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SUMMARY

A pattern of trailing spiral shock waves can drive a gas inflow in a disc, and it is shown
here how the inflow rate can be calculated from wave theory. A wave equation is
derived and is used to calculate profiles and shock strengths for acoustic waves in
discs, and hence to calculate net gas flow rates. In a steady state, the predicted
dependence of the gas inflow rate on the wave trailing angle is in good agreement with
the earlier numerical results of Spruit, except in the limit of very tightly wound waves
where the present results should provide a better approximation. The finding of
Spruit that one-armed steady shocks are not possible is also explained. The possible
applicability of these results to astrophysical accretion flows, particularly in proto-
stellar discs, is briefly discussed.

1 INTRODUCTION

A possible mechanism for driving an accretion flow in a disc
is the propagation into the disc of externally generated shock
waves which can remove angular momentum from the disc
(Shu 1976; Sawada et al. 1987; Spruit 1987; Spruit et al.
1987). Numerical simulations by Sawada ez al. (1986, 1987)
and Rozyczka & Spruit (1989) suggest that a spiral shock
pattern tidally excited by the companion star in a binary
system can propagate deep into a disc and drive an accretion
flow on to the central object. In a protostellar disc like the
solar nebula surrounding the early Sun, similar but weaker
waves can be excited by a Jupiter-like giant planet (Lin &
Papaloizou 1986; Sekiya, Miyama & Hayashi 1988), and
Larson (1989) has suggested that such waves might play an
important role in dispersing protostellar discs and in driving
accretion on to the central star.

The accretion rate produced by a pattern of stationary
self-similar spiral shocks was calculated by Spruit (1987,
hereafter S87) from a direct numerical solution of the equa-
tions of gas dynamics. In the present paper, we show that the
results of S87 can be understood and extended using the
theory of non-linear acoustic waves in discs. A review of the
wave theory relevant to the accretion problem and a sum-
mary of some of the present results have already been given
by Larson (1989, hereafter L89); here the derivation of these
results is presented, with some improved approximations.

As in the studies quoted above, the vertical structure of
the disc is neglected here. Lin, Papaloizou & Savonije (1990)
have noted that if there is a vertical temperature decrease in
the disc, acoustic waves will tend to be refracted away from
the midplane, limiting the distance that they can propagate.
However, such a vertical temperature gradient requires an
internal heat source in the disc, whose existence is not clear.

Even if the disc is internally heated by an effect such as tur-
bulent viscosity, external radiative heating by a central star
can cause the vertical temperature profile to become nearly
isothermal (Watanabe, Nakagawa & Nakazawa 1989), in
which case refraction would not be a serious obstacle to
wave propagation.

2 WAVE-DRIVEN ACCRETION

If the average energy per unit mass associated with a linear
(i.e. small-amplitude) wave is E, and if the phase velocity of
the wave is v, then the average momentum per unit mass
associated with the wave is E /v (Pierce 1974). If a disc of
surface density u rotating with angular velocity Q contains a
wave pattern whose angular velocity is Q,, the surface
density of angular momentum associated with the wave is
ME [Q,— Q). For non-linear waves, similar expressions hold
if E is replaced by 2Ey, where Ey is the kinetic energy per
unit mass associated with the wave (Lighthill 1978); in this
paper, the symbol E will henceforth be used for simplicity to
denote the quantity 2Ey. As discussed by L89, the wave
crests in a differentially rotating disc tend to become wound
into a trailing spiral pattern, and the wave then always trans-
ports angular momentum outward, regardless of whether it
propagates inward or outward.

For linear waves, the group velocity derived from the dis-
persion relation for tightly wound acoustic waves (e.g. Binney
& Tremaine 1987) is v,=cZ/v, where ¢, =(yP/[p)'/? is the
sound speed. For a spiral wave pattern whose crests trail
behind the radial direction by an angle 6, the surface'density
of wave angular momentum at radius ris r cos 6 u E /v, where
v is taken as negative for inward-propagating waves, and the
outward component of the group velocity v, is sin 6c?/v.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990MNRAS.243..588L

-58BL.

FTO00WNRAS, 2437 !

Hence the rate at which angular momentum is transported
outward across a circle of radius r is

T=2msin 0 cos 6r’uc?E [v2. (1)

As noted by L89, the transport of angular momentum by
acoustic wave motions exceeds the gravitational torque pro-
duced by the same pattern of trailing density fluctuations if
the disc is gravitationally stable, i.e.if 0> 1.

In the presence of wave dissipation, for example by the
formation of shocks, the outward transfer of angular
momentum associated with a trailing wave pattern will cause
an inflow of gas in the disc. The special case of a steady
inflow driven by a pattern of stationary self-similar spiral
shocks was studied numerically by S87. In such a steady
state, the outward transfer of angular momentum by the
waves is balanced by the inward transfer of angular
momentum by the flow, and the resulting inward mass flux is

F=T/r'Q. (2)

Following Shakura & Sunyaev (1973), we define an
efficiency of angular momentum transport a such that the
inward mass flux in a steady accretion flow is

F=2mauc?/Q. (3)

Equations (1-3) then imply that the value of « for a steady
wave-driven flow is

a=sin 6 cos OE v (4)

(Note that this definition of a differs by a factor of 2y/3 from
that used by S87 and L89.)

More generally, whether or not a steady state is present,
the mass flux must depend on the rate at which wave energy
and angular momentum are dissipated. This can be shown
either by considering the change in the angular momentum of
the disc caused by the transfer of wave-angular momentum to
it, or by considering the change in the mechanical energy of
the disc associated with the dissipation of wave energy. If AE
is the wave energy per unit mass dissipated when the wave
travels one wavelength and m is the number of spiral arms in
the wave pattern, the resulting value of « in a Keplerian disc
is

a=mAE [nck (5)

For a steady accretion flow, equations (4) and (5) must of
course agree, and this places an important constraint on the
possible properties of such flows.

If the dissipation occurs in shocks, then AE is the amount
of wave energy irreversibly converted into heat in each
shock. For weak shocks, this is well approximated by

AE=2c (M2 1)3/3(y+ 12 M?, (6)

where M, is the Mach number of the shock. Hence, for
shock-driven accretion flows,

a=2m(M?*—-1)/3x(y+1)2 M2 (7)

Thus the accretion rate associated with a given wave pattern
can be calculated if the Mach number of the associated
shocks is known. Determination of the shock Mach number
requires a calculation of the detailed form of the wave pro-
file, which can be done using the wave equation derived
below.
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3 THE WAVE EQUATION

An accurate calculation of the wave profile requires a full
solution to the equations of gas dynamics. However, useful
approximate results which are more general than special
solutions such as those of S87 and that yield more insight into
the properties of waves in discs, can be obtained from a wave
equation valid for tightly wound waves with velocity ampli-
tudes which are small compared with the phase velocity. In
deriving such a wave equation it is essential to retain terms of
second order in small quantities, since non-linear effects are
of crucial importance, but we shall assume that terms of third
order in small quantities can be neglected.

The propagation of sound waves in discs is modified by
the presence of the Coriolis force as an additional restoring
force; consequently, the wave motions are two-dimensional
and may be regarded as a combination of acoustic waves and
epicyclic oscillations. For a wave propagating radially in an
inviscid disc, the angular momentum of each fluid element is
conserved; therefore its additional radial acceleration is just
the usual epicyclic acceleration equal to minus x? times the
radial displacement, where « is the epicyclic frequency. The
component of motion in the direction of propagation can
then be treated as a one-dimensional motion in which each
fluid element experiences an extra restoring force propor-
tional to its displacement. This assumption is also valid for
non-radial waves in a rigidly rotating disc, but not generally
for non-radial waves in a differentially rotating disc. How-
ever, in a relatively cold disc like many astrophysical discs,
waves will tend to become tightly wound by differential rota-
tion and will then propagate nearly radially; thus the assump-
tion of radial propagation should still often be a good
approximation. For very open wave patterns, the accelera-
tion due to the Coriolis effect is actually somewhat larger
than x? times the displacement in the direction of propaga-
tion, and this has the effect of increasing the phase velocity of
the waves, but does not change their qualitative nature.

If x is the spatial coordinate measured in the direction of
wave propagation, u is the component of fluid velocity in this
direction, and & is the x-displacement of a fluid particle from
its rest location or epicycle centre, the one-dimensional
Eulerian equations governing the motion of the fluid, includ-
ing the epicyclic acceleration, are:

do/dt+ d(pu)/dx=0 (8)
ou/ot+udulox +c?d(ln p)/dx= — 2§ (9)
0E[ot+udk|ox=u. (10)

For a wave with an invariant profile propagating with the
phase velocity v, all physical variables must depend only on
x —vt; therefore we can write 9/dt=—vd/dx= —vd[dx
and express equations (8-10) in terms of derivatives only
with respect to x:

(v—u)do/dx=pduldx (11)
(v—u) dufdx —ctd(In p)/dx =x*& (12)
(v—u)dEjdx=—u. (13)
Eliminating d 0 /dx from equations (11) and (12), we obtain

(v—ufduldx —ctduldx =(v—u) x*E. (14)

Differentiating equation (14) with respect to x, and using
equation (13) to eliminate d& /dx and equation (14) again to
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eliminate &, we obtain the following wave equation for u:
(v =u)[(v—u)® =il d*u/dx? =[(v —u)* + ] (du/dx)
—(v —u)(dc/dx)(duldx) +(v —u) x?u=0. (15)

To simplify this equation, we assume that during each
wave cycle the gas behaves adiabatically with ratio of specific
heats y, and we employ the standard approximation

+3y—1) cou/v, (16)

where ¢, is the sound speed in the undisturbed gas. Equation
(16) follows from c o p*~ /2 and the continuity equation
(11), and is a good approximation even when u /v is not very
small and shocks of modest strength are present in the wave
profile (Lighthill 1978). Multiplying equation (15) by (1+
ufv) and neglecting terms of third order in u, we then obtain

v(v?—c3) d*uldx? —[2v*+(y—1) c3) ud?u [dx?
—(v*+ ycd) (dujdx)? +vk?u=0. (17)

Finally, we put this equation in dimensionless form by defin-
ing a wave Mach number M=v/c,, a dimensionless velocity
U=u/v, and a dimensionless x-coordinate X =x/A, where
A=2mv/nx is the wavelength and n = w/x is the ratio of the
wave frequency  in the fluid frame to the epicyclic fre-
quency x; we then have

(M?>=1) d>UdX? —(2M? +y— 1) Ud* U JdX>
—(M?+y)(dUdX ) +(2xM [n)? U=0. (18)

We see that, for a given y, the wave form depends on the two
dimensionless parameters M and n, which are related,
respectively, to the amplitude and frequency of the wave.

Cssco

4 WAVE PROFILES

Some periodic solutions to equation (18), calculated for the
typical case n=2 (appropriate for a stationary two-armed
wave pattern) and for a series of values of M, are shown in
Figs 1 and 2. Like water waves, waves of small amplitude are
nearly sinusoidal, but the wave profile becomes progressively
more sharply peaked at its crest as the amplitude increases
(Fig. 1). Waves of very small amplitude satisfy the dispersion
relation w?=c2k?+ x?, which for n=2 implies that the
minimum value of M for very weak waves is (4/3)1/2=1.155.
When the wave Mach number M increases to a critical value
of 1.182, at which point the maximum fluid velocity u is
0.136 times the sound speed, a cusp appears at the wave
crest where the relative velocity between the fluid and the
wave is exactly sonic. If the wave amplitude is increased yet
further, the wave ‘breaks’ at its crest and a discontinuity, i.e. a
shock front, appears where the gas is suddenly decelerated
from supersonic to subsonic motion relative to the wave
(Fig. 2). The gas then re-accelerates smoothly through a sonic
point back to the supersonic relative motion characteristic of
most of the wave profile.

Interestingly, equation (18) has a simple analytic solution
of parabolic form for large-amplitude waves containing a
shock, but not for smaller amplitude waves with no shock.
This analytic solution is

U=(M>-1)[2M*+y—1)
+[(M2=1)(M?+y) M2 +y—1)]"222 M n) X
+[2aM nR2(4M? +3y—1)] X2, (19)
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Figure 1. Wave profiles for periodic waves of small amplitude con-
taining no shock, as calculated numerically from equation (18) for
n=2 and y=5/3. Profiles are shown for various values of the wave
Mach number M, as indicated. The velocity perturbation u is
plotted as a function of the distance x in the direction of propaga-
tion, and the vertical arrows indicate the scale in units of the sound
speed c,.

/
1.2 I/ \'i
Lo / .08
——— T~
1184 TO.ICS/‘]\ 1.04
_—— T~

Figure 2. Wave profiles for periodic waves of large amplitude con-
taining shocks, calculated from equations (19), (20), and (21) for
n=2 and y=5/3. The wave Mach number M and the shock Mach
number M, are indicated for each case. The velocity scale, reduced
by a factor of 2 from Fig. 1, is indicated by the arrows. The dot on
each profile indicates the location of the sonic point.

where X is measured in the direction of propagation from the
sonic point in the wave profile. From this analytic solution it
can be shown that the critical value of M for a wave with a
cusp is insensitive to y, varying only from 1.182 to 1.184 (for
n=2) as y is decreased from 5/3 to 1. The critical wave
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amplitude is more sensitive to y, the maximum velocity u
increasing from 0.136 to 0.170 times the sound speed as y
decreases from 5/3 to 1. For solutions containing a shock,
the location of the shock in the wave profile, and hence the
strength of the shock, are fixed by the definition of the shock
Mach number as

Ms=(v_ul)/csl7 (20)

where u, is the pre-shock fluid velocity and ¢, the pre-shock
sound speed, and by the relation between the shock Mach
number and the velocity jump Au in the shock:

A1"=2(Ms—Ms_l) csl/(y+1>- (21)

In calculating c,;, a relation similar to equation (16) has been
used but with a slightly different coefficient for u equal to
(M?+y—M—1)/M(M +1), chosen to ensure that the shock
occurs exactly at the wave crest in the critical case.

A noteworthy feature of the analytic solution (19) is that,
independently of y, solutions exist only for values of n
greater than a minimum value given by

A= /82 =1.111. (22)

The existence of a minimum value of n>1 precludes the
existence of steady wave patterns with only a single shock, a
result previously found empirically by S87 who could find no
solutions with n less than 1.15 for self-similar spiral shocks
with 6= z/4. The physical reason why steady wave patterns
with n=1 cannot exist is that the dispersion relation for
linear waves implies that propagation can only occur if the
wave frequency w in the fluid frame exceeds the epicyclic
frequency «, ie. if n=w/x>1. Non-linear waves have a
larger Mach number M than linear waves for a given n, or
equivalently a larger value of n for a given Mach number, so
that the minimum value of # is larger for non-linear waves
than for linear waves. The impossibility of a steady one-
armed shock pattern may explain why two-armed patterns
are prevalent in numerical simulations, even when the waves
are generated by a single source on one side of the disc.

S SOME NUMERICAL RESULTS

For comparison with the numerical results of S87, we pre-
sent first some results for the case n=2-and y=5/3. In the
limit of very weak shocks, i.e. very small values of AE and a,
the wave energy E and phase velocity v become asymptotic-
ally constant and equal to their values for the critical case,
which are 4.05 % 10%c2 and 1.182 ¢, respectively. The value
of a is then given by equation (4) as

a=0.0029 cos 6,

where sin 6 =1 because in this limit the waves are very tightly
wound with cos < 1.

For larger values of AE and a, corresponding to larger
values of cos 6, a useful expression for o, which is derivable
from equations (4) and (5), is

a=(s/m)"*(sin 0 cos )¢ E3?[v3AE?,

since the ratio E3/ fy>AE'/? is found to become roughly con-
stant for large cos 6. The approximate expression

a=0.013(sin 6 cos 6)*?

reproduces the present results to an accuracy of 10 per cent
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for cos 6>0.08 and a>3x10"% It also agrees with the
approximation given by S87,

a=0.012(cos 6)°72,

to within 10 per cent over most of this range. However, it is
not valid for very small values of cos 8 or a. An interpolation
formula that represents the present results over the entire
range of values 0 <cos §<2~112is

a=0.010[(cos 8)*+0.09(cos 6)]'/?; (23)

it reproduces these results to within 3 per cent for all
cos §<0.55, which is better than the intrinsic accuracy of the
theory.

We thus see that the value of o for a steady wave-driven
accretion flow depends fairly strongly on the angle 6 by which
the wave crests trail behind the radial direction. This angle
depends in turn on the ratio of the phase velocity v to the
rotation speed V of the disc; for a stationary wave pattern,

cos 0=v/V~12 ][V, (24)

where a typical value of M has been substituted. Equations
(23) and (24) then imply that

a~0.013[(c/V ) +0.08(c/V ]2, (25)

which shows that the effective value of a is strongly depend-
ent on the ratio ¢/ V of the sound speed to the rotation speed
in the disc.

As an example of a possible application of these results, it
was noted by L89 that a steady wave-driven accretion flow in
a protostellar disc would have an associated time-scale of the
order of 10° yr at r=1 au and 107 yr at r=40 au. These
time-scales are similar to the typical lifetimes of protostellar
discs as inferred from observations. A very similar time-scale
also applies to the removal of angular momentum from the
inner solar nebula by tidal interaction with Jupiter, so that a
Jupiter-like giant planet could in principle serve as a suitable
wave generator for an accretion flow in a protostellar disc. In
any event, numerical simulations clearly show that the tidal
effect of Jupiter is capable of generating acoustic waves of
significant amplitude in the neighbouring part of the solar
nebula.

If the wave source is embedded in the disc, then the wave
pattern is of course not stationary; a steady wave pattern will
have the same angular velocity Q, as the wave source. The
frequency ratio n =m(Q —Q,)/x then becomes smaller than
for a stationary wave pattern, and the effect of this is that the
phase velocity and amplitude of waves with shocks are
increased, so that the waves become more open and the
resulting values of a become larger. The amplitude
increases very strongly as the Lindblad resonance n=1 is
approached; in fact, equation (19) implies that the phase
velocity and amplitude of waves with shocks become infinite
when n approaches the minimum value given by equation
(22). Clearly the wave equation loses validity close to a
resonance, because the assumption of a tightly wound wave
pattern of modest amplitude is no longer satisfied; moreover,
a strictly steady accretion flow is no longer possible. How-
ever, near-resonant effects can significantly increase wave
amplitudes and gas flow rates even some distance from a
resonance; for example, if « is calculated in the same way as
above but for n=1.5, the resulting values are about 3-4
times larger for a given cos 6 than the values found for n=2.
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This implies that at a radius of 0.4 times the radius 7, of the
wave source, the flow rate could be ~ 4 times larger than that
given by the above equations; even at a radius of 0.25 r,, it
could be twice as large. Of course, these results are only in-
dicative of the possible importance of near-resonant effects,
since a steady flow would not exist in these circumstances.

6 CONCLUSIONS

Many types of disturbance might generate acoustic waves in
discs, including the tidal influence of a companion star in a
binary system, the effects of close encounters in a dense
system of young stars, and the tidal effect of a giant planet in
a protostellar disc. Differential rotation will tend to wind the
wave crests into a trailing spiral pattern, and the waves will
then transport angular momentum outward. In the presence
of wave dissipation, for example by shocks, a gas inflow is
produced in the disc interior to the wave source, and an out-
flow is produced in any part of the disc outside the source.
‘As a mechanism of potentially general significance for driv-
ing accretion flows, acoustic waves have the advantage over
turbulent viscosity that they can be generated in one or a few
locations and then propagate far from their source, whereas
turbulence requires a stirring mechanism to operate at all
places and times in the disc. Also, wave effects are more
readily calculable.

The results obtained in this paper show that in order for a
shock front to be formed in a nearly stationary two-armed
wave pattern, the wave amplitude must exceed about 0.14
times the sound speed. A two-armed wave pattern is prob-
ably the most important case in general because, as noted
by L89, multi-armed wave patterns produce weaker effects,
while as shown in this paper, a steady one-armed wave
pattern is not possible in the absence of self-gravity.

The predicted accretion time-scale is independent of the
mass of the disc, but depends importantly on its temperature:
a hotter disc can support stronger, more open waves and
hence more rapid accretion. This could lead to significant
feedback effects if wave dissipation causes strong heating of
the disc. The variation of wave amplitude with radius also
depends on the surface density profile of the disc, as dis-
cussed by Spruit ez al. (1987) and L89; thus a strictly steady
accretion flow is possible only for a particular disc structure,
which need not be realized in general. Time-dependent
effects may then often be important, in which case the values
of a, calculated here for steady flows, may be valid only in a
rough average sense. In fact, some of the numerical results of
Sawada et al. (1986, 1987) do not show any approach to a
steady state but instead exhibit complex time-dependent
behaviour accompanied by large fluctuations in the accretion
rate. It is conceivable that, in some circumstances, wave
motions in discs could approach chaotic behaviour and begin
to resemble turbulence. Many of the astronomical pheno-
mena that have been attributed to accretion from discs, such
as T Tauri activity, do in fact show strong time variability. It

is also possible that, since wave-driven accretion is a forced
rather than a spontaneous phenomenon, a disc could, in the
absence of any disturbance, be completely quiescent and not
exhibit any accretion.

Clearly much more work will be required before it can be
established whether waves play an important role in driving
astrophysical accretion flows. However, since it has now
been shown both numerically and analytically that this is
possible, at least in principle, and since waves can be gener-
ated in many ways, it seems likely that wave effects will find a
place in the repertoire of possible mechanisms for driving
accretion flows.
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NOTE ADDED IN PROOF

The lower limit on the frequency ratio n=m(Q—-Q )/x,
given in equation (22), does not preclude one-armed wave
patterns if Q<0 or if Q,> 2Q; the latter case may apply, for
example, to outward-propagating waves.
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