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ABSTRACT

This paper describes three-dimensional (3D) large eddy simulations of stellar surface con-
vection using realistic model physics. The simulations include the present Sun, a subgiant of
one solar mass and a lower-gravity subgiant, also of one solar mass. We examine the thermal
structure (superadiabaticity) after modification by 3D turbulence, the overshoot of convec-
tive motions into the radiative atmosphere and the range of convection cell sizes. Differences
between models based on the mixing length theory (MLT) and the simulations are found to
increase significantly in the more evolved stages as the surface gravity decreases. We find that
the full width at half maximum (FWHM) of the turbulent vertical velocity correlation provides
a good objective measure of the vertical size of the convective cells. Just below the convection
surface, the FWHM is close to the mean vertical size of the granules and 2 × FWHM is close
to the mean horizontal diameter of the granules. For the Sun, 2 × FWHM = 1200 km, a value
close to the observed mean granule size. For all the simulations, the mean horizontal diameter
is close to 10 times the pressure scaleheight at the photospheric surface, in agreement with
previous work.
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1 I N T RO D U C T I O N

Present-day computers are just about powerful enough to do three-
dimensional (3D) simulations of solar convection that employ re-
alistic model physics (Stein & Nordlund 2000). Provided the layer
is not too deep (say approximately eight pressure scaleheights in
total), the system can be relaxed adequately and an accurate sta-
tistical analysis can be performed (Robinson et al. 2003, hereafter
denoted ROB3). Although there are two-dimensional (2D) realis-
tic simulations covering a wide range of stellar objects (Freytag,
Ludwig & Steffen 1996; Ludwig, Freytag & Steffen 1999), because
of the roughly two orders of magnitude increase in the total num-
ber of grid points, 3D simulations are still computationally fairly
expensive. Consequently, most 3D simulations of realistic convec-
tion have been restricted to the Sun (for example, Nordlund 1982;
Stein & Nordlund 1998 and references therein) for which we have
observations of photospheric granule size and high quality seismic
data. As an exception, there is a recent 3D simulation of a late
M-dwarf by Ludwig, Allard & Hauschildt (2002). There was also
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a series of reasonably realistic 3D simulations of stellar objects in
the vicinity of the Sun in the HR diagram by Nordlund & Dravins
(1990).

There are many reasons for performing detailed 3D simulations
of the outer layers of cool stars with convection zones. The tran-
sition from efficient convective transport in the deep envelope into
the radiative atmospheric layers takes place in a transition layer of
inefficient convection where the temperature gradient is highly su-
peradiabatic, and the poorly known structure of which remains one
of the major uncertainties in stellar models. In one-dimensional (1D)
stellar models, this region determines the outer boundary condition
of the model. This is usually performed using the mixing length the-
ory (MLT) which, given the mixing length, fixes the specific entropy
in the deep convection zone, which in turn determines the radius of
the model. The model radius thus depends sensitively on the un-
certain choice of the mixing length. Physically realistic simulations
would remove the mixing length uncertainty.

It is well known that the non-radial p-mode frequencies observed
in the Sun and Sun-like stars, are sensitively affected by the speed of
sound near the surface. Helioseismology indicates that the mixing
length theory is inadequate to model this region (Guenther 1991).
The realistic description of convection including the interaction with
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Table 1. Characteristics of the 3D simulations.

Model Age (Gyr) log T eff log g Size (Mm) Grid

S 4.55 3.761 4.44 5.42 × 2.8 1142 × 170
SG1 11.3 3.704 3.75 13.62 × 9 582 × 120
SG2 11.6 3.698 3.37 462 × 23 582 × 140

radiative transfer greatly improves the agreement with observation
(Rosenthal et al. 1999; ROB3) in the case of the Sun. The recently
launched MOST space mission (Matthews et al. 2000) and the mis-
sions COROT (Baglin et al. 2002) and Eddington (Favata, Roxburgh
& Christensen-Dalsgaard 2000) planned for the next few years, will
require convection modelling of the same sophistication for Sun-like
stars.

In addition to modifying the p-mode frequencies, the highly su-
peradiabatic layer (SAL) region is responsible for the excitation
of the acoustic oscillations. 3D simulations provide the means of
calculating the driving of the p-modes due to stochastic excitation
(Nordlund & Stein 2001; Stein & Nordlund 2001; Samadi et al.
2003). Radiative hydrodynamic simulations in 3D also yield de-
tailed information concerning the sizes and shapes of convective
cells in stars (Kim 1993). These in turn affect the strengths and
profiles of absorption lines. Since both the spectral continuum and
absorption-line strengths are the result of the density stratification
and of the motions in the atmosphere, the determination of abun-
dances and other physical conditions can also be affected (Dravins &
Nordlund 1990a,b; Asplund et al. 2000; Steffen & Holweger 2002).

This paper describes physically realistic convection in the Sun and
at two points along its future evolutionary track. The three models
considered are the present Sun (S), an 11.3-Gyr subgiant (SG1) and
an 11.6-Gyr subgiant (SG2). Table 1 shows the position of each
model in the log g–log T eff plane. The Sun expands as it evolves
off the main sequence into the subgiant region. The surface gravity,
which is inversely proportional to the radius squared, drops by a
factor of 5 between model S and SG1 and a factor of 2 between
SG1 and SG2. The surface flux drops by approximately a factor of
1.7 between S and SG1 and is almost the same in SG1 and SG2.
The thickness of the convection zones and the geometric depth of
the SAL near the top of the convection zone, are much larger in the
subgiants than in the Sun.

This paper concentrates on the following three features of the
simulations that cannot be measured in 1D stellar models that use
the MLT.

(i) The thermal structure of the outer layers, particularly of the
SAL, after modification by 3D turbulence. The entropy jump in the
SAL determines the specific entropy in the deep convection zone,
which is nearly isentropic. The convection zone specific entropy in
turn determines the radius of the stellar model. The thermal structure
of this region also strongly affects the frequencies of the non-radial
acoustic oscillations (p-modes, Rosenthal et al. 1999).

(ii) The extent of convective overshoot above the formal top
boundary of convection. By modifying the atmospheric structure,
convective overshoot also affects p-mode frequencies and the con-
tinuous and absorption-line spectra (Dravins & Nordlund 1990a,b;
Kim & Chan 1998; Demarque, Guenther & Kim 1999; Asplund
et al. 2000; Steffen & Holweger 2002).

(iii) The variation of the convection cell sizes in the highly strat-
ified layer. The cell size variation differs from the standard predic-
tions of the MLT.

2 M O D E L L I N G R E A L I S T I C S O L A R S U R FAC E

C O N V E C T I O N

The governing equations and numerical methods are identical to
those used in the simulations of the Sun described in ROB3. Our
approach to modelling surface layer convection can be summarized
as follows.

(i) Using the stellar evolution code YREC (see, e.g., Guenther et al.
1992), we compute a standard 1D stellar model from which the initial
density ρ and internal energy e, required by the 3D simulations, are
derived. From an arbitrary initial velocity field v, we then compute
ρ, E (=1/2 ρv2 + e), ρvx, ρvy and ρv z. These are the dependent
variables of the governing equations. The horizontal directions are x

and y and z is radially outwards. The 3D simulation is in a Cartesian
geometry.

(ii) Using the same tables for the equation of state and the opac-
ities as in the stellar model, we then compute the pressure P(ρ, e),
temperature T(ρ, e), Rosseland mean opacity κ(ρ, e), specific heat
capacity at constant pressure cp(ρ, e), logarithmic adiabatic gradient
∇ ad(ρ, e) and some thermodynamic derivatives.

(iii) The radiation flux is then computed using the diffusion ap-
proximation in the optically thick regions and the 3D Eddington
approximation (Unno & Spiegel 1966) in the optically thin layers.
This formulation assumes a grey atmosphere.

(iv) We then integrate the Navier–Stokes equations over one time-
step to compute a new set of dependent variables and return to (ii).

Each 3D model can be characterized by its surface gravity, effec-
tive temperature and chemical composition. We obtain the surface
gravity and stellar flux (which is close to σ T eff

4, where σ is the
Stefan–Boltzmann constant) of each star from the 1D stellar evo-
lution model, and then put the values in the 3D code by hand. Full
details of the starting model is given in Section 3.1. The equation of
state, opacity tables and the Prandtl number (ratio of kinematic vis-
cosity to thermal diffusivity), are the same as used in the simulation
of the Sun in ROB3. The initial stratification (run of pressure, tem-
perature, density and internal energy) will depend on the particular
model.

2.1 Boundary conditions and thermal relaxation

The convection domain is a box with periodic side walls and im-
penetrable top and bottom surfaces. A constant energy flux is fed
into the base and a conducting top boundary is used. As the stellar
flux is computed from the 1D stellar model it is not arbitrary, but is
the correct amount of energy flux the computational domain should
transport outwards in a particular star.

Although a box with a conducting top boundary condition may
take longer to relax than a box with a constant flux at the top, the
statistics may be more reliable (Chan 2003). To obtain a thermally
relaxed system in a reasonable amount of computer time, we used
an implicit numerical scheme, ADISM (alternating direction implicit
on a staggered mesh) developed by Chan & Wolff (1982). Our pro-
cedure is to compute a model that is deep enough so that there is
only a very small feedback of kinetic energy into the system by
fluid hitting the base, and shallow enough so that the drop of the
vertical velocity at the top is due to convection–radiation losses
and the reduction in the buoyancy force in the subadiabatic re-
gion, rather than the impenetrable top horizontal boundary itself.
The former is confirmed by the smallness of upturn of the hori-
zontal Mach number squared at the base, while the latter is con-
firmed by running an identical simulation with a slightly damped
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horizontal velocity at the top. If the top boundary is far enough
out, the ‘damped simulation’ should have almost the same ther-
mal structure and rms vertical velocity as the simulation with an
‘undamped’ stress free top. In other words, if the boundary is far
enough up, then the damping should have a minimal effect on the
statistics of the flow. The importance of this test was demonstrated in
ROB3.

This part of the simulation only requires a small aspect ratio,
most often 0.75 and a horizontal grid of 30 × 30, with say 140
uniformly spaced vertical grid points. We focused on getting the
correct vertical structure before worrying about the domain width.
After the narrow column of convecting fluid is relaxed, the layer is
periodically extended. To ensure that the box is wide enough, the
aspect ratio should be increased until a further increase produces a
minimal change in the rms velocities or in the size of the granules.
Once a big enough box is found, the convection simulation is run
using the ADISM code until it has reached a statistically steady state.
One way of checking this is to compare the influx and outflux near
the top of the box. They should be within 5 per cent of each other.
We also checked that the maximum velocity in the box had reached
a statistically steady state.

2.2 Statistical analysis

The relaxed layer is then restarted with a second-order accurate ex-
plicit code (Adams–Bashforth time integration). The explicit time-
step is approximately five times smaller than the implicit time-step,
while an individual integration step takes approximately half the
time. Quantities were averaged over a time that was long enough
for the averages to be independent of the integration time. Note that
prior to statistical averaging, the code is run for a few thousand time-
steps. This allows the simulation to adjust to the new time-step and
ensure that the influx and outflux are within 1 per cent of each other
before computing any statistics. For the Sun model, the statistical
convergence took more than an hour of solar surface convection
time.

2.3 Statistical definitions

In a turbulent fluid, a quantity q can be split into a mean and a
fluctuating part,

q = q(z) + q ′(x, y, z, t). (1)

The overbar represents a combined horizontal and temporal average,
i.e.

q(z) =
1

t2 − t1

∫ t2

t1

(

1

L x L y

∫

q dx dy

)

dt . (2)

t1 is a time after the system has reached a self-consistent thermal
equilibrium (the thermal adjustment time). Lx and Ly are the hori-
zontal widths of the box in the x and y direction, respectively. The
time required for statistical convergence is t2 − t1.

The rms value of a quantity q is defined as

q ′′ =

√

q2 − q2, (3)

while the correlation coefficient of two quantities q1 and q2, is de-
fined as

C[q ′
1q ′

2] =
q1q2 − q̄1q̄2

q ′′
1 q ′′

2

. (4)

With periodic side boundaries, isotropy in the large scales means
that

Figure 1. Turbulent velocities in the horizontal and the vertical directions
versus depth.

(i) C[v′
x v′

y] = 0,
(ii) v′′

x = v′′
y .

Generally, second-order quantities such as C[v′
z v′

z] take con-
siderably longer to converge than first-order quantities such as the
superadiabaticity, ∇ − ∇ ad. The run of turbulent velocities of a Sun
model averaged over 80 min of solar convection time are shown in
Fig. 1. By computing the run of both C[v′

x v′
y] and the rms horizon-

tal velocities over different averaging times, we found that C[v′
x v′

y]
was close to zero when the rms horizontal velocities (which are also
second-order quantities) were almost equal. Even though these two
quantities may appear to have converged it does not mean that other
second-order quantities have. For each statistical quantity presented
in this paper, convergence was thoroughly checked by confirming
that averaging over a longer time did not change the result.

3 R E S U LT S

3.1 Starting models

The 3D simulations described in this paper are for the Sun (S),
a subgiant (SG1) of one solar mass and a more evolved subgiant
(SG2) also of one solar mass. The 1D solar model used as the initial
model for S is a calibrated solar model evolved from the zero-age
main sequence (ZAMS). The evolutionary track was then extended
beyond the main-sequence turn-off into the subgiant region to obtain
initial models for the 3D simulations SG1 and SG2. Some details
of the three models are given in Table 1. The surface gravity and
effective temperature are in c.g.s. units. Note that between S and
SG1 the surface gravity and the effective temperature both change
significantly, while between SG1 and SG2 by far the most significant
change is in the surface gravity.

The initial 1D solar model for S is a calibrated standard solar
model which includes the effects of helium and heavy element dif-
fusion. It is constructed with the semi-empirical Krishna Swamy
(1966) T(τ ) relation for the solar atmosphere and uses the MLT in
the convective outer layers (Guenther & Demarque 1997; Winnick
et al. 2002). Under these assumptions, if the initial solar metallic-
ity Z0 = 0.019 and the age of the Sun is set at 4.55 Gyr, the MLT
parameter α = 1.988. Note that the radius of a solar model depends
sensitively on both the T(τ ) relation in the radiative atmosphere and
on the choice of α. The use of the Eddington approximation T(τ )
relation would require α = 1.678.

We point out that an evolutionary track for the Sun constructed
under the standard assumptions (MLT with constant solar calibrated
α), would not pass precisely through the positions in the log g–log
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T eff plane adopted for SG1 and SG2. This is because the original
models for SG1 and SG2, which were constructed using the standard
MLT assumptions, did not provide sufficiently good starting con-
ditions for the 3D simulations, and the simulation failed to evolve
towards a statistically stationary state. To overcome this problem,
improved 1D starting models for the two subgiant models were then
constructed which partially included the effects of turbulence in their
outer layers. This was performed using the turbulence parametriza-
tion for a 1D stellar model, of the 3D simulation of the Sun by ROB3
due to Li et al. (2002). For a Krishna–Swamy T(τ ) atmosphere, Li
et al.’s improved solar models require α = 2.132. This value of α

was adopted for the SG1 and SG2 starting models. These revisions,
due to the effects of turbulent pressure and turbulent kinetic energy,
result in a small shift in log T eff and log g for SG1 and SG2 away
from the original evolutionary track.

Given the initial solar metallicity Z0, the ZAMS hydrogen con-
tent X0 is set by the constraint of the solar calibration described
above. We note here that the surface chemical composition changes
slightly during evolution. In the Sun (model S), because of diffusion,
helium and heavy element abundances are depleted with respect to
the ZAMS chemical composition, and (X, Z) = (0.742 39, 0.017
069). As the evolution proceeds beyond the present Sun, past the
main-sequence turn-off and into the subgiant phase, the radius in-
creases and the convection zone deepens, resulting in the dredge-up
to the surface of helium and heavy elements that had previously
diffused below the convection zone. In the cases of SG1, the chem-
ical composition has changed to (X, Z) = (0.719 338, 0.018 38).
In the more evolved SG2, we have (X, Z) = (0.713 01, 0.018 63).
The effect of these differences in chemical composition are felt on
the equation of state (in the H and He ionization zones) and on the
opacities (primarily sensitive to Z), but it is relatively minor in the
present simulations.

3.2 Box dimensions

The horizontal dimensions of each computational box (column 5
in Table 1) were estimated by assuming that the granule size will
scale roughly inversely with g. In ROB3, it was found by trial and
error that a width of 2.7 Mm produced nearly the same results as a
box of 5.4 Mm in the Sun simulation. As g is approximately five
times smaller in the subgiant SG1, the computational box should
be at least 13.5 Mm wide. Similarly, model SG2 should be at least
33 Mm wide. The vertical extent of each model is chosen to minimize
the effect of the top and bottom boundaries on the interior flow. This
test is described in Section 2.1. The final column gives the number
of grid points in the two horizontal and vertical directions in the
square based box.

Fig. 2 shows contour plots of the instantaneous vertical velocity
for the Sun and the 11.3-Gyr subgiant, SG1. The contours are in a
horizontal plane near the visible surface. The thick black lines rep-
resent the strong downflows which occur at the sides of the granules.
The lighter regions denote upflowing fluid or weak downflows. In
each case a few granules can be seen to fill the boxes. The bound-
aries of the granules do not seem influenced much by the sides of
the box.

3.3 Superadiabaticity in the simulations and the MLT

Figs 3–5 show the superadiabaticity versus fractional radius for MLT
(solid) and simulation (dot-dash), for the present Sun (S), the sub-
giant (SG1) and the more evolved subgiant (SG2), respectively. The
fractional radius is defined as R/Rmodel, where Rmodel is the location

Figure 2. Contours of the vertical velocity near the visible surface for the
Sun (upper frame) and the subgiant (lower frame). The dark lines represent
strong downflows and the bright regions are upflows. The dimensions of the
frames are 3. 75 × 3. 75 Mm for the Sun and 13. 6 × 13. 6 Mm for the
subgiant.

of the visible surface (where T = T eff) in each MLT stellar model.
The value of Rmodel is given in terms of R	 in the second column
of Table 2. The individual grid points in the simulations are marked
by crosses to show that the SAL is well resolved in each simulation.
The vertical lines mark the photospheric (visible) surface in the MLT
(solid) and the simulation (dot-dash). The photospheric surface is
defined as the point at which the temperature equals the effective
temperature. For a 3D simulation this is where the horizontally and
temporally averaged temperature equals the effective temperature
of the 1D model.

The most obvious effect of turbulence is to push the convection
surface outwards from its original position, which had been deter-
mined using the MLT. The three figures show that as the Sun evolves,
this effect is greatly enhanced. The convective surface, as defined
by the Schwarzschild criterion (∇ − ∇ ad = 0), is moved out from its
MLT position by 70, 400 and 1300 km in S, SG1 and SG2, respec-
tively. The photospheric surface is moved out by a similar amount.
Rosenthal et al. (1999) found an elevation of the iso-pressure layers
in the photosphere of 150 km for the Sun. Their measurement was
made by comparing a 1002 × 82 model on a domain of 6 × 6 ×

3.4 Mm, with an MLT model. The difference between their result
and ours may be due to the different vertical resolutions. For the
Sun we also computed the elevation for an 803 model on a domain
of 4 × 4 × 2.5 Mm. We found that the log P = 5 surface was
shifted by approximately 135 km. In that model the SAL peak was
slightly higher and the turbulent pressure peak slightly lower, than
in our 1172 × 170 model presented in this paper. In fact, the peak
values of turbulent pressure and ∇ − ∇ ad in Rosenthal et al. were
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Figure 3. Superadiabaticity versus fractional radius for the Sun (S). For
each model, the MLT is denoted by the solid line and the simulation is
marked by the dashed line. The vertical grid points in the simulation have
been marked individually to show that the SAL was well resolved. The
vertical lines show the position of the photospheric surface.

Figure 4. Superadiabaticity versus fractional radius for the subgiant (SG1).

Figure 5. Superadiabaticity versus fractional radius for the more evolved
subgiant (SG2).

closer to those found in our 803 simulation, rather than our 1172 ×

170 simulation. This suggests that the magnitude of the temperature
fluctuations (which depend on the peak value of ∇ − ∇ ad) and the
turbulent pressure, play an important role in the elevation of the
photosphere.

The turbulent pressure ρv′′
z

2 divided by the gas pressure is plotted
for the three models in Fig. 6. Note that the turbulent pressure was
also computed as ρv′′

z
2. We found little difference between the two

measurements. The maximum turbulent pressure is approximately
15 per cent in S, 16 per cent in SG1 and over 20 per cent in SG2.
The increase in the peak value occurs primarily because the gas

Table 2. The displacement of the convective surface δ (∇ − ∇ ad)
and the extent of overshoot above the convective surface δOS. Hp is
the pressure scaleheight at the convective boundary.

Model Rmodel/R	 δ (∇ − ∇ ad) (km) δOS (km) δOS/Hp

S 1.0 70 60 0.5
SG1 2.198 400 400 0.75
SG2 6.347 1300 1500 1.0

Figure 6. Ratio of turbulent pressure to gas pressure for S, SG1 and SG2,
marked by dashes, dot-dashes and triple-dotted-dashes, respectively.

Figure 7. Normalized correlation of the vertical velocity with temperature
(see the text) in the Sun. The size of C[v′

z T ′] is used to estimate the overshoot
of turbulent fluid into the stable radiative region. To pinpoint the convection
surface (where ∇ − ∇ ad = 0) in the 3D simulation, the superadiabaticity is
also plotted. The convectively stable region lies above the depth at which ∇ −

∇ ad = 0. The overshoot is approximately half the local pressure scaleheight.

density in the SAL region is lower in the more evolved models. The
convective velocities are actually not much different.

3.4 Overshoot

In the MLT, the convective velocity is set to zero in the subadi-
abatic (radiative) region. In reality, convective motions overshoot
into the stable region. This process is more correctly modelled by
3D simulations.

To estimate the amount of overshoot we plotted C[v′
z T ′] and

∇ − ∇ ad versus ln P for the three models in Figs 7–9. For a mass
element, if C[v′

z T ′] is positive then either v z and T both exceed their
surrounding values or are both less than their surrounding values.
In either case it is buoyancy that is accelerating the mass element.

The overshoot distance, defined here as the distance between the
depths at which ∇ − ∇ ad = 0 and C[v′

z T ′] = 0, increases from

C© 2004 RAS, MNRAS 347, 1208–1216



Stellar surface simulations 1213

Figure 8. The same quantities as in the previous figure for the subgiant
(SG1). The overshoot is approximately 0. 75 of the local pressure scaleheight.

Figure 9. The same quantities as in the previous figure for the more evolved
subgiant (SG2). The overshoot is approximately equal to the local pressure
scaleheight.

model S to model SG2. For Models S, SG1 and SG2, the distance
is 60 km, 400 km and 1500 km, respectively. These distances are
very close to the size of the displacement of the SAL from the
MLT position by turbulence (as described in the previous section).
This is probably because turbulent convective motions (v′′

z ) are re-
sponsible in both cases. This shows that the simulation results are
consistent. By comparing the enthalpy flux to the total flux in the
subadiabatic region, we find that regardless of how large C[vz′, T ′]
is, in each model the overshooting fluid carries only approximately
1 per cent of the total flux. In the subadiabatic region radiation
transports nearly all the energy flux. It seems that the inefficient
convective motions carry momentum (via the transport of temper-
ature fluctuations which makes mass elements positively buoyant)
rather than heat into the stable (radiative) region. This type of over-
shoot is similar to that described by Zahn (1991). The overshoot
distances represent approximately 0.5, 0.75 and 1.0 local pressure
scaleheight for the model S, SG1 and SG2, respectively. The results
for overshoot δOS and the displacement of the SAL δ (∇ − ∇ ad) are
summarized in Table 2.

3.5 Vertical size of convective cells

In the convection zones of cool stars, thermodynamical properties
can vary over many orders of magnitude. For example the convection
zone in the present Sun contains more than 20 pressure scaleheights.
It is customary to use the MLT to describe convection in standard
stellar structure calculations. The mixing length is then thought of
as the distance travelled by a fluid parcel before it mixes with the en-
vironment (or equivalently loses its thermal or dynamical identity).

The most common way to evaluate the mixing length is to assume
that it is equal to some constant α, of the order of unity, multiplied
by the local pressure scaleheight Hp = P/ρg.

In this paper, we will interpret the characteristic vertical length
of a convection cell in the 3D simulation as the mixing length. We
expect this estimate of the mixing length to vary with depth as in
the MLT, but with a different depth dependence.

The 3D simulation provides a natural objective measure of the
mixing length. We estimate the characteristic vertical length-scale
of a convective cell by measuring the full width at half maximum
(FWHM) of the vertical velocity correlation C[v′

z v′
z]. From that

perspective it might seem equally plausible to use the FWHM of
entropy or temperature fluctuations. However, as shown for the Sun
in fig. 11 of ROB3, the FWHM of entropy is not well defined just
below the top of the SAL. Neither is it for temperature. This is
because the near the convection surface, the upflows loose entropy
much faster than the downflows, so that the plot of the FWHM is not
symmetric. So while we could use the FWHM of C[S′ S′] or C[T ′

T ′] to estimate the mixing length for deeper convection, it does not
give a well-defined vertical length-scale near the top of the SAL.

As C[v′
z v′

z] is a second-order turbulent quantity, the statistical
convergence is very long. For example, for the Sun at least 100 so-
lar min (20 turnover times) were covered before C[v′

z v′
z] had come

close to convergence. The plot of the mixing length versus depth
(both in Mm) for the Sun, estimated as FWHM, is shown by crosses
in Fig. 10. The depth of 0 Mm corresponds to the point at which R =

R	. In the 1D MLT model this corresponds to the visible surface
(photosphere). In the 3D simulation of the Sun, as can be seen in
Fig. 3, the convective surface moves out to a point very close to
R	. This is not true for the other models. The upper convective
boundary in the 3D simulation of the Sun is within 0.02 Mm of R	.
Each cross represents the value of the FWHM at a particular depth.
From 0 to 0.75 Mm below the surface, this mixing length is close
to 0.6 Mm. This includes the SAL region. Below approximately 0.8
Mm the slope increases sharply and is constant until approximately
1.5 Mm below the surface. The change in the slope near the top
(at approximately 0.2 Mm) and near the bottom (at approximately
1.5 Mm) are a consequence of the impenetrable boundaries of the
simulations. In the Sun, the cells near the top have a characteris-
tic vertical length of approximately 0.45 Mm (the smallest mixing
length in the plot) and thus the effect of the top boundary (which is
at −0.25 Mm) is felt at approximately 0.45 Mm below the top of

Figure 10. Different prescriptions for the mixing length in a model of the
Sun. The value of FWHM from the simulation, α	 × Hp and the distance
to the convection surface, are denoted by crosses, solid line and dashed line,
respectively. The depth was measured positively inward from the visible
stellar surface.
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Figure 11. Estimates of the mixing length for the more evolved subgiant.
The value of FWHM from the simulation, α	 Hp (called MLTA) and
αHp (called MLTB, where α = 1. 6) are denoted by crosses, solid and
triple-dotted-dashed lines, respectively. The depth was measured positively
inward from the visible stellar surface.

the box. Similarly the influence of the bottom of the box on the flow
is felt at approximately 1 Mm above the base.

Two alternative prescriptions for the mixing length are commonly
used in stellar models. As mentioned above, the most common pre-
scription is to use the product αHp, where α is the constant mixing
length parameter. For the Sun, α	 = 2.13 in the present study. The
other prescription is the geometric distance to the convective bound-
ary, as suggested by Canuto & Mazzitelli (1991, hereafter CM), by
analogy with laboratory experiments. The convective boundary is
defined at the depth of 0.02 Mm in the Sun model. For comparison,
these two estimates are given in Fig. 10 as well. The plots show
that in the SAL region, the mixing length derived from the FWHM
does not generally have the same physical length in stellar models
as that based on the MLT or CM values, while outside of the SAL,
the FWHM is similar to the MLT prescription.

The departure from the MLT near the surface becomes more
pronounced in the subgiant models. Fig. 11 displays the quanti-
ties FWHM (crosses) and α	 Hp (solid line) for the more evolved
subgiant SG2. The convective cells show a much more gradual in-
crease with depth in the simulation. In fact, neither MLT prescription
works at all. If a smaller α is used (triple-dotted-dash line) in this
case α = 1.6, the MLT prescription is still very different from the
simulation.

In the SG2 case the FWHM values form a plateau between depths
of approximately 3 and 6 Mm. The plateau starts further in because
the convective cells are much larger in the more evolved subgiant.
This means that the effect of the impenetrable boundary on the cell
is felt much further in from the top. If we assume that the cells
near the top have a characteristic vertical length of approximately 6
Mm, within 6 Mm of the top boundary (which is at −2.6 Mm) the
elongation of the cell will be decreased because it impinges with the
top impenetrable boundary. This is probably why the curve starts to
flattens at a depth of approximately 3 Mm. The value of the FWHM
at the plateau is approximately 6.7 Mm.

4 E S T I M AT I N G T H E M E A N H O R I Z O N TA L

D I A M E T E R O F G R A N U L E S

I N D I F F E R E N T S TA R S

The scale of photospheric convection in red giants is generally as-
sociated, by analogy with the Sun, with the atmospheric pressure
scaleheight or with the thickness of the superadiabatic transition
layer (SAL). As pointed out by Schwarzschild (1975), both of these
quantities are relatively much larger in terms of the stellar radius in

a red giant than in the Sun. On these grounds, Schwarzschild con-
cluded that only a few tens of cells must be present on the surface
of a supergiant down to just a few cells in the most extreme cases
such as Betelgeuse, in contrast with 2 × 106 cells observed on the
solar surface. Observations of brightness variations in the TiO band
on Betelgeuse (Gaustad 1986) and direct imaging of Betelgeuse
(Gilliland & Dupree 1996) with the Hubble Space Telescope (HST)
have yielded results that are compatible with giant cells, although
other interpretations (e.g. pulsation) are possible. 3D numerical sim-
ulations described in Freytag, Steffen & Dorch (2002), also claim
compatibility with the giant cell interpretation, although the smaller
cell sizes cannot be resolved in these simulations. On the other
hand, Gray (2001) has pointed out that his extensive spectroscopic
observations of Betelgeuse are more easily interpreted in terms of
hundreds of convective cells per hemisphere.

In this section we will show that our 3D radiative–
hydrodynamical simulations suggest granules closer to Gray’s in-
terpretation than to Schwarzschild’s estimate. Rather than use the
pressure scaleheight or the thickness of the SAL to estimate the
convective cell size, we will use the FWHM of the vertical velocity
to estimate a vertical length-scale for the granules. In the preceding
section, a plateau in the FWHM graph was pointed out in Figs 10
and 11. By measuring the value of the FWHM at the plateau for the
three simulations (S, SG1 and SG2), we found that

FWHM ∝ g−0.9858, (5)

where the FWHM and g are both in c.g.s. units.
In Gadun et al. (2000), the horizontal diameter of the solar gran-

ules was shown to be proportional to the horizontal velocity. Larger
granules had bigger horizontal velocities. As the FWHM only tells
us about the vertical scale of the convective cells, to find the mean
horizontal diameter of a granule we need an estimate of the aspect
ratio of a typical granule.

Consider a granule as a cylinder in which fluid rises up along the
central axis of the cylinder (representing the centre of a granule) and
the down along the outside of the cylinder. Fig. 2 would represent a
cross-section of such a cylinder for the Sun or the subgiant. In ROB3,
fig. 8 shows a granule with this type of structure. With this picture in

mind, the rms horizontal velocity VH =

√

v′′
x

2 + v′′
y

2 approximates

the velocity across the top of the cylinder and v z = v′
z approximates

the velocity down the sides.
For the Sun, SG1 and SG2, the ratio of V H to v z is shown in

Fig. 12. Away from the top and bottom, the ratio is approximately
unity. The abrupt rise in V H/v z shown on the right of the figure is due
to the lower impenetrable boundary. At the base the vertical velocity
is set to zero, but that boundary is stress free. As v′

z is very small near

Figure 12. Ratio of the rms horizontal to the rms vertical velocity for each
model.
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the base, even though the horizontal velocities are small, the ratio
must increase significantly as the lower boundary is approached.
Moving the lower boundary further down will not eliminate this
effect. In the upper regions (the left-hand side of the figure) the
vertical velocities decay more gently. The slower decay is because
there is a radiation layer in the top part of each simulation. The
initial drop in the vertical velocity (and therefore rise in the ratio)
is due to radiative losses. The point at which the ratio first starts to
increase is close to the location of the maximum superadiabaticity
(see Figs 7–9 ). Above that location, the superadiabaticity decreases.
Very close to the top, the ratio shoots up again. This is because the
vertical velocity is forced to vanish at the top.

If we assume it takes the fluid a similar amount of time to travel
horizontally from the centre of a granule to the outside rim as it does
to travel down the outside of the granule, then

rgran

FWHM
≈

VH

VZ

≈ 1, (6)

where rgran is the radius and the FWHM is the length of the hypothet-
ical ‘cylindrical’ granule. This suggests that the average horizontal
diameter of granules in each simulation is approximately twice the
FWHM.

This is a statistical estimate of the horizontal diameter of a granule.
Some granules will be bigger and some smaller. For example, at the
instant of time the contours of Fig. 2 were plotted for the Sun, the
biggest granule has a diameter of approximately 2 Mm, while the
smallest (on the right near the top of the frame) has a diameter of
approximately 1 Mm. For the Sun, 2 × FWHM = 1.2 Mm. This
is similar to the observed value of approximately 1 Mm, quoted by
Allen (Cox 1999).

Schwarzschild (1975) suggested that the aspect ratio of the gran-
ules should be approximately 3 and that the vertical size of the
granules can be estimated from the width of the SAL. Alternatively,
Freytag (2001) points out, on the basis of 2D numerical simula-
tions, that the horizontal diameter is close to 10 times the pressure
scaleheight at the photospheric surface. We summarize the hori-
zontal diameters of granules for the different methods in Table 3.
The width of the SAL is estimated as the distance between the two
points at which the superadiabaticity is 10 per cent of its peak value.
The pressure scaleheight Hp at the photospheric surface in the 3D
simulation is measured at the point at which T = Teff, where T eff is
the effective temperature in the corresponding 1D MLT model. The
Freytag estimate is very close to ours.

By extrapolating to lower surface gravities, we can very tenta-
tively estimate how big the granules might be for giants, or super-
giants. Assuming that log g = −0.5 on Betelgeuse, and that the
radius is approximately 800 times the solar radius (Gray 2000),
we estimate approximately 600 cells would be needed to cover the
whole surface. This extrapolation to Betelgeuse is a very tentative
estimate. As well as bridging approximately four orders of magni-
tude in surface gravity, we have ignored any sphericity effects or
variation of g with depth. These would be considerable in a super-
giant. Furthermore, Freytag’s relation to the scaleheight allows an a

Table 3. Estimates for the average horizontal diameter of granules
by three different methods (see the text for details). All values are in
Mm.

Model 2 × FWHM 3 × width of the SAL 10 Hp

S 1.2 0.9 1.4
SG1 5.7 4 5.8
SG2 13.4 11 13.3

priori estimate, while our FWHM relation only allows an a posteriori
check.

5 C O N C L U S I O N

We have carried out physically realistic 3D simulations for the Sun
(S) and two subgiants (SG1 and SG2) representing more evolved
stages of the evolution of the Sun. The initial conditions for the sim-
ulations were obtained from 1D standard stellar models constructed
with the same physical input for the equation of state and opaci-
ties as used in the simulations. Convection in the starting model was
described using the standard MLT (Böhm-Vitense 1958). The chem-
ical composition and mixing length parameter α were calibrated to
the Sun in the standard way (Guenther & Demarque 1997; Winnick
et al. 2002).

After relaxation, and given the chemical composition, the 3D
simulations reach a steady state which depends only on the input
flux at the base of the box and the surface gravity. The memory of
any other detail of the 1D initial models, including the uncertainty
connected with the value of the parameter α, has been erased.

The rapid expansion of the Sun after leaving the main se-
quence, has two principal consequences. First, the density/pressure/
temperature stratification is spread out over a much bigger geometric
distance in the subgiant phase. While the flux in SG1 is approxi-
mately half that of the present Sun, the surface gravity is five times
smaller. The only significant difference between SG1 and SG2 is
in the surface gravity. This means that the transition region from
deep convection to the atmosphere (the SAL), of a subgiant occurs
in a region of lower gas density compared with the present Sun.
As the SAL is a region of highly turbulent dynamics, the effect
of turbulent velocities on the local thermal structure will be much
more significant in the more evolved models (i.e. the turbulent Mach
number v′′/cs is larger). Secondly, as the surface gravity decreases,
the convective cells become much larger.

Our 3D simulations shed new light on three important aspects of
stellar convection: the effects of turbulence on the thermal struc-
ture, the importance of convective overshoot into the radiative at-
mosphere, and the characteristics of granulation.

(i) Thermal structure and turbulent pressure. The main result is
that the thermal structure in the 3D simulations differ increasingly
from the predictions of the mixing length theory as the Sun evolves
away from the main sequence, and the use of the solar calibrated mix-
ing length ratio becomes progressively worse. As noted by Freytag
& Salaris (1999), the structure of the SAL is not adequately repro-
duced even if a different α is used. Rather, the 3D simulations are
the only way to obtain a realistic physical description of the SAL.
Note that the SAL is itself a thin transition layer and that for many
purposes the details of its structure are of little consequence to stel-
lar evolution. It is the integral properties of the SAL (the entropy
jump) that really matter. While the actual SAL thickness has only
a very small influence on the stellar radius by itself, the integrated
entropy jump determines the specific entropy in the deep convection
zone and thus affects the stellar radius sensitively.

A fixed α is inappropriate for modelling the surface layers, be-
cause the size of the convective cells is not linearly proportional
to any scaleheight (see Fig. 10). This was already apparent in the
earlier simulations of Kim et al. (1996). It is also seen in Fig. 10 that
using the distance to the surface as the mixing length, as performed
by Canuto & Mazzitelli (1991), may also not be quite correct. In
the case of deep almost adiabatic convection, Chan & Sofia (1987)
found that a fixed α could be used, provided the mixing length was
scaled by the pressure scaleheight.
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The SAL is pushed out further in the more evolved models, partly
because the ratio of the turbulent pressure to the gas pressure in the
vicinity of the SAL increases as the Sun evolves. Although the
turbulent velocities are not significantly different in the subgiant
simulations, the gas pressure/density is much lower because of the
low surface gravity. It should be noted that in our models opacity
is equally important in determining the shape of the SAL. As the
convective boundary is located near to where the optical depth is
unity, and the optical depth depends on opacity and gas density,
both of these quantities will determine the position of the convection
boundary.

(ii) Overshoot. The amount of overshoot as a fraction of the pres-
sure scaleheight at the photospheric surface, increases as the Sun
evolves away from the main sequence. For the present Sun the over-
shoot is 0.5 Hp, for the 11.3-Gyr subgiant it is 0.75 Hp, while for
the 11.6-Gyr subgiant it is approximately Hp. This overshoot is
very inefficient at carrying heat and the region is for all practical
purposes in radiative equilibrium. Only approximately 1 per cent of
the total energy flux is transported into the stable layer by convective
overshoot.

(iii) Characteristics of convective cells in surface layer convec-
tion. One of the interesting observable features of the outer convec-
tion zone is the size of granulation in the atmosphere. Granulation
in the Sun is a well studied phenomenon, but as it is such a small-
scale feature (approximately 2 × 106 are on the solar surface), it
has not been directly observed on any other stars, except through
the Doppler broadening of absorption lines. We have attempted to
find a characteristic vertical scale for granules as a function of sur-
face gravity. From our simulations we find that over a small depth
range just below the surface, the FWHM of the vertical velocity
correlation is approximately constant. We choose this length-scale
to characterize the vertical extent of the granulation. We have shown
that twice this FWHM gives an estimate for the average horizontal
diameter of a surface granule. This value is close to Freytag’s (2001)
previous estimate of 10 times the photospheric pressure scaleheight.
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