− Y , and α is the ratio of mixing length to pressure scaleheight in the
convection zone, required to match precisely the solar radius. Addi-
tional details of the numerical approach and physical assumptions
are described in Robinson et al. (2003).

The simulation extends from a few hundred km above the pho-
tosphere down to a depth of about 2500 km below the visible sur-
face (defined as where the optical depth is unity). This is about
7.5 pressure scaleheights in the thermally relaxed model. The box
has periodic side walls and impenetrable top and bottom surfaces.
A constant energy flux is fed into the base and a conducting top
boundary is used. The flux is computed from the 1D stellar model,
thus it is not arbitrary, but is the correct amount of energy flux the
computation domain should transport outwards in a particular star.
For the simulations of the solar case, this flux corresponds to a Teff

of 5777 K. Surface gravity g is taken to be 274 m s−2, i.e. a (CGS
units) log g of 4.4377 is assumed.

To get a thermally relaxed system in a reasonable amount of com-
puter time, we use an implicit numerical scheme, ADISM (alternating
direction implicit on a staggered mesh) developed by Chan & Wolff
(1982). Careful attention was paid to the geometric size of the box.
The domain was deep and wide enough to ensure the boundaries
had minimal effect on the bulk of the overturning convective eddies
(or on the flow statistics). The convection simulation is run using
the ADISM code until it has reached a statistically steady state. One
way of checking this is to compare the influx and outflux of the box.
They should be within 5 per cent of each other. A snapshot of part
of the velocity field from the solar simulation is shown as a vertical
cut in Fig. 1. Red (light) arrows denote upward velocity vectors and
blue (dark) arrows downward ones.

After the model has relaxed, the averages are computed over about
150 min of solar convection (about 20 granule turnover/lifetimes).
This is a sufficiently long enough time for most quantities to con-
verge (in general, all quantities were averaged over a time that was
long enough for the averages to be independent of the integration
time). However, even though some first- and second-order quan-
tities may appear to have converged it does not mean that other
higher order quantities have. For each statistical quantity presented
in this paper, convergence was thoroughly checked by confirming
that averaging over a longer time did not change the result. The
only quantities which may benefit from longer averaging are skew-
ness and kurtosis of horizontal velocities in the lower half of the
simulation domain (this is discussed in Section 4.1).

To confirm that the results for the closure models are not just
valid for the Sun, we ran a simulation of convection in a low-mass
star. Numerical simulations for a 0.7 M⊙ star have been performed,
well in the range of K dwarfs. For this star, (X, Z, α) = (0.7, 0.018,
1.8), Teff was taken to be 4609 K and the surface gravity was chosen
to be about 449 m s−2 (i.e. a log g = 4.6523 in CGS units) which
corresponds to an age of t ∼ 6 Gyr. The computational grid had
58 × 58 × 180 grid points representing a box of 2700 × 2700 ×
1350 km3. Statistical convergence was confirmed for all quantities
apart from the kurtosis of temperature in the two lowermost pressure
scaleheights (see Sections 3.1 and 4.1).

2.1 Testing the simulations against observations and other
solar simulations

By incorporating averages computed from the 3D simulation into a
1D stellar model, it was possible to produce solar surface eigenfre-
quencies (p-modes) that were within 5 µHz of the observed frequen-
cies (Robinson et al. 2003) and granules with a mean diameter close
to the observed value. In addition, the structure of the superadiabatic
layer and rms vertical velocities in our simulation are almost identi-
cal to those in the solar surface simulations by Rosenthal et al. (1999)
and Asplund et al. (2000). Thus we have a lot of confidence in our
simulation data as a testsuite for comparing the respective closure
approximations (see also the comparison in Kupka 2005b).

3 M O D E L S F O R F O M s

Each of the convection models suggested by Canuto (1992, 1993,
1997), Canuto & Dubovikov (1998) and Xiong et al. (1997) requires
the solution of differential equations for SOMs of velocity and tem-
perature, which are ultimately closed using approximations for the
FOMs. However, the ensemble averages used in these models are
not identical. Canuto (1997) accounts for compressibility through
density-weighted (Favre) averages (ρv2

z /ρ, etc.), while Xiong et al.
(1997) use a normalization relative to local temperature (θ /T instead
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Figure 1. A snapshot of the velocity field in an arbitrary vertical plane taken from the 3D simulation of the Sun. The red (light) velocity vectors have an upward
component and the blue (dark) ones a downward component. The optical surface (defined by unit optical depth) is indicated as a thick (yellow) line near the
top.

of θ ) for all moments which depend on temperature. The ensemble
averaging we use is the same as in Canuto (1992, 1993), Canuto &
Dubovikov (1998) and Grossman & Narayan (1993), and described
below (see also Sections 1 and 2): the fluctuations of temperature,
θ , and vertical velocity, w, around their mean values T and vz are
related to the instantaneous temperature T and vertical velocity vz

through

T = T + θ and vz = vz + w. (3)

Hence, there is no local weighting of the ensemble-averaged quan-
tities. The ensemble average, denoted by the overbar, can be ap-
proximately computed from a numerical simulation by performing
a time average for each physical quantity. The quantities averaged
this way are horizontal averages performed at one instant in time
(see Section 2 about the convergence of such averages). Assuming
that turbulent convective flows are quasi-ergodic and thus that any
thermally relaxed initial physical state of the basic variables is ap-
propriate to start visiting all physical realizations of these variables
with their correct probability, we can thus compute ensemble aver-
ages from the simulations. The main limitation of this process is the
uncertainties introduced by the finite grid size, simulation box and
averaging time as well as uncertainties introduced by the subgrid
scale model employed to parametrize the unresolved scales. An es-
timate of these effects is briefly discussed in Section 2 and in more
detail in Robinson et al. (2003).

The SOMs which appear in the aforementioned models are

K , θ2, J = wθ and w2, (4)

where K is the turbulent kinetic energy defined in equation (1). The
dynamical equations for equation (4) require computation of the
turbulent fluxes of K , θ2, J and w2 (Canuto 1992):

q2w, wθ2, w2θ and w3. (5)

If these quantities are computed without using the diffusion approx-
imation (see Section 1), then one needs to solve the full dynami-
cal equations. This requires computation of the turbulent fluxes of
equation (5):

q2w2, w2θ2, w3θ and w4 (6)

(see again Canuto 1992). Equations (5) and (6) mention only some
of the TOMs and FOMs which appear in the dynamical equations
for equations (4) and (5). Additional lower order moments may be
required depending on the model (or avoided, such as q2w and q2w2,
if assumptions on anisotropy are made).

It is convenient to define some auxiliary quantities which are used
to formulate the FOM models. The rms average of vertical velocity
and temperature fluctuations as well as their cross-correlation are
defined by

σw = w2
1/2

, σθ = θ2
1/2

, Cwθ =
wθ

σw σθ

. (7)

The skewnesses of vertical velocity and temperature are

Sw = w3/w2
3/2

and Sθ = θ3/θ2
3/2

, (8)

while the kurtoses are

Kw =
w4

σ 4
w

and Kθ =
θ4

σ 4
θ

. (9)

Physically, the skewness provides a simple measure for the asymme-
try of the probabilities of velocity being directed up- or downwards
and of temperature being hotter or colder than average. Positive
values of Sw signify upflows with a smaller area than the down-
flows while Sw < 0 implies the opposite. The reason for this is that
w3 gives more weight to higher velocities which due to mass con-
servation preferentially occur in the component covering a smaller
horizontal area. Mass-flux models provide a mapping (cf. Canuto
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& Dubovikov 1998; Gryanik & Hartmann 2002) between velocity
skewness and filling factor (fraction of horizontal area covered by
upflows), although the exact relation between the two is compli-
cated. A similar correlation exists for temperature (Sθ ) and the area
covered by hot or cold fluid. They are not necessarily correlated with
Sw and the filling factor (see Section 3.3). The kurtoses Kw and Kθ

provide a measure for the likeliness of fluctuations to occur which
are much larger than the rms average (σw and σ θ ). A large kurtosis
combined with a small skewness implies that the flow has strong
or at least frequent intermittent events. These may be caused, for
instance, by strong individual downdrafts and also by large fluctua-
tions within the downdrafts. In this case, the distribution functions
for the probabilities of deviations of local velocities and tempera-
tures from their mean are characterized by long tails (compared to
a Gaussian distribution). A small value of the kurtosis, particularly
for the case of a symmetric distribution (Sw ∼ 0 and/or Sθ ∼ 0),
implies very small deviations from the rms average (as in a box-
shaped distribution of probabilities with tails much smaller than the
Gaussian distribution). A flow pattern which is divided into up- and
downflows (or hot and cold areas) and which is characterized by
a small kurtosis (and a skewness close to zero) can be viewed as
representing a quasi-laminar state.

3.1 The quasi-normal approximation

Millionshchikov (1941) first suggested the hypothesis that for turbu-
lent flows, FOMs of velocity and temperature could obey a Gaussian
distribution. If the FOMs of fluctuations a, b, c and d around their
mean values have a Gaussian distribution, then they can be expressed
exactly in terms of SOMs:

abcd = ab cd + ac bd + ad bc. (10)

The quantities a, b, c and d follow a quasi-normal distribution,
if equation (10) holds, but no further assumptions are made on
them. Note that for an exact Gaussian (i.e. normal) distribution the
TOMs would be zero. Only equation (10) was required to hold by
Millionshchikov (1941). For the fluctuations of temperature, θ , and
vertical velocity, w, this implies

w4 = 3w2
2
, (11)

θ4 = 3θ2
2
, (12)

w3θ = 3w2 wθ, (13)

wθ3 = 3θ2 wθ, (14)

w2θ2 = w2 θ2 + 2wθ
2
. (15)

For the case of shear driven turbulence, Frenkiel & Klebanoff
(1967) measured higher order moments of velocities downstream
of a grid and found even-order correlations of fourth (and sixth)
order to be fairly well approximated by the assumptions of Gaus-
sianity and isotropy for moments which involve only even pow-
ers (w4, w2u2, u4, . . .). All other moments measured by them were
found to be poorly approximated using those assumptions. As con-
vection is neither homogeneous (the background conditions are a
function of location) nor isotropic, much larger deviations from
(11)–(15) are to be expected. The quasi-normal approximation could
still hold for the horizontal velocity components, i.e.

u4 = 3u2
2
, (16)

v4 = 3v2
2
, (17)

if horizontally the flow on average behaves as if it were isotropic.
One problem which occurs in non-local models of convection

that assume equation (10), is that the TOMs can become excessively
large. André et al. (1976a) hence suggested to limit the growth of the
TOMs through clipping, i.e. to enforce the realizability constraints

abc
2
� min











a2 (b2c2 − b2 c2),

b2 (a2c2 − a2 c2),

c2 (a2b2 − a2 b2),

(18)

which can be obtained from applying the Cauchy–Schwartz inequal-
ity to algebraic relations between products of the TOMs (Blanchet
1970). The method was successfully applied in André et al. (1976b)
to model the PBL of the earth. However, a convection model based
on (11)–(15) with clipping of the TOMs may still not be able to
match the data measured for a real flow. Gryanik et al. (2005) pointed
out that the constraints

Kw � 1 + S2
w and Kθ � 1 + S2

θ , (19)

which can be derived from equation (18) by setting a = b = c equal
to w and θ , are fulfilled by their aircraft data and their numerical
simulations, but could never be fulfilled, if equations (11) and (12)
were to hold as well. The reason why equations (11) and (12) fail
to fulfil equation (19) is that values for Kw and Kθ much larger than
3 occur in the data as well as values of S2

w and S2
θ larger than 2.

However, equations (11) and (12) limit Kw and Kθ to 3 which can-
not be realized in nature for values of S2

w > 2 and S2
θ > 2, because

this would violate equation (19). Such large values of S2
θ are nev-

ertheless observed for convection in the atmosphere (Gryanik et al.
2005) and hence this deficiency of the quasi-normal approximation
cannot be resolved by just clipping the TOMs. Fig. 2 demonstrates
that similar conditions are also expected for convection in the Sun
and other cool stars. For each layer in both the Sun and the K dwarf,
the averaged Kw and Sw from the simulations are realizable solutions
which fulfil equation (19). For the case of the Sun, quite a number
of layers exist where S2

w > 2. Assuming equation (11) to hold is not
consistent with realizable solutions for these layers. Fig. 3 confirms
that similar results hold for Kθ and Sθ as well. Again the simula-
tions easily fulfil equation (19). For both cases, more than half of
the simulation domain includes layers where S2

θ > 2 which is incon-
sistent with equation (12). Hence, a poor performance is expected
for the quasi-normal approximation when applied to convection in
the Sun and other cool stars. In Section 4, we investigate these
results in more detail. We also note that for a fully compressible
flow, such as stellar convection, the application of Favre averages
would actually be required to strictly impose equations (18) and
(19). However, even around the superadiabatic peak, where density
fluctuations are largest, Favre-averaged SOMs of w and θ differ in
our numerical simulations for the Sun from their plain average by
less than 10 per cent. The most severe violations of equation (19)
due to equations (11) and (12) occur in the quasi-adiabatic zone,
where these differences drop from 4 per cent to less than 1 per cent
near the bottom of the simulation box. Therefore, even in a Favre-
averaged form, equation (19) would be violated by the quasi-normal
approximation.

3.2 Eddy damping

Instead of resorting to clipping of lower order moments, Zeman
& Lumley (1976) suggested to approximate FOMs which depend
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Figure 2. The left-hand panel demonstrates that our simulations (each layer is represented by a + sign) and the GH model (Section 3.3) fulfil the realizability
conditions (19) of vertical velocity w for the case of the Sun. Note that for some layers (located mostly close to the centre of the simulation domain) S2

w > 2.
The right-hand panel depicts the K dwarf case, where S2

w < 2 for all layers and conditions (19) hold as well.
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Figure 3. The left-hand panel shows that our simulations and the GH model (Section 3.3) fulfil the realizability conditions (19) of temperature θ for the case
of the Sun (same notation as in Fig. 2). The right-hand panel depicts the K dwarf case, where conditions (19) also hold. For both cases and for many layers
evidently S2

θ > 2. The LES averages of θ4 for the K dwarf are not yet converged for the two lowermost pressure scaleheights of the simulation domain, which
explains the scatter in the upper branch of the LES data for Kθ (values from 8 down to 3.5), see also Figs 4 and 5.

only on velocity and temperature by the quasi-normal hypothesis
(10) and FOMs which depend also on pressure by relaxation (i.e.
damping) terms. It is thus not meaningful to reconstruct individual
FOMs from such models, as they only aim at approximating the sum
of all FOMs and their derivatives in each equation. Nevertheless, the
eddy damping procedure is required to yield physically realizable
solutions which approximate SOM and TOM of turbulent flows as
closely as possible. This type of approach was first introduced by
Hanjalić & Launder (1972) for the case of shear flows. It is the one-
point average, real space equivalent of eddy damping, which was
proposed by Orszag (1970) for turbulence models in Fourier space.
Lumley, Zeman & Siess (1978) gave an overview on eddy-damped
quasi-normal approximations and provided a physical interpreta-
tion of its ingredients for buoyancy driven turbulent transport. This
approach was found to be at least as successful as the clipping of
André et al. (1976a,b) for the prediction of non-local turbulent fluxes
for the convective boundary layer of the earth as derived from field
and laboratory experiments (Zeman & Lumley 1976; Lumley et al.
1978). Canuto (1992) generalized the approach of Zeman & Lum-
ley (1976) by retaining dependences in the dynamical equations of
the TOMs which had been discarded in earlier work to obtain a

more manageable set of equations. On this basis, Canuto (1993)
derived explicit relations for all TOMs in terms of SOMs. They
were used in Canuto et al. (1994) for a non-local convection model
for the PBL. In comparisons with numerical simulations, this new
model was found to be more robust than its predecessor (Zeman &
Lumley 1976). However, Zilitinkevich et al. (1999) pointed out that
the model by Canuto et al. (1994), although quite satisfactory for w3

and q2w, was less successful at reproducing the cross-correlation
moments w2θ and wθ2. This problem was resolved in Canuto,
Cheng & Howard (2001) who suggested taking into account the
degree of instability of the stratification within the convection zone
when constructing the damping time-scale. With that improvement,
the model was successfully applied to convection in A-stars (Kupka
& Montgomery 2002) and white dwarfs (Montgomery & Kupka
2004). In this form, the model still does not directly account for
the effects of coherent structures in convection zones on non-local
transport. For a more detailed analysis of this class of models, we
refer to Kupka (2007) and Kupka & Muthsam (2007). The main
alternative to the eddy damping approach is to consider models
which aim at directly improving the parametrization of the FOMs
themselves.
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3.3 The GH model

Mass-flux models have been used in atmospheric sciences since
the pioneering work of Arakawa (1969) and Arakawa & Schubert
(1974) on the interaction of convective cumulus clouds with their
environment. Such models are based on the requirement that con-
vective up- and downdrafts have to satisfy mass continuity, if their
vertical exchange is averaged horizontally and integrated over suf-
ficiently long time-scales. This is strictly imposed unless there is
a net mass loss or gain at the boundaries. Randall, Shao & Moeng
(1992) proposed a model for the convective boundary layer of the
earth which represented a first step towards combining the concepts
of mass-flux models and ensemble-averaged closure models. Sub-
sequently, several closures for the dynamical equations of the SOMs
were suggested which were based on mass-flux concepts. For ex-
ample, Canuto & Dubovikov (1998) proposed a closure for w2θ and
wθ2 derived from mass-flux arguments while the other TOMs were
required to be computed with the eddy-damped quasi-normal model
of Canuto (1992, 1993). For w2θ , the same model was proposed by
Zilitinkevich et al. (1999) who also pointed out why mass-flux mod-
els are more appropriate than diffusion-type models to account for
the non-local, coherently structured nature of boundary layer con-
vection. In Mironov et al. (1999), the same authors show that to
fulfil the symmetries of the TOMs with respect to sign changes of θ

and w, it is necessary to modify the mass-flux models such that they
separately account for the warm and cold fluid transported by the
updrafts. Their model for w2θ and wθ2 compared excellently with
the measurements. However, no suggestions were provided how to
compute Sw and Sθ which are required by the model as an input (in
Mironov et al. 1999 they were taken from measurements).

The observational data from Gryanik & Hartmann (2002) con-
firmed earlier results for the convective PBL which claimed that
the characteristic horizontal scales of θ are larger than those of w.
The data also confirmed that Kθ � Kw and |Sθ | � |Sw|. These results
motivated Gryanik & Hartmann (2002) to develop the concepts pro-
posed in Mironov et al. (1999) and describe the coherent structures
within convective flows (e.g. downdrafts, granules or large plumes)
by a two-scale mass-flux model. In this model, the different frac-
tions of horizontal area which are covered by up- and downflows, a

and (1 − a), as well as hot and cold drafts, b and (1 − b), are used
to define a two-scale top-hat decomposition:

〈vz〉mf = a wu + (1 − a) wd, (20)

〈T 〉mf = b θh + (1 − b) θc. (21)

Here, wu and wd are the horizontal averages over all up- and down-
drafts relative to the mean upwards velocity 〈vz〉mf. Likewise, θh and
θ c are the horizontal averages over all areas hotter and colder than
the mean temperature 〈T〉mf. For this global top-hat mass-flux aver-
age, all higher order moments can be given analytically as functions
of a, b, wu − wd and θ h − θ c. If instead one chooses as irreducible
moments the quantities σw , σ θ , 〈wθ〉mf, Sw and Sθ , which here relate
to the mass-flux average defined by equations (20) and (21), one can
derive the following relations:

〈w2θ〉mf = Sw σw 〈wθ〉mf, (22)

〈wθ 2〉mf = Sθ σθ 〈wθ〉mf, (23)

〈w4〉mf =
(

1 + S2
w

)

σ 4
w, (24)

〈θ 4〉mf =
(

1 + S2
θ

)

σ 4
θ , (25)

〈w3θ〉mf =
(

1 + S2
w

)

σ 2
w 〈wθ〉mf, (26)

〈wθ 3〉mf =
(

1 + S2
θ

)

σ 2
θ 〈wθ〉mf. (27)

They are exact only if fluctuations within and among the drafts can
be neglected (global top-hat average).

In Gryanik et al. (2005), an alternative interpretation of the model
was given which can be generalized more easily. Consider the re-
alizations of w and θ in a flow. The two-scale mass-flux model is
obtained, if one approximates the joint probability density function
of w and θ as the sum of four δ-functions. Each of them represents
one out of four possibilities for a given pair (w, θ ) to be in an up- or
downdraft which is either hotter or colder than the average. Through
integration over all pairs (w, θ ) of a given realization (e.g. a set of
measurements) the probability for each of the four possibilities is ob-
tained and mean values for the drafts (wu, . . .) are assigned (Gryanik
& Hartmann 2002 required an additional symmetry to hold which is
dropped in this new interpretation). Neglecting fluctuations within
and among the drafts requires approximating the actual probability
density function of (vertical) velocity and temperature fluctuations
with δ-functions. In the limit of large |Sw| and |Sθ |, one type of draft
(up or down, hot or cold) becomes very localized and dominates the
statistics (Gryanik & Hartmann 2002), for which the 4δ probability
density function becomes an increasingly better approximation. In
that case, the averages (22)–(27) should approximate the ensemble
average. Hence, Gryanik & Hartmann (2002) and Gryanik et al.
(2005) suggested to take

w2θ = Sw σw wθ =
(

w3/w2
)

wθ, (28)

wθ2 = Sθ σθ wθ =
(

θ3/θ 2
)

wθ, (29)

w4 = S2
w w2

2
, (30)

θ 4 = S2
θ θ2

2
, (31)

w3θ = S2
w w2 wθ, (32)

wθ3 = S2
θ θ2 wθ, (33)

w2θ2 = Sw Sθ wθ σw σθ , (34)

in the limit of large |Sw| and |Sθ |. We note that here and in the
following, Sw , Sθ , σw and σ θ are again computed from ensemble
averages, equations (7) and (8), a step which is motivated further
below. Equation (34) was given only in Gryanik et al. (2005), who
actually considered a more general case in which a flow can also
have a large skewness for its horizontal velocities. That model is
based on a 16δ probability density function.

Mass-flux models, such as (20)–(27), do not account for fluctu-
ations within the coherent structures of the flow or among them.
It is possible to extend equation (20) to account for subplume and
interplume fluctuations by performing an exact splitting into the dif-
ferent contributions (see Siebesma & Cuijpers 1995 and Petersen
et al. 1999 – note that in astrophysics the term plume is also ap-
plied to subplume structures within a downdraft). The same kind
of splitting can naturally be done for equation (21). However, to
become predictive rather than just diagnostic, such models have to
be tailored to a specific application, because they require a detailed
understanding and modelling of the behaviour of the turbulent flow
within the up- and downdrafts. For the quasi-adiabatic layers in the
solar convection zone, such a model is proposed in Belkacem et al.
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(2006a) based on the exact splitting of the different contributions
from fluctuations within and among drafts to a given moment and a
plume model.

The fact that both coherent structures and fluctuations within them
contribute to the statistics of the flow is also evident from the data
discussed in Gryanik & Hartmann (2002). At the same time, as they
show in their fig. 7, there is a remarkably linear correlation between
two-scale mass-flux averages and Reynolds averages for w2, wθ

and θ2. It even holds with a larger scatter for w3 and θ3 (and also
for the remaining quantities displayed, w2θ, wθ2, w4 and θ4). On
the strength of this result, they suggested that the two-scale mass-
flux averages can be replaced by Reynolds averages, if linear scaling
factors are introduced. Specifically, for the FOMs in equations (30)–
(34),

w4 = a3

(

1 + d3 S2
w

)

w2
2
, (35)

θ4 = a4

(

1 + d4 S2
θ

)

θ2
2
, (36)

w3θ = a5

(

1 + d5 S2
w

)

w2 wθ

= a5

(

1 + d5 S2
w

)

Cwθ σ 3
w σθ ,

(37)

wθ3 = a6

(

1 + d6 S2
θ

)

θ2 wθ

= a6

(

1 + d6 S2
θ

)

Cwθ σw σ 3
θ ,

(38)

w2θ2 = a7

[

(w2 θ2 + 2wθ
2
) + d7 Sw Sθ wθ σw σθ

]

= a7

(

1 + d7
Cwθ

1 + 2 C2
wθ

Sw Sθ

)

(

1 + 2 C2
wθ

)

σ 2
w σ 2

θ (39)

(Gryanik & Hartmann 2002; Gryanik et al. 2005). The quantities
ai (i = 3, . . . , 7) and di (i = 3, . . . , 7) are dimensionless parameters.
Similar relations can be derived for the horizontal components of the
velocity fluctuations (Gryanik et al. 2005). To complete their model
for FOMs, Gryanik & Hartmann (2002) and Gryanik et al. (2005)
required that for zero skewness equations (35)–(39) reproduce the
quasi-normal limit (equations 11–15). This is possible, provided

ai = 3 (i = 3, . . . , 6), a7 = 1. (40)

If at the same time for large |Sw| and |Sθ | relations (35)–(39) should
match equations (30)–(34), one has to choose

di =
1

3
(i = 3, . . . , 6), d7 = 1. (41)

Hence, the choice of the di is motivated both by the linear corre-
lation observed between the Reynolds and the mass-flux averages,
and by the notion that they should coincide if one type of draft
becomes very localized. Model (equations 35–41) identifies coher-
ent structures as the main cause of deviations from an otherwise
quasi-normal distribution of FOMs. However, instead of just being
an ad hoc expansion around the quasi-normal approximation, its
specific form is suggested by the flow structure and linear corre-
lations found in the data. Naturally, the model (equations 35–41)
can only be considered an approximation to the statistics of real
convective flows, because zero skewness does not imply a Gaussian
distribution (Kw and Kθ may be both larger and smaller than 3) and
contributions from fluctuations within the up- and downdrafts may
be significant even for large values of |Sw| and |Sθ |. Both the coher-
ent structure of up- and downdrafts and more local phenomena such
as fluctuations within a downdraft, contribute to Sw and Sθ . Conse-
quently, tests through measurements and simulations are required

to determine the range over which the model can accurately predict
FOMs.

Gryanik & Hartmann (2002) also studied possible benefits from
individual optimizations of the corresponding ai and di for equations
(35)–(38) by applying least-square minimization to their measure-
ments. Improvements due to individual tuning of the ai and di were
found to be negligible for w4 as well as θ4 (at most 1 per cent as
measured by the explained variance) and small for w3θ as well as
wθ3 (no more than 10 per cent in terms of explained variance). No
systematic offsets or trends were observed for equations (40) and
(41) or for the optimized choices of ai and di .

For that reason, we restrict our comparisons in Section 4 to

w4 = 3

(

1 +
1

3
S2

w

)

w2
2
, (42)

θ4 = 3

(

1 +
1

3
S2

θ

)

θ2
2
, (43)

w3θ = 3

(

1 +
1

3
S2

w

)

w2 wθ, (44)

wθ3 = 3

(

1 +
1

3
S2

θ

)

θ2 wθ, (45)

w2θ2 = w2 θ2 + 2wθ
2 + Sw Sθ wθ σw σθ , (46)

which we refer to as the GH model. To illustrate the lack of benefits
from optimizing the coefficients in these relations and for the much
greater importance of maintaining the correct functional form of the
approximations, we investigate two models proposed by Grossman
& Narayan (1993). They share formal similarities with equations
(35)–(39).

3.4 Expansions in powers of TOMs

Grossman & Narayan (1993) used smoothed particle hydrodynam-
ics (SPH) simulations to study convection in a box for idealized
microphysics and idealized boundary conditions. They used their
simulations to test a number of closure relations for higher order
moments. For the case of FOMs, they also suggested to account
in an (ad hoc) manner for the asymmetries in the instantaneous
distributions of velocity and temperature fluctuations which were
evident in their SPH convection simulations. They proposed to con-
sider lowest-order expansions in terms of Sw or all the TOMs, re-
spectively, around the expressions of the quasi-normal hypothesis
(equations 11–15).

The first model of Grossman & Narayan (1993) we are interested
in here is their Model 3 for FOMs (equations 42a–42e in Grossman
& Narayan 1993, with the numerical parameters η = 2.3 and ζ =
1.8 taken from their table 11):

w4 =
(

2.3 + 1.8S2
w

)

w2
2
, (47)

θ4 =
(

2.3 + 1.8S2
w

)

θ2
2
, (48)

w3θ =
(

2.3 + 1.8S2
w

)

w2 wθ, (49)

wθ3 =
(

2.3 + 1.8S2
w

)

θ2 wθ, (50)
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w2θ2 =
(

2.3 + 1.8S2
w

)

(

1

3
w2 θ2 +

2

3
wθ

2
)

. (51)

In the following, we refer to equations (47)–(51) as model GN3.
The second suggestion we are interested in is their Model 4 for

FOMs (equations 43a–43e in Grossman & Narayan 1993 with η =
2.3 and ζ = 2.1 from their table 11):

w4 =
(

2.3 + 2.1S2
w

)

w2
2
, (52)

θ4 =
(

2.3 + 2.1S2
θ

)

θ2
2
, (53)

w3θ =
(

2.3 + 2.1
w2θ

2

σ 4
w σ 2

θ

)

w2 wθ, (54)

wθ3 =
(

2.3 + 2.1
wθ2

2

σ 2
w σ 4

θ

)

θ2 wθ, (55)

w2θ2 =
(

2.3 + 2.1
w2θ

2

σ 4
w σ 2

θ

)

1

3
w2 θ2

+
(

2.3 + 2.1
wθ2

2

σ 2
w σ 4

θ

)

2

3
wθ

2
. (56)

We refer to equations (52)–(56) as model GN4.
Comparing the model of Gryanik & Hartmann (2002) and

Gryanik et al. (2005) with the suggestions by Grossman & Narayan
(1993), we note that equations (35), (36) and (37) given above cor-
respond to equations (42a), (43e) and (42b) of Grossman & Narayan
(1993), respectively, see equations (47), (53) and (49) given above,
if a3 = a4 = a5 = ζ and d3 = d4 = d5 = η/ζ , where η and ζ are
the numerical constants used in models GN3 and GN4. However,
equations (38) and (39) have no counterpart among any of their
suggestions. Various SPH simulations were used by Grossman &
Narayan (1993) to find the best-fitting values η ≈ 1.8, . . . , 2.1 as
well as ζ ≈ 2.3 by simultaneous fits for the expressions suggested
for each of w4, w3θ, w2θ2, wθ3 and θ4. Compared to Gryanik &
Hartmann (2002) and Gryanik et al. (2005), no further physical
justification was provided in Grossman & Narayan (1993) for the
particular form of equations (47)–(56) other than that of plausible
symmetries (but see also Section 4.1).

As we noted in Section 3.3, Gryanik & Hartmann (2002) and
Gryanik et al. (2005) found that individual ‘tuning’ of the co-
efficients ai and di in (35)–(39) yields only small improvements
over equations (40) and (41) for the PBL of the earth. We show in
Section 4 that GN3 and GN4 are usually either comparable or less
satisfactory than the GH model (equations 42–46).

4 R E S U LT S

4.1 Basic properties and horizontal flow

Figs 2 and 3 show that our numerical simulations fulfil the realiz-
ability conditions (19) for both vertical velocity and temperature.
We note that the quasi-normal approximation as well as the GH and
GN4 models and for most aspects also the GN3 model each fulfil
all constraints posed by dimensional analysis, tensor invariance and
symmetry conditions.1 Moreover, they are reversible in time, i.e.
the moments remain the same under the transformation t → −t.

1 Note that model GN3 does have some limitations with respect to sym-

With (40)–(41) equations (35)–(39) also fulfil various realizability
requirements. In particular, the GH model equations for w4 and θ4,
(42) and (43), fulfil (19) for all possible values of Sw and Sθ , as
can immediately be seen from Figs 2 and 3 and by trivial algebra.
We also note that equations (24) and (25) of the two-scale mass-
flux model of Gryanik & Hartmann (2002) exactly define the lower
boundary for Kw and Kθ for any model that is realizable for all values
of Sw and Sθ . The GN4 model equations for w4 and θ4, equations
(52) and (53), share these properties of fulfilling equation (19) for
all Sw and Sθ . The same holds for the GN3 model equation (47) for
w4. However, in general this is not the case for equation (48), the
GN3 model equation for θ4, because it is not always true that S2

w �

S2
θ . Figs 2 and 3 show that in fact for both simulations, S2

θ spans a
much larger range than S2

w . Inspection of both Sw and Sθ in Fig. 5
confirms that for both the solar granulation simulation and the gran-
ulation simulation for the K dwarf, the realizability constraint for θ

in equation (19) is violated by equation (48) for some of the deeper
layers, within the quasi-adiabatic part of the convection zone. For
equations (11) and (12) of the quasi-normal model the violation of
the realizability constraints, equation (19) has already been pointed
out in Section 3.1. This is a result of the large values for Sw and
Sθ found for the case of vertical velocities in the solar granulation
simulation and for the case of temperature fluctuations for both the
solar and the K dwarf simulations, as can easily be seen in Figs 2
and 3. As they fail to match realizability conditions, we expect the
GN3 model and the quasi-normal approximation to perform poorly,
if used to model fluctuations in vertical velocities and temperature
in solar surface convection and surface convection in cool stars. On
the other hand, the GH model and the GN4 model always provide
realizable solutions.

Before considering a detailed comparison of these models, we
will describe some aspects of kurtosis and skewness found for the
solar and the K dwarf simulations. Fig. 4 shows the kurtoses Kw

and Kθ for each case. Apart from a few separated layers, there is no
particular region in which the quasi-normal value of 3 is attained.
The surface layers (ln P � 11.7 for the solar case and �12.3 for the
K dwarf one) show a complex behaviour. Near the superadiabatic
peak (around ln P ∼ 12 and 13, respectively), the kurtosis becomes
as small as 2, even 1.5 in the case of Kθ for the solar simulation.
In the underlying quasi-adiabatic zone, the kurtoses become much
larger: reaching between 5 and 6 for Kw , and between 8 and 10
for Kθ . These large values are a consequence of the large velocity
and temperature fluctuations which are related to the narrow, cold
downdrafts and the constraint of mass conservation (see the discus-
sion of Sw and Sθ given below). The behaviour in the lowermost
two pressure scaleheights is less interesting, as it is the result of
the closed lower boundary of the simulation domain. Evidently, the
quasi-normal approximation can merely give order of magnitude
estimates for the kurtoses (and hence for w4 and θ4). Improvements
over the quasi-normal approximation require a boost in the quasi-
adiabatic region which can be provided by the GH model, the GN3
and the GN4 models. Values smaller than 2, as required in the su-
peradiabatic layers, cannot be obtained from any of these models.
Hence results in the vicinity of the superadiabatic peak will be much
less satisfactory.

metries. Although left- and right-hand sides remain self-consistent, if w →
− w and/or θ → −θ , division of (48) by σ 4

θ yields Kθ = (2.3 + 1.8 S2
w)

which is possible only if w = cθ where c is a dimensional constant. The
latter is unlikely to hold for any non-trivial flow field.
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Figure 4. The left-hand panel shows the kurtosis of vertical velocity, Kw , and of temperature, Kθ , for the case of the Sun. Both are well converged. Kw is well
converged for the case of the K dwarf, too. This is demonstrated in the right-hand panel by a comparison of an average taken over the first third of the total
integration time with the average over the entire integration time. For Kθ , the same holds down to ln P ∼ 16.5, where in addition to differences between the
two averages also oscillations begin to appear. Below ln P ∼ 17, these attain up to ∼25 per cent preventing interpretation of Kθ for ln P > 17. The data for that
bottom range are shown in Fig. 3.
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Figure 5. The left-hand panel shows the skewness of vertical velocity, Sw , and of temperature, Sθ , for the case of the Sun. Both are well converged. The same
holds for Sw for the K dwarf case. This is shown in the right-hand panel, where an average taken over the first third of the total integration time is compared
with the average over the entire integration time. Sθ appears well converged, too, as the small oscillations present in the shorter averaging have disappeared
after longer averaging. For both cases, we also indicate the upper (∇ − ∇ad = 0, Z1 from Table 1) and lower (∇ − ∇ad ∼ 0.03, Z2 from Table 1) boundaries
of the superadiabatic layer through vertical lines.

Fig. 5 shows the skewnesses Sw and Sθ for the solar and the K
dwarf case. It also indicates the upper and lower boundaries of the su-
peradiabatic layer, outside of which ∇ −∇ad < 0 and 0 <∇ −∇ad �

0.03 hold, respectively (as defined in Table 1 and Section 1). Note
that for both cases, both Sw and Sθ are positive in the photospheric
(surface) layers. They also change sign roughly at the same location,
around the superadiabatic peak (for the K dwarf this behaviour is
more complex).

Large negative values occur within the quasi-adiabatic region for
both functions in both stars. In particular, the absolute values of Sθ

are large enough for the quasi-normal approximation to yield non-
realizable results. The dominant contribution to the large values of
Kw and Kθ found in the same layers can thus be assigned to the
asymmetry of the flow which is also responsible for the large values
of S2

w and S2
θ . Thus, a significant ‘boost’ of w4 and other FOMs

can be expected from the GH (and also the GN3 and GN4) model
for these layers. For layers with ln P > 14 in the Sun and ln P >

15 in the K dwarf, there is also an important contribution from
fluctuations within and among the drafts. The behaviour of the two
lowermost pressure scaleheights is again strongly influenced by the

lower boundary and of little interest in a stellar context. Throughout
most of the simulation domain, the deviation from zero skewness
is found to be large for both types of stars which is to be expected
for an inhomogeneous flow. The superadiabatic region is the only
region in which Sw ∼ 0 and Sθ ∼ 0 at similar locations for the Sun
and the K dwarf.

We recall that in the same region, the minimum values for Kw

and Kθ are found. Moreover, θ2 and θ4 have their maxima right
there. In the following, we give a physical explanation for these low
values of Kw and Kθ . Within the superadiabatic region fluid ascend-
ing from below begins to cool rapidly. Fluid hotter than average
is subject to even further enhanced cooling. The same happens to
fluid travelling through this zone faster than average. Each of these
processes is smoothing out vertical velocity and temperature fluctua-
tions about the mean within the updraft. Moreover, as a consequence
of cooling the buoyancy experienced by the ascending fluid is re-
duced. Material cooling faster than average is hence being dragged
downwards, if located near the boundary of an upflow, or reheated
rapidly by its environment. The net result is a quasi-laminar appear-
ing upflow (cf. Stein & Nordlund 1998). Thus, even if there are still
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fluctuations in the downdrafts, the horizontally averaged Kw and
Kθ can become significantly less than 3. This decrease is less pro-
nounced for the K dwarf which has a shallower superadiabatic peak.
Interestingly, this phenomenon is not limited to simulations with re-
alistic microphysics. Inspection of fig. 11 in Chan & Sofia (1996)
reveals that the same occurs in their simulation for a deep atmo-
sphere with idealized microphysics (perfect gas equation of state,
prescribed conductivity, radiative transfer in diffusion approxima-
tion).2 The same general nature cannot be corroborated for the large
values of Kθ in the photosphere. We found them only for the so-
lar case which points to differences in the detailed mechanisms of
cooling and reheating in the photosphere when compared to the
simulation for the K dwarf. The solar values of Kθ ∼ 7 in the photo-
sphere around ln P ∼ 11.5 are too large to be explained by S2

θ ∼ 2.7
and thus flow asymmetry. There has to be a substantial contribution
from intermittent events such as splitting of existing and formation
of new granules (cf. again Stein & Nordlund 1998).

A similar result is not found for the horizontal velocity field.
Fig. 6 compares the kurtosis of the vertical velocity component
Kw = Kw(vz) with that one of both horizontal components, Kw(vx)
and Kw(vy), for the solar simulation. Both horizontal components
yield quite similar results with values around 3 to within ∼25 per
cent. Evidently, the quasi-normal approximation yields a reasonable
estimate for the kurtosis of horizontal flow in all layers.

Whether the trend of values <3 in the surface layers and >3
in the layers underneath is realistic cannot be concluded from the
present simulations because of the limited accuracy of the aver-
ages. This is evident from the remaining differences between x and
y components. For a horizontally large enough simulation box and
a sufficiently long run they should be identical, because the physi-
cal situation is symmetric in x and y components. As discussed in
Robinson et al. (2003), the horizontal velocity averages and mo-
ments are some of the most difficult quantities to converge. The
main reason for that problem is the overall increase of scales of
the flow structures with depth while in turn small-scale fluctuations

2 The coincidence of minima of Kw and Kθ with Sw ∼ 0 and Sθ ∼ 0 and with
maxima of θ2 and θ4 as well as with the location of the superadiabatic peak
can be verified, too. Figs 2 and 7 of Chan & Sofia (1996) confirm the prop-
erties of Sw , Sθ and θ2. For a closely related simulation run made available
to us by K. L. Chan, the complete set of properties could be confirmed.

advected upwards through the stratification are smoothed out. The
better convergence of averages of vertical velocities and tempera-
tures compared to horizontal ones is also clear from the absence of
small wiggles when comparing Figs 4–6 for values of ln P between
14 and 15.

The ‘quasi-normal picture’ for the horizontal flow components
is underlined by the skewnesses of velocity which are also shown
in Fig. 6. For both vx and vy, the absolute value of the skewness
remains less than 1/2. We expect the trend with positive values in
the upper layers and negative ones near the bottom to be caused
by the limitations in domain size and averaging time, similar to
the kurtoses discussed above. Thus, a significantly longer averaging
time should provide further evidence for an approximately quasi-
normal behaviour of horizontal velocities, even though complex
horizontal flow patterns are visible in individual snapshots of the
velocity field such as Fig. 1.

4.2 Fourth-order moments

We now compare w4, w3θ, w2θ2, wθ3 and θ4 computed directly
from the numerical simulations, with the predictions of the differ-
ent models introduced in Section 3. We present a consistency test
which requires the computation of the right-hand side of the model
equations (involving SOMs and TOMs) using the simulation data
as their input. Figs 7–11 show the ratio of the values for FOMs
obtained from a direct ensemble average of the simulation data to
the values obtained when simulation data are used to evaluate the
right-hand side of the model equations (11)–(15), (42)–(46), (47)–
(51) and (52)–(56). Ideally, this ratio should be close to 1, within
the uncertainties introduced by the simulations themselves. How-
ever, such uncertainties cannot explain the large deviations found
for the ratio of w4 to its quasi-normal approximation (see Fig. 7).
An overestimation (ratio less than 1) for the surface and superadia-
batic layers is followed by an underestimation in the quasi-adiabatic
zone (we again neglect here and in the following the lowermost two
pressure scaleheights). Deviations range from a factor of up to 2 in
the solar case to about 1.7 for the K dwarf. The other three models
do a much better job than the quasi-normal approximation in mod-
elling the quasi-adiabatic zone: the discrepancies are reduced to a
factor of 1.2 for the GH model and also for GN3 and GN4 models.
For the surface layers, the improvements are comparable, but the
larger discrepancies found for the quasi-normal approximation
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remain unaltered for these models in the superadiabatic zone.
This is expected from the results on Kw and Sw discussed in
Section 4.1.

Similar results are found for w3θ as shown in Fig. 8. Compared
to w4 the quasi-normal approximation expression (13) for w3θ per-
forms even worse in the quasi-adiabatic part of the convection zone,
where it underestimates the absolute value of the direct average by
up to a factor of 2.3 in the solar case and 2.0 for the K dwarf simula-
tion. Again the GH, GN3 and GN4 models provide improvements,
although underestimations are larger compared to the case of w4

(up to a factor of 1.5 which is attained in the bottom part of the sim-
ulation domain, but is probably influenced by the lower boundary
conditions). The GN4 model provides slightly better results than the
GH model in the quasi-adiabatic part of the convection zone. How-
ever, its deviations are the largest ones in the photosphere where
w3θ changes sign (around ln P ∼ 11 and ∼12.1 for the Sun and the
K dwarf, respectively; the negative sign of the ratio which occurs
for the top layers indicates that the correct location of the double
change of sign of this quantity is very sensitive to the modelling,
although it is likely that it depends on the choice of the boundary
conditions as well). As for w4, none of the models is satisfactory
in the region around the superadiabatic peak. The improvements
obtained with the GN3 and GN4 models (overestimation of |w3θ |
by less than a factor of 1.4) compared to the GH model is traded
against larger deviations in the quasi-adiabatic zone (GN3 model)

and the photosphere (GN4 model). Among the five FOMs, this one
clearly is the most difficult to model.

In the case of w2θ2, the quasi-normal approximation again per-
forms far worse than any of the other models tested here, with de-
viations of up to a factor of 2.6 in the solar and 2.3 in the K dwarf
case, as shown by Fig. 9. The GH model provides significant im-
provements for the quasi-adiabatic region with deviations less than
a factor of 1.5 for both cases (neglecting again the layers closer to
the bottom than two pressure scaleheights). In the photospheric lay-
ers, the model behaves similarly to the quasi-normal approximation.
The GN3 model is clearly further off than the GH model, notably in
the quasi-adiabatic region, although this may also be influenced by
the lower boundary. The GN4 model overall is slightly better, apart
from the photosphere where it is worst among the models compared
here.

For the case of wθ3, the differences between the four models are
most pronounced. Fig. 10 clearly shows that the quasi-normal ap-
proximation yields unacceptable results with deviations exceeding
a factor of 3 for the solar case and 2.5 for the K dwarf. This is in a
region located more than two pressure scaleheights above the lower
boundary. Deviations are also large near the superadiabatic peak
(factor of 2 too small). The GH model is clearly the most successful
one in recovering this quantity. Deviations remain less than a factor
of 1.3 throughout most of the quasi-adiabatic region for both the
solar and the K dwarf case (i.e. between the levels Z2 and Z3 defined
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in Table 1). It shares deviations of a factor of 2 around the superadi-
abatic peak for the Sun with all the other models, but also performs
best in the photosphere. The GN3 model has much larger deviations
in the quasi-adiabatic part of the convection zone, especially for
the solar case, where a factor of 2 and more is common. The GN4
model performs better, but clearly not as good as the GH model and
for w3θ , it has the largest deviations where the correlation changes
sign (around ln P ∼ 11 and ∼12.1 for the Sun and the K dwarf,
respectively; the positive sign of the ratio indicates the change of
sign occurs at the correct location in the models).

The different plots for θ4 in Fig. 11 confirm that the conclusions
drawn for wθ3 are essentially correct. The ratio of the quasi-normal
approximation to the direct computation is greater than 3 for the
solar case and 2.5 for the K dwarf. Again in the superadiabatic
zone, the FOM is overestimated by a factor of 2 and there are also
similar sized discrepancies in the photosphere, at least in the solar
case. Improvements obtained by the GH model are remarkable, as
the discrepancies are reduced to less than 1.3 for both the solar and
K dwarf case (excluding the lower boundary region below Z3, where
the model still performs better than the quasi-normal approximation
– of course, this region is strongly influenced by the lower boundary
conditions). Similar improvements are obtained for the photosphere
for the solar case, but unfortunately not for the superadiabatic zone.
The deviations for the GN3 model roughly follow the same pattern
as in Fig. 10 for wθ3. The model is not much of an improvement

over the quasi-normal approximation and clearly worse than the
GH model. The GN4 model performs slightly worse than the GH
model. Its deviations are different, as it overestimates θ4 in most of
the quasi-adiabatic part of the convection zone.

4.3 Third-order moments

The two-scale mass-flux model of Gryanik & Hartmann (2002)
yields expressions (22) and (23) for the TOMs w2θ and wθ2. The
linear scaling of all its ingredients with their Reynolds averages for
the convective PBL (fig. 7 of Gryanik & Hartmann 2002) suggests
that the high skewness limit (28) and (29) may hold for a much
larger range of Sw and Sθ :

w2θ = a1 Sw σw wθ = a1

(

w3/w2
)

wθ, (57)

wθ2 = a2 Sθ σθ wθ = a2

(

θ3/θ2
)

wθ. (58)

Remarkably, for the terrestrial case the factors a1 and a2 are found to
be very close to 1 (table 2 and fig. 12 in Gryanik & Hartmann 2002).
We hence tested equations (28) and (29) for both our solar granu-
lation simulation and the simulation for the K dwarf in the same
way as the expressions for the FOMs (Section 4.2). The right-hand
side of equation (28) has been evaluated using the averages from
the simulations and is compared to a direct (ensemble averaged)
evaluation of w2θ in Fig. 12. Both sets of averages are normalized
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by the product σ 2
wσ θ , which is computed from the simulations. For

the Sun, the agreement between model and data is better than for
any of the models for FOMs. For the K dwarf, there are larger de-
viations near the bottom of the simulations and the deviations near
the superadiabatic peak are more pronounced, although the overall

agreement is still more satisfactory than those found for the various
models of FOMs.

In Fig. 13, we present a similar comparison between the model
expression (29) and direct averages for the solar and the K dwarf
case for wθ2, this time normalized to σwσ 2

θ as obtained from the
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simulations. The agreement for the solar case is nearly perfect. Only
in the atmosphere and the superadiabatic peak there is some room
left for improvement. Remarkably, the agreement for the K dwarf
is practically as good as for the solar case. Hence, model (29) is an
excellent approximation for wθ2.

It seems surprising that fluctuations within and in between the
drafts do not lead to a more complicated dependence between two-
scale mass-flux average and Reynolds average for w2θ and wθ2.
Improvements are mainly required in regions where Sw ∼ 0 and Sθ ∼
0. Following Zilitinkevich et al. (1999), who proposed a gradient
(diffusion) type correction for equation (57) to improve results near
the boundary between stable and unstable stratification, Gryanik &
Hartmann (2002) suggested gradient terms to be added to the right-
hand sides of both equations (57) and (58). We have investigated
such corrections for the case of the solar convection simulation and
found that small terms of type d1τσ 2

w∂wθ/∂z and d2τσ 2
w∂θ 2/∂z, re-

spectively, indeed allow a nearly perfect match of w2θ and wθ2 near
the superadiabatic peak, while maintaining the very good agreement
for the quasi-adiabatic layers below unaltered.3

5 C O M PA R I S O N W I T H OT H E R S T U D I E S

In Grossman & Narayan (1993), SPH simulations were used to
study models GN3 and GN4. A perfect gas was assumed as well
as a prescribed radiative conductivity given as a function of depth.
Peculiar boundary conditions had to be used to allow application
of their simulation technique (particles are reflected, gravity is con-
stant throughout most of the simulation box but approaches zero
in the top and bottom boundary layers). Only the vertical direction
was explicitly accounted for in their dynamical equations, while
effects of horizontal flow had to be parametrized. They found mod-
els GN3 and particularly GN4 to be significant improvements over
the quasi-normal approximation. Both models reduced rms differ-
ences between computations of FOMs directly from the SPH sim-
ulations and evaluations of the model equations with their simula-
tions by typically a factor of 2 to 4. Qualitatively, model GN4 was
found preferable over GN3, because it did a better job at repro-
ducing regions for which correct symmetries with respect to sign
change of θ are important. To our knowledge, models GN3 and GN4
have previously been tested only by their authors. As Figs 7–11 in
Section 4.2 show, we find the same amount of improvement over
the quasi-normal approximation of FOMs for both the solar and the
K dwarf granulation simulations. In our case, for w2θ2, wθ3 and θ4,
model GN4 is preferable over GN3. This is a consequence of its de-
pendence on S2

θ . The latter is not evident from equations (54)–(56),
but taking into account the results of Section 4.3 which show how
well w2θ and wθ2 scale with Sw and Sθ , respectively, we conclude
that the functional form assumed for model GN4 is equivalent to in-
troducing a dependence ofw2θ2 andwθ3 on S2

θ (and ofw2θ2 andw3θ

on S2
w). This can be seen from putting equations (57) and (58) into

equations (54)–(56). Apart from an additional dependence on C2
wθ

which appears as a (height dependent) factor in front of the skew-
nesses, model GN4 then becomes quite similar to the GH model,
both in functional form and overall performance. It also corroborates
our claim in Section 3.3 that the functional form of the model ex-
pressions is more important than varying their coefficients by factors

3 The detailed values for the model constants d1 and d2 depend, among
others, on how the turbulent dissipation time-scale τ is computed. For the
solar simulation, the most simple prescription of taking τ to be a fraction of
the local pressure scaleheight over

√
K , given by equation (1), was sufficient.

of the order of unity [1.5 for ai in equation (40) and 2 for di in equa-
tion (41), as suggested by the numerical experiments in Gryanik
& Hartmann 2002 and also, indirectly, in Grossman & Narayan
1993]. We note that in Grossman (1996) a modification of the dy-
namical equations underlying the SPH simulations of Grossman
& Narayan (1993) was discussed. This modification explicitly ac-
counts for a horizontal flow component. However, only a few tests
of the quasi-normal approximation were presented which confirmed
the previous results of Grossman & Narayan (1993).

Assuming the fully compressible Navier–Stokes equations in the
large eddy (volume averaged) approximation for three spatial di-
mensions, Chan & Sofia (1996) performed numerical simulations
of a deep convective atmosphere using a perfect gas equation of state
and prescribed radiative conductivity. A convection zone almost 7
pressure scaleheights deep with nearly quasi-adiabatic stratification
in its interior and a superadiabatic peak at its top, was embedded
between two shallow stable layers located at the top and bottom.
These layers separated the convection zone from the impenetrable
stress-free boundaries. Numerous closure relations for lower or-
der moments were studied by Chan & Sofia (1996) including the
quasi-normal approximation. As can be seen in their fig. 11, the
discrepancy between equations (11)–(15) and the direct evaluation
of these FOMs is typically a factor of 2–3 within the interior (quasi-
adiabatic) part of that convection zone. This is very close to what we
find in Section 4.2 for the case of our solar granulation and K dwarf
simulations. A related simulation run with a slightly larger stable
layer on top than in the case presented in Chan & Sofia (1996) was
made available to one of us (FK) by K. L. Chan. Again equations
(11)–(15) underestimate the FOMs in the interior of the convection
zone by a factor of 2–3. Likewise, the superadiabatic peak coincides
with a region of small |Sw| and small |Sθ |, a maximum of θ2 and θ4,
and low values of Kw and Kθ (slightly less than 2). This was also
found for the solar and the K dwarf simulations (see Section 4.1). For
that simulation, we have also verified that the GH model provides
an even better improvement over the quasi-normal approximation:
except for the region around the superadiabatic peak as well as the
lower boundary of the convection zone deviations drop to a factor
of less than 1.4 for θ4 and less than a factor of 1.3 for the four other
FOMs in the convectively unstable zone. Around the superadiabatic
peak, the GH model essentially coincides with the quasi-normal
approximation, while in the stably stratified layers the GH model
again performs better than the quasi-normal approximation, reduc-
ing discrepancies by typically a factor of 2.

The GH model has also been compared to the quasi-normal ap-
proximation for two geophysical cases: one by Gryanik & Hartmann
(2002) and Gryanik et al. (2005) for the case of three-dimensional
numerical simulations and aircraft measurements of the PBL and an-
other by Losch (2004) for numerical simulations for the ocean. Nei-
ther systems have the equivalent of a superadiabatic peak. The PBL
can be subject to developing a shallow convection zone (typically
1/8 of a pressure scaleheight deep) with a stable temperature inver-
sion layer on top (see also Garratt 1994). Possible causes include
daytime heating of the ground under cloud-free conditions at neg-
ligible horizontal mean wind or a weak wind continuously moving
cold air above a warmer surface. In both cases, radiative or conduc-
tive losses by the air itself are negligible. A weak wind moving cold
air above a warm surface can give rise to a quasi-stationary convec-
tion zone. This is the scenario investigated by Gryanik & Hartmann
(2002) and Gryanik et al. (2005). For the PBL, they showed the
quasi-normal approximation (equations 11–15) suffers from sys-
tematic trends when predicting FOMs. The GH model avoids these
trends. Moreover, explained variances as a measure of the mean
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differences between data and model are improved by 15 per cent
to 35 per cent compared to the quasi-normal approximation with
explained variances attaining values of 92 per cent or better when
compared to simulations instead of the previous 68 per cent (and
at least 73 per cent compared to the previous 38 per cent for the
aircraft measurements). This corresponds to improvements of a fac-
tor of 2 for each of the five FOMs. These conclusions hold for the
lower three quarters of the PBL convection zone. Cheng, Canuto &
Howard (2005) pointed out that measurements for the highest lay-
ers for which observational data were available indicate that the GH
model underestimates Kw in that region. The same is not evident
from the numerical simulations presented in Gryanik et al. (2005)
with horizontal wind speed appropriate for the measurement condi-
tions. Interestingly, for the lower 75 per cent of the PBL, Kw remains
between 3 and 4.5. It increases as a function of height which is the
opposite of the solar case, as in the PBL fast and narrow updrafts
are enclosed by slow and broad downflows. Whether the high values
for Kw of 5–6 are an indication for larger fluctuations within and
between the upstreams near the top of the PBL or just result from
insufficient averaging (horizontally and/or as a function of time)
is yet unclear (cf. the large spread for Kθ in fig. 3 of Gryanik &
Hartmann 2002).

The numerical simulations presented in Losch (2004) were used
to study a case of oceanic deep convection. They assumed a con-
vection zone spanning the entire vertical depth range between two
impenetrable boundaries separated by 1 km (roughly 4.6 pressure
scaleheights). For the bottom this approximation is excellent, while
for the top it avoids dealing with the complex air–water interface
which involves scales much smaller than that of the convective
plumes and the chosen grid scale (10 m). Realistic microphysics
was taken into account assuming a well-mixed medium. Three dif-
ferent cooling rates (which determine the convective driving) and
three choices of Coriolis numbers (of the order of unity) were in-
vestigated. Both Sw and Sθ were found to attain values less than
−1.5 within the top 10 per cent of the convection zone indicating
realizability problems for the quasi-normal approximation in that
region, as a result of equation (19). The negative skewnesses cor-
respond to narrow and fast downwards moving plumes embedded
in broad and slow upflows, just like our granulation simulations.
With exception of w4 and for all cases studied, the quasi-normal ap-
proximation was found to yield poor results with systematic trends
and low explained variances (between 23 and ∼85 per cent). Us-
ing the GH model provided improvements of a factor of 2–3 while
removing most of the trends and increasing explained variances
accordingly (to between 52 and 99 per cent). Only for w4 were
the predictions of the quasi-normal approximation good enough so
that the GH model was only able to provide minor additional im-
provements for the top layers. If one attempts a best fit of all cases
studied by varying the parameters (equations 40–41) of equations
(35)–(39), only minor improvements can be achieved (mostly for
the case with weakest convection and slowest rotation/lowest Cori-
olis number). Those variations are of the same order as mentioned
above (factors up to ∼1.5 for the ai , somewhat larger for the di ), but
the small improvements gained from that procedure lack any uni-
versality, as the resulting numbers have no correlation with those
found for the PBL case in Gryanik & Hartmann (2002). This again
implies that optimizing the ai and di with least-square fits to some
data is not a worthwhile venture. Since a large number of additional
tests were made by Losch (2004) to confirm the independence of
these results from assumptions made about numerical and subgrid
scale viscosity as well as other physical quantities, his studies were
done for the case of only one horizontal direction in addition to the

vertical one. Three-dimensional simulations had to be left for future
work.

6 D I S C U S S I O N A N D C O N C L U S I O N S

6.1 Discussion

In Section 4, we showed that the improvements provided by the GH
model for the quasi-adiabatic part of convection zones and its short-
comings near their boundaries are similar in both the solar and the K
dwarf simulation of surface convection. The same is also found for a
simulation with idealized microphysics as in Chan & Sofia (1996).
In all these cases, the convection zones have a quasi-adiabatic strat-
ification over several pressure scaleheights and a pronounced su-
peradiabatic peak on its top. Apparently, these general properties
are more important for the flow topology and for the behaviour of
lower order moments, than the details of radiative cooling and ef-
fects due to ionization which distinguish our simulations from those
of Chan & Sofia (1996). Our solar simulations are corroborated by
a numerical simulation for solar granulation with open boundaries
based on the code of Stein & Nordlund (1998) which is used in
Belkacem et al. (2006a) to develop a closure model useful for the
modelling of solar p-mode excitation rates (Belkacem et al. 2006b).
For the bottom of the photosphere, the superadiabatic layer, and
the top of the quasi-adiabatic part of the solar convection zone,
both simulations are not only similar in their mean structure (cf.
Section 2.1), but also agree within 20 per cent or better about the
values for Kw, Kθ , w4, θ4, Sw and Sθ (for w4 and the skewnesses,
see figs 2 and 3 in Belkacem et al. 2006a).

Differences occur at the top of the photosphere and in the mid and
lower part of the quasi-adiabatic convection zone and are caused by
the boundary conditions. The closed lower boundary of our simu-
lations leads to a drop of Kw , Kθ , Sw , Sθ and related quantities to-
wards values compatible with the impenetrable boundary, whereas
they drop just slightly from their maximum values in the case of
open boundaries (fig. 2 in Belkacem et al. 2006a). This is expected
when deep downdrafts which continue further on, merge with each
other, but otherwise within the nearly adiabatic environment the
background conditions and the flow topology remain unaltered. As
the astrophysically important differences between the FOM models
discussed in Section 4 are established in the layers where simula-
tions with deeply enough located closed and with open boundaries,
respectively, agree closely, the conclusions we draw on the mod-
els are robust to the treatment of the simulation boundaries. This
holds as long as the simulation boxes are deep and wide enough and
have sufficient numerical resolution for the large-scale flows (see
Robinson et al. 2003, and Section 2). We note that the simulations
of Stein & Nordlund (1998) used in Belkacem et al. (2006a) are
based on a non-grey treatment of radiative transfer while our own
simulations use the grey approximation. For the study of lower order
moment statistics of the bottom of the photosphere, the superadi-
abatic layer, and the quasi-adiabatic convection zone underneath,
this difference is apparently unimportant.

The conclusions derived from our astrophysical convection sim-
ulations have also been found in simulations of the planetary con-
vective boundary layer of the earth and in convection in the ocean
(Section 5). The geophysical systems differ from the astrophysical
case in many ways, such as in the microphysical properties of the
fluids, in the heating and cooling mechanisms, boundary conditions
and in the importance of stratification and compressibility. The main
feature shared by the astrophysical and the geophysical cases is that
of an interior, quasi-adiabatic convection zone with a filamentary
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structure (plumes, updrafts or downdrafts) that results from the dif-
ferent areas being covered by up- and downflows and varying areas
of fluid hotter and colder than the average. For that part of the con-
vection zone, the quasi-normal approximation (equations 11–15) is
found to be unsatisfactory in all cases presented in Section 4 and
5, while the GH model (equations 42–46) and in principle also the
GN4 model (equations 52–56) are found to provide an improvement
of up to an order of magnitude for the prediction of these quantities.
We thus suggest that the shortcomings of the quasi-normal approx-
imation and the improvements found for the alternative models are
primarily caused by properties originating from the flow topology
of convection found in each of these physical systems. This topol-
ogy is characterized by coherent structures which, in the case of the
Sun, emerge as granules and downdrafts at the top of its convection
zone.

If we want to model the superadiabatic region of the Sun or a K
dwarf, our tests with numerical simulations show that none of the
models discussed in Section 4 is sufficient. The bright line in Fig. 1
indicates that the optical surface, the layers in which most of the ob-
served radiation is emitted, is corrugated. Stein & Nordlund (1998)
have shown that the fluid remains in radiative–convective equilib-
rium in the solar photosphere: although energy transport switches
from convective to radiative at the surface, fluid parcels are both
cooled and reheated once they have reached the surface. The ex-
treme temperature sensitivity of opacity at the optical surface thus
explains the location of the maxima of θ2 and θ4. The rapid increase
in opacity at the solar surface leads to steep temperature gradients
which peak where convection sets in as the dominant means of en-
ergy transport and where the corrugated optical surface causes the
maxima in θ2 and θ4. As discussed in Section 4.1, the radiative ex-
change also leads to a drop of Kw and Kθ to values between 1.5 and
2, well below the value of 3 obtained for a quasi-normal distribution.
This effect clearly has to operate on the level of individual drafts,
as the corrugated optical surface cannot sufficiently constrain Kw

and Kθ on its own. Density fluctuations of the highly compressible
flow further enhance this drop. For instance, fluid in the updraft
which cools more rapidly than at its adiabatic expansion rate and
which remains in pressure equilibrium with its environment will ex-
perience further cooling and large excess temperature fluctuations
within the draft will be damped more efficiently, thus lowering Kθ .
The increased radiative exchange and turnover of fluid due to loss
of buoyancy likewise leads to a drop in |Sw| and |Sθ | and explains
the coincidence of minima of Kw and Kθ with Sw ∼ 0 and Sθ ∼ 0. As
a result, both kurtosis and skewness are quite different from what is
assumed in the picture underlying local convection models, both in
the quasi-adiabatic part of the convection zone and in the superadi-
abatic layer. The elaborated physical picture required to explain the
behaviour of skewness and kurtosis suggests that these are useful
quantities for describing the effects of large-scale coherent struc-
tures on the distributions of velocities and temperatures observed in
solar and stellar surface convection.

6.2 Conclusions and outlook

The results discussed in Sections 4 and 5 show that the quasi-normal
approximation can only give an order of magnitude estimate for the
one-point Reynolds averages of FOMs of vertical velocity and tem-
perature. Taking into account that the main assumptions underlying
this approximation are homogeneity, isotropy and uncorrelatedness
of the fields being averaged, the low accuracy of equations (11)–(15)
is mainly the result of the non-locality of turbulent convection and of
the coherently organized structures which perform most of the trans-

port provided by this type of flow. To improve on equations (11)–
(15), mass-flux models and expansions in terms of skewness have
been proposed. As a comparison of equations (42)–(46) with equa-
tions (52)–(56) shows, both approaches can lead to algebraically
similar extensions of equations (11)–(15). The detailed comparison
of the models with numerical simulations of granulation in the Sun
and a K dwarf shows that the correct symmetries with respect to
temperature and velocity are important. For exactly that reason, the
GN3 model falls clearly short of the GH and the GN4 model when
we compare predictions of w2θ2, wθ3 and θ4 with simulation data.

The differences between the GH and the GN4 model are much
smaller, as we can see from the results for the solar and the K
dwarf simulations presented in Section 4.2. They have the same
size as if we had varied the coefficients (equations 40–41) of equa-
tions (35)–(39) by factors of about 1.5–2. This immediately follows
from comparing equations (42)–(46) and equations (28)–(29) with
equations (52)–(56). From that point of view, a preference for the
GH model based on smaller maximum differences from directly
computed FOMs or better results for wθ3 as selection criteria, may
appear a bit arbitrary. We think it is more important that individual
optimizations of equations (40) and (41) are found to be specific to
particular physical problems and thus lack universality. This follows
from the results discussed in Section 5, if the optimum fit parameters
of Gryanik & Hartmann (2002) are compared with those found by
Losch (2004) and those implied by equations (52)–(56). The choice
of equations (40) and (41) taken for equations (42)–(46) is found
in the middle of this range of best-fitting parameters. Moreover, the
GH model also fulfils an asymptotic limit for the case of very high
skewness (which the GN models do not), even though the limit may
not be attained in stellar convection zones. From that point of view,
the GH model appears preferable over the GN4 one. We finally re-
call that while the numerical simulations themselves, the GH model
(and also the two-scale mass-flux model of Gryanik & Hartmann
2002), as well as the GN4 model pass the realizability test (19), both
the GN3 model and the quasi-normal approximation fail.

In light of the variety of tests also done in neighbouring fields
(cf. Section 5), we conclude that the GH model (equations 42–46)
together with equations (28) and (29) is the most appropriate one to
improve predictions of TOMs and FOMs of vertical velocities and
temperature as a function of SOMs and skewness in the interior,
quasi-adiabatic region of convection zones (at points sufficiently
away from upper and lower boundaries). In that region, the model
allows predictions with a typical accuracy of 20–30 per cent instead
of the order of magnitude estimates provided by the quasi-normal
approximation. We note that the latter, however, can still be expected
to be useful when closing FOMs of horizontal velocity components
in terms of second-order ones (Section 4.1). In the quasi-adiabatic
part of the convection zone, the model (42)–(46) could help to im-
prove Reynolds stress convection models as well as the modelling of
p-mode excitation in solar type and other cool dwarf stars. The latter
has already been investigated (Belkacem et al. 2006a, b). The extra
energy injected into those solar p modes, which have significant con-
tributions to their excitation from the top of the quasi-adiabatic part
of the solar convection zone, is indeed found to provide major im-
provements when comparing theory with observations (Belkacem
et al. 2006b).

The GH and GN4 models performed poorly only in transition
regions, such as the capping region at the top of the PBL or the
radiation/convection transition region at the top of the solar con-
vection zone. In the case of the Sun and other cool stars such as
K dwarfs, the transition region is characterized by complex radia-
tive exchange in the flow which can only be accounted for by a
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more complete physical model. Eddy damping methods applied to
the quasi-normal approximation, as described in Section 3.2, have
to face exactly the same challenge. While results for some cases
(Kupka & Montgomery 2002; Montgomery & Kupka 2004) appear
encouraging, a model of general applicability for solar and stellar
convection may require a much more detailed picture of radiative
transfer and flow topology. In that case, models like those of Gryanik
& Hartmann (2002) and Gryanik et al. (2005) certainly provide a
promising starting point.
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62, 2632
Guenther D. B., 1994, ApJ, 422, 400
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