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ABSTRACT

This paper describes a series of three-dimensional simulations of shallow inefficient convection
in the outer layers of the Sun. The computational domain is a closed box containing the
convection—-radiation transition layer, located at the top of the solar convection zone. The most
salient features of the simulations are that: (i) the position of the lower boundary can have a
major effect on the characteristics of solar surface convection (thermal structure, kinetic energy
and turbulent pressure); (ii) the width of the box has only a minor effect on the thermal structure,
but a more significant effect on the dynamics (rms velocities); (iii) between the surface and a
depth of 1 Mm, even though the density and pressure increase by an order of magnitude, the
vertical correlation length of vertical velocity is always close to 600 km; (iv) in this region the
vertical velocity cannot be scaled by the pressure or the density scaleheight; this casts doubt
on the applicability of the mixing length theory, not only in the superadiabatic layer, but also
in the adjacent underlying layers; (v) the final statistically steady state is not strictly dependent

on the initial atmospheric stratification.
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1 INTRODUCTION

It is now just possible to perform physically realistic three-
dimensional (3D) simulations of the surface layers of the Sun,
which take into account the complex interaction between radia-
tive and convective energy transport (Kim & Chan 1998; Stein &
Nordlund 1998 hereafter denoted as KC and SN, respectively,
Stein & Nordlund 2000). There have also been a number of two-
dimensional (2D) simulations of the surface layers (Steffen et al.
1990; Gadun et al. 2000). To model solar convection realistically
requires a realistic equation of state, realistic opacities and a proper
treatment of radiative transfer in the shallow layers. SN and KC are
the two most frequently cited 3D models with this type of strat-
ified convection. As their approaches differ considerably, both in
numerical methods and in input model physics, it is important to
find out what particular aspect of the respective simulations caused
their results to be different.

The aim of this paper is to describe solar surface convection that
not only has the KC realistic physics, but also has a realistic (as
far as is presently possible) geometry. To achieve this we had to
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increase both the depth and width of the original KC model, until
the side walls and the horizontal boundaries had only a minimal
effect on the flow. The simulations themselves model a region less
than a few thousand kilometres in depth, as measured inwards from
the visible solar surface. In the deep regions of the solar convec-
tion zone, the turbulent velocity is subsonic and the superadiabatic-
ity is close to zero. However, within a few hundred kilometres of
the solar surface, the convective flux starts to decrease. As the to-
tal flux is constant, the radiative flux must increase to offset the
drop in the convective flux. This is achieved by a rise in the lo-
cal temperature gradient V. This region of inefficient convection is
called the superadiabatic layer (SAL). In the SAL, the superadia-
baticity V — V,q is positive and of the order of unity (Demarque,
Guenther & Kim 1997, 1999). As the buoyancy force is large in
the SAL, the region is characterized by highly turbulent velocities
and large relative thermodynamic fluctuations. The turbulent veloc-
ity also gives rise to a significant turbulent pressure (approximately
15 per cent of the gas pressure). This moves out the convection sur-
face, moditying the SAL and the stratification. In one-dimensional
(1D) models of the solar convection zone based on the mixing length
theory (MLT) (Bohm-Vitense 1958), the velocity is set to zero above
the convection boundary. However, 3D numerical simulations de-
scribed in Cattaneo, Hurlbert & Toomre (1990), have shown that just
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above the top of the convection layer the turbulent velocities are still
high.

There are several motivations for such simulations among stellar
physicists. One is to understand the effects of turbulence on the struc-
ture of the outer solar layers as revealed by the observed frequencies
of solar p-modes. Another is to explain the excitation mechanism of
the p-modes. Still another is to derive more realistic surface bound-
aries for stars with convection zones from first physical principles,
free of the arbitrary assumptions of the mixing length theory. And
finally, such simulations may be of help in investigations of the solar
dynamo.

Over the previous few years, the science of helioseismology has
provided some very precise measurements of the p-mode oscillation
frequencies (to within one part in 1000) in the surface layers of the
Sun (Harvey et al. 1996). The discrepancy between the observed
p-mode frequencies and those calculated from solar models, is
known to be primarily caused by the approximations made in mod-
elling the surface layers, where turbulent and radiative losses are
significant (Balmforth 1992; Guenther 1994). In the 3D simula-
tion described in KC, the turbulent pressure pushed the convective
boundary radially outwards from its original position (which was
computed using the MLT). This situation was mimicked in the 1D
solar model by tweaking the opacity in the outer layers (Demarque
et al. 1999). This resulted in improved p-mode frequencies for low
and intermediate degrees. However, Demarque et al. also showed
that the mixing length prescription of Canuto & Mazzitelli (1991),
which had a completely different SAL structure than KC, could pro-
duce a similar improvement of the p-mode frequencies for the same
[-values. Full details of the different approaches, the contrasting
SAL structures and the resulting p-modes, are described in Demar-
que et al. (1997, 1999). Later, Rosenthal et al. (1999) used another
approach to compute the p-mode frequencies. These authors patched
the mean stratification (horizontal average) of a 3D hydrodynami-
cal simulation, on to a 1D MLT envelope model. In order to obtain
a smooth 1D model, they adjusted the mixing length and the am-
plitude of the turbulent pressure to match the 3D simulation. The
computed frequencies were closer to the observed frequencies than
if a standard solar model had been used, thus showing the impor-
tance of including turbulence in modelling the outer layers of the
Sun. More recently, Li et al. (2002) found similar results to Rosen-
thal et al. by inserting the averaged turbulent pressure and turbulent
kinetic energy directly into the 1D stellar model. Their method is
applied to two of the simulations described in this paper (see Sec-
tion 4.3). As the turbulent kinetic energy and turbulent pressure
were very small at the base of the 3D model, they were set to zero
in regions of the 1D stellar model that lay below the 3D model
domain. This required the usual adjustment of the mixing length
parameter and the helium abundance to calibrate the perturbed stel-
lar model. No other adjustable parameters were employed. The
improvement in the eigenfrequencies was found to be primarily
caused by the inclusion of turbulent kinetic energy in the 1D stellar
model.

After extensive testing, we found that our simulations are in
good agreement with other numerical studies of the surface lay-
ers (e.g. Rosenthal et al. 1999; Asplund et al. 2000). In addition,
by incorporating the computed 3D turbulence into a 1D stellar
model, we were able to produce solar surface eigenfrequencies
(p-modes) that were very close to the observed frequencies. As
our eventual goal is to simulate the SAL in stars other than the
Sun, it is vital to be sure we are modelling the Sun as correctly as
possible.

2 MODELLING REALISTIC SOLAR
SURFACE CONVECTION

To model surface layer convection in the Sun as realistically as
possible, we take the following approach.

(i) Using a stellar evolution code (YREC, e.g. see Guenther et al.
1992), we compute a standard stellar model from which the initial
density p and internal energy e, required by the 3D simulations, are
derived. From an arbitrary initial velocity field v, we then compute
0, E (=1/2pv* + e), pvy, pv, and pv.. These are the dependent
variables of the governing equations. The horizontal directions are
x and y, and z is radially outwards.

(i1) Using the same tables for the equation of state and the opac-
ities as in the stellar model, we then compute the pressure P(p, e),
temperature T(p, e), Rosseland mean opacity «(p, e), specific heat
capacity at constant pressure c,(p, e), adiabatic gradient Va(p, €)
and some thermodynamic derivatives.

(iii) The radiation flux is then computed using the diffusion ap-
proximation in the optically thick regions and the 3D Eddington
approximation in the optically thin layers.

(iv) We then integrate the Navier—Stokes equations over one
time-step to compute a new set of dependent variables and return
to (ii).

2.1 Realistic initial conditions: steps (i) and (ii)

The solar model uses the same realistic physics as described in
Guenther & Demarque (1997). In particular, the low-temperature
opacities of Alexander & Ferguson (1994) and the OPAL opacities
and equation of state were used (Iglesias & Rogers 1996). Hydrogen
and helium ionization, and the diffusion of both helium and heavy
elements are included.

In the initial model, the atmospheric layers, which are in radiative
equilibrium, are assumed to be grey. Deeper in, in the convectively
unstable region, the thermal structure is described by the MLT, which
prescribes the temperature gradient V. In the original KC simula-
tion, the Eddington approximation 7(r) relation was used in the
atmosphere. In this case, the values of the parameters, X, Z and
o, in the calibrated standard solar model (SSM) are (X, Z, a) =
(0.7385, 0.0181, 2.02), where X and Y are the hydrogen and he-
lium abundances by mass, and « is the ratio of the mixing length
to the pressure scaleheight (PSH) in the convection zone, required
to match the solar radius precisely. It should be mentioned that al-
though the values of X and Y in the calibrated SSM depend little on
the treatment of the surface layers, the value of « is sensitive to the
choice of the T(t) relation in the atmosphere (Guenther et al. 1992).

We note that for simulations discussed in this paper (those listed
in the appendix), the empirical Krishna—Swamy 7'(t) relation for
the Sun (Krishna Swamy 1966) was used instead of the Eddington
approximation. The same model as KC, but constructed with the
Krishna—Swamy T'(7) relation, yields (X, Z, ) = (0.7424, 0.017
06, 2.1319) (this is model KC2 in the appendix). Because of the
inclusion of helium and heavy element diffusion during the evolu-
tion, the initial X and Z (denoted by X0, Z0) were slightly different.
For KC they were (X0, Z0) = (0.7066, 0.0201), and for KC2 they
were (X0, Z0) = (0.710, 0.019). The difference in initial atmo-
spheric structures between simulations KC and KC2 provides us
with the opportunity to verify that the final state in the simulations
is not strictly dependent on the choice of T(t) relation in the initial
model. This important test is discussed in the appendix.
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For each time-step of the numerical integration we need to solve
the complex equation of state (step ii). This adds considerable com-
putational time compared with an ideal simulation, such as with a
perfect gas. The 3D hydrodynamical simulations use identical opac-
ities and equation of state to that used in the 1D reference SSM,
which served as the initial model. The side boundaries are periodic,
while the top and bottom boundaries are stress-free. A constant heat
flux flows through the base and the top is a perfect conductor. To
ensure that mass, momentum and energy are fully conserved, we
use impenetrable (closed) top and bottom boundaries.

A particular model is specified by g (the surface gravity) and T o
(the effective temperature). Aside from the viscosity coefficients
there are no other free parameters.

2.2 Radiative transfer: step (iii)

In the SAL, the photon mean free path may not be small enough
to use the diffusion approximation. Consequently, one is forced
to either solve the full radiative transport equation or consider
the three-dimensional Eddington approximation (Unno & Spiegel
1966), which is a higher-order approximation than the diffusion ap-
proximation, and is valid in the optically thin regions. Computation-
ally, to solve the full radiative transport equations is formidable, and
only a few ray directions are currently used in this approach (SN).
In our simulations, we have chosen to use the three-dimensional
Eddington approximation.

In the deeper part of the domain (z > 10%), we use the diffusion
approximation,

dacT?
3kp

Qrad:v' [ VT:|7 (1)
where « is the Rosseland mean opacity, a is the Boltzmann constant
and c is the speed of light. In the shallow region Q.4 is computed
as

Oraa = 4kp(J — B), @

where the mean intensity J was computed using the general-
ized three-dimensional Eddington approximation (Unno & Spiegel
1966),

V. (LV1> —kpJ +kpB =0, 3)
3kp

where B is the Planck function. This formulation is exact for
isotropic radiation in a grey atmosphere, and without requiring lo-
cal thermodynamic equilibrium, the Eddington approximation de-
scribes the optically thick and thin regions exactly (Rutten 1995). To
study spectral line profiles and the spectral energy distribution re-
quires a frequency-dependent radiative transfer. However, in a study
of the SAL, to serve as a surface boundary condition for stellar mod-
els or for comparison with the results of helioseismology, we found
a grey atmosphere to be adequate.

2.3 Hydrodynamics: step (iv)

For deep (v <« ¢, where v is the flow velocity and ¢ is the isothermal
speed of sound) and efficient (V — V4 just above zero) convection,
Chan & Sofia (1989) showed that the MLT is a very good approx-
imation to the real situation. However, in the SAL, both v/c, and
V — V., can be of the order of unity. In this case, the MLT is
unlikely to apply. The validity of this argument is confirmed by
helioseismology. The run of the speed of sound in the SAL de-
rived by inversion of the helioseismic data does, in fact, disagree
with the MLT model (Basu & Antia 1997). In such an environment,
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the governing hydrodynamic equations are the fully compressible
Navier—Stokes equations (see, for example, Kim et al. 1995).

0p/0t = =V - pv %)
0pv/0t = =V - -pvw— VP + V- -X + pg (5)

0E/ot=—-V -(E+Pw—v-Z+ fl+pv-g+ Qru, (6)

where E = e + pv?/2 is the total energy density and p, v, P, e and
g, are the density, velocity, pressure, specific internal energy and
acceleration owing to gravity, respectively. Qy,q is the energy trans-
ferred by radiation (see the previous section) and f is the diffusive
flux. Ignoring the coefficient of bulk viscosity, the viscous stress
tensor for a Newtonian fluid is X;; = nu(dv;/0x; + 0v;/0x;) —
2u/3(V - v)d;;, where u is the dynamic viscosity and §;; is the
Kronecker delta tensor.

In fully developed turbulence the ratio of the length of the largest
eddy to the dissipation length is Re¥*, where Re is the Reynolds
number (Landau & Lifshitz 1987). In the Sun, Re is of the order of
10'2, which means approximately 10° scales per dimension. A 3D
direct numerical simulation of the Sun would thus require approxi-
mately 10?7 grid points!

The large-eddy simulation (LES) approach assumes that the small
scales are independent of the resolved scales (large eddies) and can
be parametrized as a diffusion process. In this case p is an eddy
viscosity defined in terms of the resolved velocity (Smagorinsky
1963),

w=p(c AV Qo : o). (7N

The colon inside the parentheses denotes tensor contraction of the
rate of strain tensor o;; = (V;v; + V;v;)/2. The subgrid scale (SGS)
eddy coefficient ¢, is set to 0.2, the value for incompressible turbu-
lence and A = (A, A,)/?A, is an estimate of the local mesh size.
To handle shocks, u is multiplied by 1 + C - (V - v)?, where the
constant C is made as small as possible, while still maintaining nu-
merical stability. As p is dependent on the velocity divergence, any
large velocity gradients are smoothed out by the increased viscos-
ity. If a shock occurs it is not resolved, but smeared out by a local
increase in viscosity.

The diffusive flux f = —(u/Pr) TV S, where the horizontal mean
of the entropy gradient VS < 0, i.e. the convection zone and f =
—(uc,/Pr)VT, where the horizontal mean of VS > 0, i.e. the ra-
diation zone (the Prandtl number Pr is defined below). In the con-
vection layer the SGS diffusive flux tends to smooth out entropy
fluctuations and make the layer close to adiabatic (in analogy with
turbulent mixing). The change in the form of the diffusive flux above
the convection boundary is necessary because the SGSs should con-
tinue to transport heat radially outwards though the top of the box.
Away from the horizontal boundaries, f is close to zero. At the base,
[ is equal to o T, where o is the Stefan-Boltzmann constant. The
Prandtl number Pr = v/k, where v is the kinematic viscosity and «
is the thermal diffusivity. In the simulations Pr = % Owing to the
inclusion of radiative energy transport the effective Pr is actually
much smaller and not constant.

3 NUMERICAL INTEGRATION: OBTAINING
ACCURATE STATISTICS

To simulate the highly stratified SAL of the Sun we need to relax
the initial layer and then compute accurate statistics. The former
requires a long computation, while the latter a small time-step. In
compressible hydrodynamics, however, with an explicit numerical
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method, the time-step must be less than the time for a sound wave
to traverse two adjacent grid points. This is known as the Courant—
Friedrichs—Lévy (CFL) stability criterion. Because of these consid-
erations the simulations were performed in two stages.

First, using an implicit code in which the time-step is restricted by
the flow speed rather than the speed of sound, the initial hydrostatic
layer was allowed to adjust its thermodynamical structure until it
was close to hydrodynamic equilibrium. This thermal adjustment
phase took at least 5 h of solar surface convection time.

Secondly, using a second-order accurate explicit code, quantities
were averaged over a time that was long enough for the averages to
be independent of the integration time. As the explicit time-step is
approximately five times smaller than the implicit time-step, prior
to statistical averaging, the code was run for a few thousand time-
steps. This allowed the simulation to adjust to the new time-step.
The statistical convergence took at least an hour of solar surface
convection time.

3.1 Thermal adjustment

The implicit code was the alternating direction implicit method on
a staggered grid (ADISM) developed by Chan & Wolff (1982).
This code was used to relax the fluid to a self-consistent thermal
equilibrium.

The entire layer was assumed to be relaxed when:

(1) the energy flux leaving the top of the box was within 5 per
cent of the input flux at the base;

(ii) the horizontally averaged vertical mass flux was less than
10~* g cm~2 s~! at every vertical level;

(iii) the overall thermal structure did not change much over time;

(iv) and the maximum velocity in the box was roughly constant.

These criteria must be satisfied, before any useful statistical data
can be gathered.

3.2 Statistical convergence

A second-order explicit method (Adams—Bashforth time integra-
tion) gathered the statistics of the time-averaged state. This code
is much more accurate than ADISM, for example the mean energy
flux leaving the top of the box was within 1 per cent of the input flux
at the base. On a 667 MHz Alpha processor, each integration step
on a 80 x 80 x 80 grid, required approximately 5 s of CPU time.

The time required for statistical convergence depends on the par-
ticular quantity being averaged. Conserved quantities converge very
fast. For example, the horizontally averaged vertical mass flux was
less than 1075 g cm~2 s~! after 5 min of solar time integration. On
the other hand, rms velocities converged in a few eddy turnover
times (at least 30 min of solar time). While second-order turbulent
quantities, such as the horizontal Reynolds stress, took even longer
to converge (at least 80 min of solar time).

3.2.1 Some statistical definitions

In a turbulent fluid a quantity ¢ can be split into a mean and a
fluctuating part,

g=q()+q'(x,y,z,1). (8)

The overbar represents a combined horizontal and temporal average,

i.e.
1 2 1
i /,, [(LXL},) /qu dy} dr. )

¢y is a time after the system has reached a self-consistent thermal
equilibrium (the thermal adjustment time). L, and L, are the hori-
zontal widths of the box in the x and y directions, respectively. The
time required for statistical convergence is t, — 7.

The rms value of a quantity g is defined as

7' =q* -3, (10)

while the correlation coefficient of two quantities g, and g5, is de-
fined as
9192 — 91 92
Cla\gy]l = ————. (an
919,

As the simulations have periodic side boundaries, symmetry re-
quires that

@ Clv, v,]=0

(ii) v, = v,

The run of v_;, and v/‘/. after 80 min of time integration is shown in
Fig. 1. The closeness of the horizontal velocities confirms that the
simulation is close to statistical convergence.

By examining many different simulations we found that the run
of C [v; v/v] is generally a much stricter test of convergence. Fig. 2
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Figure 1. The rms turbulent velocities in the horizontal and vertical direc-
tions versus depth. The closeness of the two horizontal velocities confirms
that the simulation is close to statistical convergence.
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shows C[v,, v;] measured for four different integration times. Even
after 80 min, C[v} v/] is still approximately 0.1 near the bottom.
Convergence is faster in the upper layers because when the convect-
ing fluid elements move up through the stratification, their rapid
expansion smooths out small-scale fluctuations.

4 MAIN RESULTS

4.1 Effect of domain size

After substantial numerical testing that is described in detail in the
appendix, we found the following.

(i) Anundesirable effect of the impenetrable horizontal boundary
at the bottom was too speed up the overall flow. This produced an
artificially high convective flux. Just below the surface the radiative
flux is a significant fraction of the total flux. As the total energy flux
is fixed, to accommodate the increased convective flux, the radiative
flux had to reduce. This was achieved by an (unphysical) drop in
the temperature gradient V in the SAL region.

To avoid this, the lower boundary has to be positioned far enough
away from the surface, so that the velocity at the base is small and
uncorrelated from the motions near the surface.

(ii) Ifthe width of the box was too small then the turbulent kinetic
energy of the granules was artificially small. This is because the
movement of the larger granules was restricted by the walls of the
box.

To avoid this, the aspect ratio was doubled until the turbulent
kinetic energy was unaffected by a further increase in aspect ratio.
For the Sun this required a width of 2.7 Mm.

4.2 Comparison with previous 3D numerical simulations

4.2.1 Vertical velocity

Using the SN code, Asplund et al. (2000) computed a series of
simulations of solar surface convection in a domain with a depth
of approximately 4 Mm and a width of 6 Mm. The best resolution
in Asplund et al. was 200? x 82. The rms vertical velocity and the
mean velocity are shown in figs 3 and 4 in their paper. Corresponding
velocity plots from our best model (model C in the Appendix) are
shown in Fig. 3. Note that we have radially upwards as the positive
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Figure 3. The mean and rms vertical velocity in model C.
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Figure 4. Superadiabaticity versus fractional radius. The crosses are from
the 1D stellar model (MLT), the dashes are for model KC2 and the triple
dot-dash line is for model C (see the Appendix for details). In both KC2
and C the original (MLT) convective boundary is moved out by turbulent
pressure.

direction, which is opposite to Asplund et al.’s paper. Despite all
the differences between the SN and KC approaches, away from the
boundaries, the rms and mean vertical velocities in our best model
are very similar to those in the best Asplund et al. simulation. The
most noticeable differences occur at the top and bottom because in
our simulations the vertical velocity is forced to drop to zero. In
Asplund et al. the transmitting boundaries allowed the velocity to
decrease more gently.

4.2.2 Superadiabaticity

The superadiabaticity V — V4 for the MLT, and models KC2 and
C, are plotted in Fig. 4. The abscissa is the radius of the simulation
divided by the radius of the Sun. For model C, the superadiabaticity
has a maximum of approximately 0.6, which is close to the value
given by the SN code (see fig. 3 in Rosenthal et al.). The position of
the top of the convection layer (as determined by the Schwarzschild
criterion) was pushed out further in KC2 than in C. This is because
of the higher turbulent pressure.

When the SAL was moved outwards the convective efficiency
was reduced and radiation was forced to carry more of the total flux.
This resulted in an increase in the height of the SAL in C (triple dot
dashed line), compared with the MLT (crosses). However, in KC2
(dashed line) the convection was sped up by the lower boundary and
thus is (incorrectly) more efficient than the MLT. This resulted in a
drop in the height of the peak of the SAL compared with the MLT.

4.3 Comparison with observational results:
p-mode oscillation frequencies

4.3.1 Implementation of 3D turbulence into 1D stellar models

By analogy with the work of Lydon & Sofia (1995) on magnetic
effects, the 3D turbulence is parametrized in terms of two quantities
(Li et al. 2002), the turbulent kinetic energy per unit mass,

1 72
= o™, (12
x=3 )
where v'? = v;’z + v’;z + v;’z is a dimensional quantity, and an
anisotropy parameter,
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y =142/ /v"). (13)

The z-direction is parallel to the radial direction.

The turbulence is included by incorporating two new variables
y and x into the 1D stellar model. To understand how this works,
consider a perfect gas in which the ratio of the specific heats y =
¢,/cy, the internal energy e = ¢, T and the gas pressure P = pRT.
The quantities ¢, and R are for unit mass of a gas and T is the
temperature. The previous three equations can be expressed as

y =1+ P/(pe). (14)

If we replaced gas quantities by turbulent quantities, i.e. P by
Puw (=p v;/z) and e by x and rearrange, then we would obtain

Py = (y — Dpx, s)

where y is defined in terms of turbulent quantities (i.e. rms veloc-
ities). Including x and y is equivalent to including x and Py in
the 1D stellar model. The two variables y and x are included in the
mathematical system in a self-consistent manner (see Li et al. for
the full mathematical treatment)

For example, the equation of state for the 1D model becomes

p=pPr, T, x,¥),

where PT = Pgas + Prad + Pturh-

The continuity equation and the equation of transport of energy
by radiation remain the same regardless of turbulence. In terms of
y and x, the hydrostatic equilibrium is
oP GM, 2y -1

To_ _ (y )X’ (16)
oM, 47rt 473
where M,, G and r have their usual standard stellar model (SSM)
definitions. The energy conservation equation,

oL, . TdS (17
oM, dr’

is also affected by the inclusion of y, as

TdS =dU + (Pr — Puw)d(1/p) +dy, (18)

where dy represents the work performed by turbulence. The quan-
tities L, and € have their usual SSM definitions.

The convective flux in the 1D model F .o,y = p T DS V oy NOW
includes the contribution from turbulent kinetic energy. V coqy is the
MLT convective velocity and DS is the entropy excess. Equation (18)
is the ‘non-standard form” of the second law as described in Lydon
& Sofia. As turbulence is, in general, anisotropic it is wrong to treat
the work performed by turbulence as — P, dV. This is essentially
because P is a tensor and P, is a scalar.

The equation of energy transport by convection, does not change
in form, but V is different from that without turbulence. The equa-
tions that govern envelope integrations are changed accordingly (see
Lietal.).

4.3.2 Solar p-mode oscillation frequencies

To investigate the effect of turbulence on the solar p-mode os-
cillation frequencies, the runs of y and y for models KC2 or
C were incorporated into the 1D stellar model using the Li et
al. method. For each run, the p-mode frequencies for / = 0, 1,
2, 3,4, 10, ..., 100, were computed using Guenther’s pulsation
code (1994), under the adiabatic approximation. When comparing

_5 I 1 1 1 1 1
1500 2000 2500 3000 3500 4000 4500
vo [uHz]

Figure 5. The difference between the observed and the computed p-mode
frequencies for a standard solar model, SSM (see the text).

the computed and observed eigenfrequencies, one should really in-
clude the proper modelling of radiative gains and losses by com-
puting the non-adiabatic frequencies (Guenther 1994). However, to
help isolate the effects of turbulence on the p-mode frequencies,
we computed the adiabatic frequencies. The difference between ob-
served and computed adiabatic p-mode frequencies for the standard
solar model is shown in Fig. 5. The frequency difference is scaled
by the mode mass Q,; (e.g. Christensen-Dalsgaard & Berthomieu
1991).

The Q,; weighting attempts to correct the p-mode frequency dif-
ferences, by removing the dependence on mode inertia. The mode
differences with high mode inertia obtain more weight than those
with lower inertia. This tends to give greater weight to the low-
[, deep penetrating modes and less significance to the very high-/
shallow modes. The result is the removal of the / dependence in
the frequency differences owing to perturbations in the near surface
regions. We are left with only an n dependence, which is equivalent
to a frequency dependence. The Q,, weighting enables us to see that
the discrepancy between the observed and the computed adiabatic
frequencies is worse at high frequencies, thus pointing to a prob-
lem in the surface layers. Without the Q,; weighting, the mismatch
would appear to a varying degree, at all frequencies and therefore it
would not be as easy to claim that the outer layers are responsible
for the mismatch.

In the statistically steady state (after the flow is thermally relaxed),
the turbulent kinetic energy flux should be proportional to the en-
ergy input rate at the base. The turbulent kinetic energy x should
be independent of the geometry of the computational domain. If the
box is too shallow or the width too narrow, then x can be wrong. To
illustrate the effect of the geometry on the frequencies, y and x from
the KC2 model were used to compute a stellar model. The computed
adiabatic frequencies with turbulence derived from KC2 are shown
in Fig. 6. The resulting frequencies are much worse than the stan-
dard solar model. However, if we use model C instead of KC2, then
the derived frequencies were improved considerably (Fig. 7). The
difference between the computed and the observed frequencies is
less than 5 pHz. The inclusion of turbulent kinetic energy in 1D
models in addition to turbulent pressure, has a similar effect on the
adiabatic frequencies to the inclusion of radiative losses/gains (com-
putation of non-adiabatic frequencies). Both reduce the difference
between the adiabatic frequencies and the observed frequencies by
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Figure 6. The difference between the observed and the computed p-mode

frequencies for a solar model with turbulence included from model KC2 (see
the Appendix).
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Figure 7. The difference between the observed and the computed p-mode
frequencies with turbulence included from model C (see the Appendix).

an order of magnitude. This mean that the turbulent correction to
the p-modes is as important as radiative losses/gains.

4.4 Characteristics of the solar granules
4.4.1 Size

Fig. 8 shows a set of contours of the instantaneous vertical velocity.
From top to bottom the frames depict depths of —0.14, 0.03, 0.2 and
1.0 Mm. The depth was measured positively inward from the visible
solar surface. The contours themselves have been derived from a
simulation of 80° grid points, in a domain with a horizontal area of
3.75 x 3.75 Mm? and a depth of 2.5 Mm. At this instant in time
there appear to be between three and four granules near the surface.
The thick black lines represent the strong downflows that occur at
the sides of the granules. The lighter regions denote upflowing fluid
or weak downflows. The granular pattern seems to persist over the
first three frames, suggesting that the granule structure is correlated

© 2003 RAS, MNRAS 340, 923-936
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Figure 8. Contours of vertical velocity at one instant in time. The darker
regions are downflows, and the lighter regions are upflows. From top to
bottom, the frames are at depths of —0.14, 0.03, 0.2 and 1.0 Mm. Positive
depths are measured inwards from the solar surface. The width of each
frame is 3.75 Mm. The small parallel vertical lines in the first frame indicate
significant grid oscillations. By slightly increasing the SGS viscosity at the
top, the oscillations are damped out before starting the actual statistical
computations. The contours themselves suggest that the granules remain

correlated throughout the SAL (which is between 0 Mm and approximately
0.25 Mm). By 1 Mm there is no sign of granulation.
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over most of the SAL (between 0 and 0.25 Mm). By the fourth
frame there is not much sign of granulation. As the last contour is
still more than two pressure scaleheights above the base, the breakup
of the granules is probably not caused by the impenetrable bottom
boundary. In other words, the bottom boundary is far enough away
from the surface. Furthermore, as the shape of the granules does not
appear to be influenced by the side walls, the width of the box is
also big enough.

The thin closely spaced dark vertical/slanted parallel lines that
appear in the first contour, are signs of two grid waves. This is an
indication of insufficient damping and is only seen at the very top of
the box. Itis because of the low SGS viscosity, which is proportional
to density (equation 7). This is an undesirable numerical effect.
However, as the oscillations occur only at the very top of the box,
where the density is very small, their effect on the convection below
is minor. Before starting the time integration, we were able to damp
out such oscillations, by slightly increasing the viscosity near the top.
As these contours only represent one instant in time, such a picture
can only provide a limited idea of the nature of the solar granulation.
If the same contours are computed at a later time, a completely
different picture would be seen. For example, the third frame of
Fig. A10 is the same simulation, but the contour was computed 2
solar minutes later.

Clearly, any useful data can only be derived from long time-
averaged statistics. One characteristic vertical length-scale associ-
ated with convective turbulence is the half-width of the two-point
vertical velocity correlation C[v] v]]. If we assume convective ed-
dies to have an aspect ratio of unity, then this length-scale gives us
anidea of the size of the eddies in a turbulent fluid. Using simulation
D (described in the appendix), we computed C[v, v.] at a series of
depths from the top of the box inwards. The results are shown in
Fig. 9. From approximately 0 to 1 Mm the eddy size remains close to
600 km. From the beginning to the end of the plateau, both density
and pressure have increased by an order of magnitude. Over this
range the eddy does not seem to be affected by stratification. How-
ever, over the next Mm the eddy size increases to approximately
1100 km. After that the lower boundary starts to influence the ed-
dies. The bends at the far left and far right of the plot signal the
approach of the upper and lower boundaries.

The velocity contours and the velocity correlation length both
suggest that the granules have some coherent vertical structure. The

T T T T [ T T 1T

1200

+
%
3
7
|

— 1000
800
600

400

Half width [Km

TTT | LI | T ‘ TTT [ UL | TTT
:
y
L1 | L1l | L1l ‘ L1l ‘ L1l | L1

200

O\]||||||\|\|\|||||||\|\|||

0.0 0.5 1.0 1.5 2.0 2.5
Depth [Mm]

Figure 9. The half-width of the two-point vertical correlation length of
vertical velocity at different depths. The right-hand side of the plateau is 3
PSH above the bottom of the box. Between the surface and a depth of 1 Mm,
the half-width is nearly constant.

contours show intergranule lanes that do not shift much between 0
and 0.2 Mm, i.e. the granules are like cylinders. The half-width sug-
gests a vertical size of approximately 600 km, between 1 Mm and
the surface. This length-scale does not seem to be affected by the
stratification. The strong vertical coherence implies that the con-
vection is dominated by strong downflows that originate close to
the surface. SN showed that solar granulation is primarily driven by
radiative cooling at the surface. When ascending fluid approaches
the surface, it loses heat so rapidly that very strong downflows are
created. The downflows are not deflected by the surrounding fluid
until they are approximately 1 Mm below the surface, by which
point they have weakened enough to be deflected/broken up by the
surrounding fluid motion.

4.4.2 Heat transport

In Chan & Sofia (1987, 1989) the two-point vertical velocity and
temperature correlations were found to scale with pressure scale-
height rather than density scaleheight. This study was for deep ef-
ficient convection. In shallower layers Kim et al. (1995) found that
while the vertical velocity correlation scaled with both density and
pressure scaleheight, the temperature could not be scaled with ei-
ther. The difference from Chan & Sofia’s results, was caused by the
inclusion of the coupling of the partial ionization with convection
(they were treated separately by Chan & Sofia). As a fluid parcel
moves upwards through regions of decreasing ionization, it liber-
ates ionization energy thatincreases the buoyancy of the fluid parcel.
However, because radiation was modelled by the diffusion approx-
imation (which is known to break down at some point in the SAL),
the simulations of Kim et al. could only include the lower half of
the SAL.

The present models include all of the SAL. Figs 10 and 11 show
C[v! v.] and C[S’ §'] at depths of 0.06, 0.2, 0.3, 0.47 and 1 Mm,
denoted by solid, small-dashed, dot-dashed, triple-dot dashed and
long-dashed lines, respectively. The curves have been centred about
their respective maxima. As the plots do not coincide, neither quan-
tity scales with the pressure scaleheight. Furthermore, if density is
used rather than pressure, there was no noticeable improvement (not
shown).

The width of the C[v] v]] distribution decreases between
0.06 and 1 Mm. This is because the width of the geometric
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Figure 10. Two-point vertical velocity correlation at five different depths.
Unlike the case of deep convection, the velocity correlation does not scale
with pressure scaleheight.
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Figure 11. Two-point entropy correlation at the same levels as in the pre-
vious figure. Close to the surface, ascending fluid parcels lose their entropy
identity much sooner than descending parcels.

distribution is roughly constant (i.e. the half-width is always approx-
imately 600 km, as shown in the previous figure), but the scaleheight
increases inwards. The entropy correlation looks very different. For
A In P <0 the entropy correlation for the three most shallow depths
drops rapidly, while for Aln P > 0 it shows a smoother decay.
This implies that ascending parcels near the surface, lose heat very
quickly, while descending parcels maintain their heat content ap-
preciably longer. Over the last Mm before the surface, the eddies
may have approximately the same diameter, but they transport less
and less heat as the surface is approached.

This behaviour can be understood by examining the correlation
C[v; S'] for upflows and downflows. Fig. 12 shows that the granules
are more efficient at transporting entropy downwards than upwards.
At the peak of the SAL, C[v; S’1is 0.9 for downflows and 0.6 for
upflows. This explains the one-sidedness of C[S’ §']. Consider a
fluid parcel that is initially just below the surface (say at a depth
of 0.1 Mm). If that parcel moves downwards it will maintain its
original entropy for approximately 1 PSH, whereas if the parcel
moves upwards it will lose its original entropy in 0.5 PSH. At greater
depths C [v; S']is similar in the upflows and downflows, hence C[S’
S’] is more symmetric deeper down.
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Figure 12. Correlation coefficient between entropy and vertical velocity
for upflows and downflows. Also plotted is V — V,q for comparison.

© 2003 RAS, MNRAS 340, 923-936

Solar surface simulations 931

4.4.3 A variable mixing length?

Over the final 1000 km before the surface, the eddies seem to have a
nearly constant diameter of approximately 600 km. This would seem
to imply a mixing length ratio (the correlation length divided by the
pressure scaleheight) that increases towards the surface. However,
as the surface is approached, radiation plays a greater and greater
role in heat transport, so the mixing length ratio should approach
zero at the convection surface. This paradox can be partly resolved
by noticing that as the surface is approached, the eddies become less
and less efficient at transporting heat upwards. This is shown in the
plot of C[v] §'] for the upflows. A more reasonable candidate for
the mixing length might be the product of C[v, '] and the velocity
correlation half-width.

S SUMMARY AND IMPLICATIONS
FOR SOLAR MODELS

As we intend to use our code to model the SAL in other stars,
this paper is an important benchmark for future studies. From these
simulations of the Sun, we found the following.

(i) Theimpenetrable lower boundary needs to be far enough away
from the SAL so that by the time the fluid reaches the boundary, the
velocities have become both weak and uncorrelated from velocities
in the SAL. If the lower boundary is too close to the SAL, the kinetic
energy will be overestimated.

(i) The horizontal cross-section needs to be large enough so that
the side-walls do not restrict the movement of the granules. If the box
width is too small then the kinetic energy will be underestimated.

(iii) There is a region close to the surface in which the vertical
correlation length remains constant, even though the density and
pressure vary by an order of magnitude.

(iv) In that region the mixing length theory, which assumes the
correlation length to be a constant multiple of the pressure scale-
height, will not work.

(v) The final equilibrium state is not strictly dependent on the
initial model atmosphere (see the Appendix, Section Al).

While these results have been found in a simulation of the Sun,
it is reasonable to assume that similar criteria would apply to
the convection—radiation transition layers in other stars. The ef-
fect of the boundaries should certainly be considered when sim-
ulating other convection—radiation layers. The correlation length
(half-width) seems to be a very robust feature of the solar gran-
ules and could easily be measured in other computations. For
example, in a recent proceedings (Robinson et al. 2002) we de-
scribe the application of this model to the Sun at the subgiant
and the start of the red giant branch. Preliminary results indi-
cate that, near the surface of each convection zone, the ratio of
the half-width to the stellar radius depends directly on the surface
gravity.
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APPENDIX A:NUMERICAL TESTS

Numerical simulations of solar granulation need to be robust. Part
of this means that the walls of the computational box should not
control the radiative hydrodynamics of the interior (e.g. the size of
the granules, the structure of the SAL, the turbulent pressure, etc.).
Nor should any small changes in the initial conditions affect the final
equilibrium. The following simulations were designed to minimize
these uncertainties.

The features of the individual simulations are summarized in
Table Al. In this table the geometric width in both the x and y
directions is given in Mm, while the depth is given in Mm and as
the number of pressure scaleheights. Models A and B were created
by vertically extending model KC2, while C, D and E were made by
periodically extending model B. After periodic extension, the hor-
izontal resolution in models D and E was halved. Each time a new
model was created, it was allowed to return to thermal equilibrium
before the statistical integration was begun.

Table Al. List of simulations.

Model Width Depth  Depth Ny x Ny x N; Ay A,
(Mm) (Mm) (PSH) (km)  (km)

KC/KC2 135 0.9 4.4 60° 26 17.5
1.35 2.1 72 592 x 120 26 17.5
1.35 2.8 8.5 592 x 170 26 17.5

mogaQw >

2.7 2.8 8.5 1162 x 170 26 17.5
2.7 2.8 8.5 58% x 170 52 17.5
54 2.8 8.5 1142 x 170 52 17.5

For each model we computed three non-dimensional statistical
quantities.

(i) The turbulent pressure divided by the mean gas pressure,
P = V2% P, (A

where the ‘x” denotes a non-dimensional quantity.
(i) The turbulent kinetic energy per unit mass divided by the
isothermal speed of sound squared,

=i (A2)

where v"? = v/ + v:.z + v2 and ¢, = \/P/p is the isothermal
speed of sound.
(iii) The superadiabaticity
dInT
OlnP
where V4 is computed using the OPAL equation of state.

V—Vu=

- Vud s (A3 )

From now on we will drop the “*’ on P and x, for convenience.
All quantities in this section are non-dimensional.

A1l The influence of varying the initial conditions

Here we compare the original KC simulation with simulation KC2
listed in Table A1l. Both simulations have the same input physics
(opacity tables, equation of state). As noted in Section 2.1, the only
difference between KC2 and KC, is that the 1D initial models were
based on slightly different model stellar atmospheres [i.e. the Ed-
dington T'(t) relation in KC, versus the empirical Krishna—Swamy
T(7) relation in KC2]. As the Krishna—Swamy relation is from ob-
servations of the Sun, it was closer to the final state of the solar
simulation.

Fig. A1 shows the initial hydrostatic (based on the MLT) and re-
laxed hydrodynamic runs of log P versus log T for the two simula-
tions. The dotted and solid lines are the initial plots for KC and KC2,
respectively. The horizontal and temporal averages of the relaxed
states, are denoted by diamonds and crosses for KC and KC2, re-
spectively. To demonstrate statistical convergence, the data of model
KC2 was initially averaged over approximately 600 s of solar sur-
face convection, whereas in KC, the averaging time was 2240 s.
After a sufficient amount of time, KC2 (crosses) converged to KC
(diamonds). The MLT provides the initial thermal structure, but the
hydrodynamical turbulence shapes the final structure. Provided the
initial conditions are not too different, the hydrodynamics converges
to the same equilibrium state.

This is an important preliminary result. Even if the initial atmo-
spheres are slightly different, the hydrodynamics dictates the final
equilibrium. The thermodynamics of the resulting 3D simulation
does not depend on the precise details of the MLT. The final equi-
librium is not determined by the exact value of the mixing length
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Figure Al. Hydrostatic structure of two 1D stellar models (see the text) for
KC (dotted) and KC2 (solid). The mean thermal structure from the hydro-
dynamic simulations is also shown for KC (diamonds) and KC2 (crosses).
Despite different initial stellar models, the turbulence causes both models to
eventually converge to the same equilibrium state.

ratio in the stellar model, on which the initial state of the simula-
tion is based. The choice between the two initial conditions in the
atmosphere, does not affect the turbulent pressure, turbulent kinetic
energy or the superadiabatic temperature gradient. These quantities
will depend on the geometry and grid resolution in the box.

A2 The influence of the lower impenetrable boundary

The structure of the SAL in KC2 (or KC, which is identical) is at
odds with the SAL constructed with the Canuto—Mazzitelli (1991)
approach (see fig. 1 in Demarque et al. 1999) or presented in the nu-
merical simulation by Rosenthal et al. The most obvious difference
is that KC2 predicts a broader SAL with a maximum of approx-
imately 0.4, while Canuto—Mazzitelli predicts a peak of approxi-
mately unity and Rosenthal et al. a peak of 0.6. The height of the peak
is related to the convective efficiency with respect to radiative heat
transport.

Models KC2, A and B differ only in their domain depths. Simula-
tion A was constructed by adding three extra pressure scaleheights
to the base of model KC2 (see Table A1). We first thermally relaxed
the lower layer, because with only hydrostatic support (no turbu-
lent pressure), the overlying layer collapsed, and the simulation
crashed. Also, when joining the two layers, the turbulent viscosity
was temporarily increased. This smoothed out the fluctuations that
were produced by suddenly removing the lower boundary. Model B
was made by adding a hydrostatic layer computed using the MLT
to model A. This increased the depth from 2.1 to 2.8 Mm. As the
turbulent pressure near the bottom of model A was small (approxi-
mately 1 per cent of the gas pressure), in this case we did not need
to relax the hydrostatic lower layer separately.

A.2.1 Effect on kinetic energy and turbulent pressure

To demonstrate the effect of the lower boundary on the turbulent
flow, we computed the ratio of the horizontal kinetic energy to the
gas pressure. This is equivalent to the horizontal turbulent Mach
number squared, i.e.

1 o) ) = o) ”
s = (0 +07%) /P = 3 (o +u?) [l (Ad)
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Figure A2. Non-dimensional horizontal turbulent kinetic energy per unit
mass, for simulations of different depths. Note the speeding up of the flow
at the lower stress-free boundary in KC2.
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Figure A3. Non-dimensional turbulent kinetic energy per unit mass, x for
simulations of different depths.

Fig. A2 shows ) hori, for models KC2, A and B. In KC2 the magnitude
of Xnoriz Shoots up at the base. The net effect of the fast downflows
striking the lower boundary was to speed up the overall flow. This
increased the total turbulent kinetic energy x throughout the box
(Fig. A3).

The upturn near the bottom of each layer, is clearly reduced as the
boundary is moved deeper, and is almost eliminated when the depth
is 2.8 Mm. This problem is much less severe at the top boundary
because the underlying region is subadiabatic (the radiative zone).
The vertical velocity is already small when the flow hits the top
boundary. The effect on P, of moving down the lower boundary
is shown in Fig. A4. In model KC2, P, drops sharply as the
impenetrable bottom is approached. While for A and B it has a
much smoother decay.

A.2.2 Effect on superadiabaticity

The run of V — V4 for the MLT, and models KC2, and C was shown
previously in Fig. 4. When the SAL is moved outwards by turbulent
pressure, the convective efficiency is reduced and radiation is forced
to carry more of the total flux. This should result in an increased
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Figure A4. Ratio of turbulent pressure to gas pressure, in this case denoted
by Purb, for simulations of different depths.
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Figure A5. Model D with a slip (stress-free) and a no-slip top boundary.

The figure includes horizontal and vertical turbulent velocities and supera-
diabaticity. The velocities have been scaled by the local speed of sound.
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Figure A6. Turbulent pressure as a function of domain width. P is the
ratio of the turbulent pressure to the gas pressure. The plot for D and E
has been shifted by 0.5 Mm for clarity. Without the shift the peaks would
coincide.
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Figure A7. Superadiabaticity as a function of domain width for models B,
C, D and E. The vertical grid points are individually marked to show that
the SAL is well resolved. The plots have been spaced by 0.5 Mm for clarity.
Without the horizontal spacing all the plots would have zero superadiabatic-
ity at a depth of 0 Mm.
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Figure A8. Non-dimensional turbulent kinetic energy for different domain
widths. The plot for D and E has been shifted by 0.5 Mm for clarity.
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Figure A9. The three components of turbulent velocity (scaled by the
isothermal speed of sound), for simulations D and E. As the change in width
has little effect on any component of the velocity, 2.7 Mm seems to be a
sufficient box width.

© 2003 RAS, MNRAS 340, 923-936

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2003MNRAS.340..923R

J23R,

FZ0D3WNRAS. 3407 .

height of the SAL compared with the MLT. However, in KC2 the
convection is overly turbulent and is thus (incorrectly) more efficient
than convection computed via the MLT. This results in a drop in the
height of the SAL compared with the MLT.

A3 The influence of the upper impenetrable boundary

As the top boundary is also impenetrable we need to ensure that its
position does not effect the convection either. We need to prove that
decreasing vertical velocity between the convection surface (where
the depth = 0 Mm) and the top of the box, is not caused by the top
boundary. Rather it should be as a result of the stable layer at the
top, i.e. convection—radiation losses.

To address this issue we damped the horizontal velocity at the
top by replacing the stress-free boundary with a no-slip top. The
flow is then relaxed and statistics are gathered as usual. Fig. A5
shows V — Va4, v; and vZ for simulations with slip and no-slip
top boundaries. The velocities are non-dimensionalized by the local
isothermal speed of sound. This conveniently enables them to be on
the same axis as V — V,q4. Apart from the top 100 km, where the
two v;s diverge because of the different top boundary conditions,
the rms vertical and horizontal velocities are nearly the same for the
no-slip and stress-free top boundaries. This implies that the drop
in vertical velocity near the top is primarily caused by convection
to radiation losses, rather than the top boundary. Furthermore, the
horizontal velocity in the upper atmosphere does not affect the SAL
structure much (i.e. V. — V).

A4 The influence of the domain width

Models B, C, D and E have widths of 1.35, 2.7, 2.7 and 5.4 Mm,
respectively. To judge the effect of width on simulations without
changing the grid spacing, we should compare B—C and D-E. All
four models have similar P, and V — V4 (Figs A6 and A7).
Increasing the width seems to have a minor effect on either Py
or V — V. In general, it is essential to resolve turbulent motions
inside the SAL region. As this is only approximately 250 km thick,
the grid spacing in the SAL needs to be very small. To show that
all of our simulations have resolved the SAL, we have plotted the
individual vertical grid points in the figure.

The variation of y with domain width is more interesting. This
is shown in Fig. A8. When the width is increased from 1.35 to
2.7 Mm, yx increases (especially near the top). However, when the
width is increased from 2.7 to 5.4 Mm there is only a very small
changein x. A box width of 2.7 Mm seems to be sufficient to resolve
x for solar granules.

To provide further evidence that 2.7 Mm is a large enough box
width, we computed v}, v} and v/’ for models D and E. Fig. A9 shows
all three velocity components for both D and E. Doubling the width
has only a minor effect on any particular velocity component. The
small differences in the deeper part, are caused by insufficient con-
vergence. As the domain has periodic lateral boundaries, eventually
the horizontal velocities should all be the same.

Fig. A10 shows contour plots of the instantaneous vertical veloc-
ity, for a horizontal cross-section, for models of different widths.
The uppermost frame shows that not even a single granule can
fit in the box when the width is 1.35 Mm, while approximately
two fit easily into the box in the second frame. In the final frame
approximately nine or ten larger cells fit into the box. Owing to
computational restrictions the final figure is computed on a coarser
mesh than the previous three frames so the granules are not clearly
depicted.
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Figure A10. Snapshot of vertical velocity contours for different domain
widths. From top to bottom the domain widths are 1.35, 2.7, 3.75 and
5.4 Mm, respectively. Owing to computational restrictions the final frame
has half the resolution of the other three.
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AS The influence of numerical resolution

While the main point of these tests is to show that the walls of the
computational box can have a significant effect on granular con-
vection, we can also partially address the effect of changing the
horizontal grid spacing. Models C and D produced very similar
Puw and V — V4, while x differed only slightly. As x depends

on the horizontal and the vertical velocity, this probably reflects the
sensitivity of the horizontal component of kinetic energy to hori-
zontal grid resolution. This is particularly noticeable near the top
where the flow is mostly horizontal.

This paper has been typeset from a TEX/IXTgX file prepared by the author.
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