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be delivered only after a d'elay of several years, if at all. This is unfair to the

aughqrs who deliver their articles promptly, only to see them appear years

la%er'whbrf'thew Have becoime dated, as the relevant volumes finally acquire

their full complement of articles, or after the editors have despaired of

hieying this full complement

T order to” overcome these problems, I recommended to the publishers
the estabhshment of this new journal, FUNDAMENTALS OF COSMIC
PHYSICS. This is to be a journal that aims at publishing handbook-type
articles. Hence the authors will not be penalized by unduly long delays.
It is true that the articles will not come to the reader neatly packaged into
units dealing with related topics, as in a true handbook series. However,
related articles can be collected and reprinted in hard covers, and the

" occasional very lengthy article can appear as a separate monograph. In
this way the journal format possesses considerable flexibility.

The principal way in which a handbook article should differ from a review
article is in its degree of internal completeness. A review article indicates the
current status of research in a field and serves as a guide to the literature. A
handbook article should contain derivations of important results and its cover-
age of the field should be sufficiently complete so that only professional
workers in that field would ordinarily have to go beyond the article to the
original literature. The handbook article should be readily understandable by
graduate students. These goals of the handbook article are more difficult to
achieve than those of the review article, and authors will have a variable success
in meeting them. However, the extra effort involved should result in articles
which have an enduring impact on the consolidation of knowledge in cosmic
physics.

The term ‘cosmic physics’ includes general relativity and gravitation,
astronomy and astrophysics, space and planetary physics, and geophysics. A
board of associate editors has been established with a distribution among these
fields; the associate editors suggest topics for articles and possible authors.
Those who may be interested in contributing articles should first contact the
editor, in order that it may be determined whether the suggested article will
fit into the framework of the other articles which have been solicited. The
membership of the board of associate edltors will be rotated from time to
time.

Publication of this journal will be irregular, in response to the flow of
manuscripts.
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1 INTRODUCTION: THE PROBLEM OF STAR FORMATION

Modern ideas on star formation date back to Newton (1692), who first
suggested that stars might form through gravitational condensation of diffuse
matter in space. Since Newton’s time this general idea has become widely
accepted as basically correct; nevertheless, the probiem of just how star
formation occurs has remained a matter for speculation and even controversy.
In recent years, substantial new developments in both theory and observation
have begun to throw new light on various aspects of the star formation process
and to provide strong confirmation that stars are presently forming by gravita-
tional collapse processes in dense interstellar clouds. While our understanding
of star formation is still far from complete, some of the principal features of
the collapse process can now be outlined with reasonable confidence, and
various stages of the collapse appear to be identifiable with certain types of
observed objects, such as some dark globules, some infrared objects, and the
T Tauri stars.

The earliest stages of the star formation process, including the formation of
interstellar clouds which are massive and dense enough to be gravitationally
bound, are at present somewhat less certain; both thermal and magnetic
instabilities have been suggested as playing a role in causing the interstellar
medium to condense into clouds. The fact that star formation is concen-
trated in spiral arms indicates that some large scale dynamicil phenomenon
such as a galactic shock or compression wave must also play a role. In any
case, it is clear from observations that there exist dark clouds and globules
in which the density is sufficiently high that self gravitation is important and
collapse into stars seems likely to occur. In this article we shall take as our
starting point, and we shall be concerned only with those stages of the star
formation process following the appearance of a gravitationally bound cloud
or ‘protostar’. For a more general review of the various problems associated
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with star formation and of the relevant properties of the interstellar medium
the reader is referred to the comprehensive discussions by Spitzer (1968, a, b)
and to the shorter review articles by Field (1970) and Penston (1971). For a
more skeptical point of view on theories of star formation, the reader may
consult the review article by McNally (1971).

We shall be concerned in this article with the evolution of a protostar,
which we define as a cloud or aggregate of interstellar material which is
gravitationally bound and is collapsing or about to collapse into a star. This
presupposes, of course, that a protostar is a well defined object and is distinct
from its surroundings. In reality a protostar may not have any well defined

boundary but may merge continuously with its surroundings; furthermore, it

may not even have a well defined mass, since it may exchange material with
its surroundings. Thus the concept of a ‘protostar’ as defined above is clearly
an idealization, and theoretical models which treat protostars as isolated
objects are likewise idealized. Nevertheless, such approximations are at
present necessary to make the theory tractable, and they do not necessarily
invalidate the results, provided that the limitations are kept in mind.

The present article will not treat the purely hydrostatic phases of pre-
main sequence evolution, a subject which has already been extensively
discussed elsewhere; for a recent comprehensive review, the reader is
referred to the article by Bodenheimer (1972).

2 THE JEANS CRITERION AND THE INITIAL STATE OF A
PROTOSTAR

If a dense cloud or condensation of interstellar matter is to collapse
gravitationally into a star or group of stars, its self gravitation must be’
strong enough to overcome the forces tending to disperse the cloud and
prevent collapse. The forces tending to support or disperse the cloud will
in general include (1) the thermal gas pressure, (2) magnetic pressure, (3)
centrifugal force if the cloud is rotating, and (4) the effects of internal
turbulent motions. It is generally argued that internal turbulent motions
will probably not be very important, since their importance will exceed
that of thermal pressure only if the turbulence is supersonic, and supersonic
turbulence is expected to decay in a time shorter than the free fall time of
the cloud. This argument neglects the fact that the turbulent motions will
tend to be amplified by the collapse process itself, and therefore it is not
clear that turbulent motions can be completely dismissed as unimportant
for the collapse. However, as far as the initial conditions are concerned,
any turbulent motions may be considered as simply adding an extra contri-
bution to the thermal pressure. We shall discuss first the role of the thermal
or turbulent pressure in determining the initial conditions for a collapsing
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protostar, leaving to later sections a consideration of the effects of rotation
and magnetic fields.

The conditions under which self gravitation will dominate over pressure
forces and cause collapse to occur are determined by the Jeans criterion, which
can be derived and stated in a number of ways (Spitzer 1968a). In essence,
the Jeans criterion simply states that in order for collapse to occur, the gravita-
tional potential energy of a cloud must be comparable to or greater than the
kinetic energy of thermal or turbulent motions within the cloud. (A very
similar result is obtained from the virial theorem, which states that in order
for an isolated configuration to collapse, its gravitational potential energy
must exceed twice its kinetic energy.) For a cloud of mass M, radius R ,
and temperature T, the gravitational potential energy per unit mass is
approximately (3/5)GM/R , whereas the thermal kinetic energy per unit
mass is (3/2) RT where ® = k/uH is the gas constant for the cloud
material (here u is the mean molecular weight, and H is the mass of
the hydrogen atom). Thus in order for collapse to occur we must have

GM _ 5
= > Z@r. )]
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If, for example, we consider a cloud of given mass and temperature, the Jeans
criterion states that it can collapse gravitationally if its radius is equal to or
less than a critical value of approximately (2/5)GM/®T . For a more precise
derivation of the numerical constarit in the Jeans criterion one can, for example,
assume that the cloud begins as an equilibrium isothermal sphere and is slowly
compressed to the point where stable equilibrium is no longer possible; this
yields a critical radius of
R 0 GM
= 041 — )
¢ QT

(Spitzer 1968a). Another approach, which may be more realistic, is to suppose
that the cloud is never in equilibrium but collapses isothermally from an initial
configuration of uniform density; if, for example, the outer boundary of the
collapsing cloud is held fixed (see Section 4), one then finds from trial collapse
calculations that collapse to a star can occur only if the radius is less than a
maximum value
'R 46 i
= 046 — 3
m a7 ©))

(Larson 1969a).
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The Jeans criterion can also be written to give the minimum mass M
which a cloud of given density and temperature must have in order to
collapse gravitationally; for example, the minimum unstable mass M;
implied by Eq. (2) is

M, = 186 pV* (RT/G)*? @)

It has long been realized that for typical interstellar clouds the minimum

. unstable mass predicted by the Jeans criterion is of the order of 10® M, or
more, which means that stars in the normal mass range cannot form directly
by gravitational collapse in typical interstellar clouds. If stars of normal mass
are to form, densities several orders of magnitude higher than those normally
encountered in the interstellar medium are required. Even under the conditions
of strong compression proposed for galactic density wave shocks, the minimum
cloud mass for which gravitational collapse can occur is ~ 120 M, (Shu et al.
1972). It is therefore generally believed that star formation begins with a
cloud of relatively large mass (= 10* M,) which collapses gravitationally and
fragments into smaller masses as its density rises and the Jeans mass M;
decreases. By ‘fragmentation’ we refer here to the development within the
cloud of subcondensations which are gravitationally bound and which begin

to collapse on themselves. Several stages of fragmentation may occur, leading
eventually to the formation of protostars of one solar mass.

At each stage of the fragmentation process the size of the condensations
which form is governed or at least limited by the Jeans criterion, which gives
the minimum mass that a subcondensation of given density and temperature
must have if it is to collapse. While the Jeans criterion says nothing about
the maximum mass that a subcondensation can have, numerical collapse
calculations such as those to be described below suggest that a condensation
much larger than the Jeans mass is not likely to collapse very far without
fragmenting into smaller condensations. The reason for this is that the free .
fall time varies as p™"? , so that denser regions always collapse fastest and
any small density fluctuations are rapidly amplified, provided that their
masses exceed the Jeans mass. Thus if a cloud whose mass is much larger
than the Jeans mass contains any small density variations, these will soon
develop into subcondensations with masses closer to the Jeans mass. There-
fore we expect that protostars formed by such a fragmentation process should
have sizes and masses which are roughly consistent with the Jeans criterion,
at least in order of magnitude.

Evidence for the type of fragmentation process sketched above is provided
by observations of a number of dark clouds showing internal structure, such
as the Southern Coalsack and the dark cloud near p Ophiuchi (Bok et al.
1971); these are dense, massive clouds with masses of the order of 10° M,
which are probably gravitationally bound and beginning to collapse and
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fragment into stars. Some smaller and more filamentary dark clouds, which
are also probably gravitationally bound, are observed in the Taurus region.
In all of these cases the dark clouds have a conspicuously clumpy internal
structure, just as would be expected if they are undergoing gravitational
collapse and fragmentation. In many cases the subcondensations or globule-
like structures seen in these clouds have properties which, within the
uncertainties, appear to be consistent with the Jeans criterion and to
resemble closely the initial conditions assumed for the protostar models

to be described below. The properties of some of the more isolated dark
globules, which also resemble the theoretical protostar models in many
cases, have been described by Bok et al. (1971).

The above discussion has assumed that protostars form by purely
gravitational collapse and fragmentation processes, starting with a cloud
of sufficiently large mass. However, it is also possible that under some
circumstances protostars can form as a result of thermal instabilities in
a medium which is cooling from high temperatures (Hunter 1969, Stein
et al. 1972). In fact, Stein et al. (1972) propose that protostars with
masses as small as one solar mass or less can form directly out of the
interstellar medium without the need for any fragmentation process, and
they suggest that this may explain some of the Bok globules. While the
initial conditions for such protostars are rather different from those
derived from the Jeans criterion, the early stages of evolution exhibit
some strong qualitative similarities in the two cases (Stein et al. 1972).
Thus, while we shall continue to discuss the evolution of protostars on
the assumption that they are formed by gravitational collapse and frag-
mentation processes, some of the basic qualitative results may remain
valid even for the case of protostars which are formed by thermal
instabilities. '

3 THE TEMPERATURE OF THE PROTOSTELLAR MATERIAL

As may be seen from Eq. (4), the temperature of the protostellar material
plays an important role in determining the initial conditions for collapsing
protostars. The temperature of the protostellar material can be estimated
by considering the balance between the various heating and cooling processes
thought to be important, as is customarily done in calculating the tempera-
ture of interstellar matter. In the case of protostars, the relevant densities
are so high (Z 107 to 1078 g cm™?) that the protostar is opaque to
visual and ultraviolet radiation, and the important heating and cooling
processes are different from those usvally considered for the interstellar
medium. A detailed treatment of the heating and cooling rates would be
quite complicated, particularly in the transition region between optically
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thin and optically thick conditions; however, since the temperature is not very
sensitive to the details, a simplified approximate treatment will suffice to deter-
mine the temperature with reasonable accuracy. We shall consider the effects
of heating by cosmic rays and by gravitational compression, and cooling by
C1I, O I, and dust grains; while many other processes operate, these appear
to be the dominant processes under protostellar conditions. More elaborate
treatments of the heating and cooling processes in protostars, based on

slightly different assumptions than those used here, have been given by

Nishida (1968) and by Hattori ez al. (1969), but the results are not greatly
different from those obtained here.

It has been suggested that low energy cosmic rays may be the most
important source of heating in the interstellar medium, and a cosmic ray
heating rate of 2.5 x 107 erg g s™! has been adopted by Goldsmith et al.
(1969). In a dense protostellar cloud these low energy cosmic rays are subject
to significant absorption, the opacity being approximately 300 cm?g™ (Spitzer
and Scott 1969), about the same as the opacity to visual radiation. For simpli-
city we shall assume that cosmic rays and visual radiation are both attenuated
by the same factor €7 where 7 is the optical depth at the center of the
cloud. The cosmic ray heating rate is then

Fep = 25x102 eTergg™ st . ®)

When 7 becomes much larger than unity, cosmic ray heating becomes
unimportant, as does heating by ultraviolet radiation. The most important
heating mechanism in a collapsing cloud then becomes compressional heating.
For a cloud or fluid element which is collapsing at the free fall rate the

compressional heating rate is P dV/dt = (24nGp)"? RT erg g™ s (V= 1/p) .

Since the numerical collapse calculations show that finite pressure gradients
cause the collapse to be somewhat retarded from a free fall, we shall assume
that heating occurs at half the free fall rate; then, adopting

® =336 x 107 erg g! °K™' , as is appropriate for a composition of mostly
H, (Gaustad 1963), we have for the compressional heating rate

Ip = 38x10% p"? Tergg™? s . ©)

In typical interstellar clouds, cooling is thought to occur mainly through
collisional excitation of C II jons by H atoms, followed by the emission of
infrared photons. In an opaque cloud, the cooling rate due to this process is
reduced because the ultraviolet radiation that produces the C II ions is
absorbed. Assuming that only 75 of the carbon in the interstellar medium is
available in gaseous form and that the C II abundance is further reduced by
a factor €7 in an opaque cloud, the CII cooling rate is
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Acit = 9.0x 10 &7 p e Terg gt 57 @)

(Goldsmith et al. 1969). A second collisional excitation process which may
contribute to the cooling of dense clouds involves excitation of O I atoms
by H atoms; the cooling rate for this process is

AO[ = 25 x 1020 p T033 e—ZZSIT erg g—l S—l (8)

(Goldsmith et al. 1969).

In very dense, opaque, cold clouds, both of the above cooling processes
become ineffective and cooling is produced mainly by inelastic collisions
between gas molecules and dust grains, followed by the emission of infrared
radiation from the grains. Assuming that the hydrogen in very dense clouds
is all in molecular form (Hollenbach et al. 1971) and that each gram of
material contains 2 x 10™! dust grains of radius 2 x 10~ cm (Gaustad 1963),
the rate of transfer of energy from the gas to the dust grains is given by

Ag = 1LIx10% p T2 (T—T,)erg g s )
where T is the gas temperature and T, the grain temperature. It has been
assumed in deriving this relation that the colliding gas molecules leave the
grains with a Kinetic energy corresponding to the grain temperature. The grain
temperature is determined by the balance between heating at the above rate
and cooling by the thermal emission of far infrared radiation which escapes
freely from the cloud. The emission rate per gram of material is given by

jo= 23x107% kpTy erg gt 577 (10)

where « P(Tg) is the Planck mean opacity produced by dust grains. In the
relevant temperature range, the Planck mean opacity has been estimated to
be about 3 x 107 T cm? g™ (Hayashi and Nakano 1965); although this
value is quite uncertain, the error is not very important, owing to the strong
dependence of j .on T, .

The temperatures of both the gas and the dust can now be estimated by
equating the heating and cooling rates for the gas and the dust:

Per +Tp =, Aeu * Bor + 4 (11)
Some temperatures calculated from these equations are listed in Table I for

clouds of two masses, 1 M, and 10® M, . The optical depths 7 appearing
in Eqgs (5) and (7) have been calculated on the assumptions that the cloud has
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uniform density (which is no longer true after gravitational collapse has
started) and that the opacity to both cosmic rays and ultraviolet radiation is
the same as the visual opacity, taken to be 250 cm® g™ . At the lowest
densities, i.e. below about 3 x 107%° g cm™ fora 1 M, cloud and

3x 107 gem™ fora 10° M, cloud, cosmic ray heating and C II cooling
are the dominant processes. Since the rates for both processes depend in the
same way on the optical depth 7 , the temperature is almost independent of
the size or optical depth of the cloud. The temperature at these low densities
is, however, sensitive to the assumed abundances of the principal coolants C II
and O I; for example, if all of the carbon is in gaseous form instead of only
10% as we have assumed, the temperatures at the lowest density listed would
be reduced to about 20°K. '

TABLE 1
Equilibrium temperatures in dense clouds

M= M, M = 10° M,

log p (g cm™) T TCK) T T(°K)
- 22 4.2(-2) 50.6 42(-1) 48.1
- 21 2.0(-1) 25.4 2.0(+0) 24.6
- 20 9.1(-1) 15.6 9.1(+0) 16.3
- 19 4.2(+0) 84 4.2(+1) 66
— 18 2.0(+1) 5.1 2.0(+2) 5.1
- 17 9.1(+1) 5.4 9.1(+2) 54
- 16 4.2(+2) 6.3 4.2(+3) 6.3
- 15 2.0(+3) 7.5 : 2.0(+4) 7.5
- 14 9.1(+3) 9.1 9.1(+4) 9.1 °
- 13 ’ 4.2(+4) 11.0 4.2(+5) 11.0
- 12 2.0(+5) 13.3 2.0(+6) 13.3

At densities higher than about 3 x 10™° g cm™ | cosmic ray heating and
C II cooling both become unimportant and the dominant processes become
compressional heating and grain cooling. At densities above 107*® g cm™
the gas temperature becomes closely coupled to that of the dust grains.
Since the infrared emissivity of the dust varies approximately as Tg7 , the
dust temperature depends only weakly on the density and the compressional
heating rate, and is not very sensitive to the amount or the composition of
the dust. Consequently a dense collapsing protostellar cloud should have a
fairly well determined temperature of the order of 10°K, as given by Table L.
From Table I we see that the temperature remains between about S and 11°K
over the entire density range from the density at which a protostar becomes
gravitationally bound and starts to collapse on itself (~ 107*° g cm™ for a
protostar of one solar mass) to the density at which the central part of the
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protostar becomes opaque to the infrared radiation from the dust grains
(~10™ g ecm™). Thus it should be a fairly realistic approximation to assume,
as has often been done, that the early stages of the collapse of a protostar are
isothermal; the average temperature suggested by Table I is then about 8°K.
The approximately isothermal nature of the collapse is verified by the detailed
hydrodynamical calculations of Hunter (1969), Penston (1969 b), and Disney
et al. (1969), in which the heating and cooling processes are explicitly included,
although these authors all employed somewhat different treatments of these
processes. :

Temperatures closely comparable with the predicted temperatures are
observed in many of the dense dark clouds in which star formation is believed
to occur (Heiles 1971). The densities in these clouds are of the order
107 g cm™ or higher, and the temperatures inferred from radio observations
range from about 5°K to 20°K, a typical value being about 10°K. The good
agreement between predicted and observed temperatures strengthens the con-
clusion that during its early development a protostar of one solar mass is
approximately isothermal with a temperature. of the order of 10°K. (Note,
however, that because of the lower densities implied by the Jeans criterion for
the more massive protostars, somewhat higher initial temperatures may be
more appropriate for massive protostars; see the following section.)

4 INITIAL AND BOUNDARY CONDITIONS FOR A COLLAPSING
PROTOSTAR

In order to compute the collapse of a protostar, it is necessary to specify not
only the initial temperature but also the initial density and velocity at each
point in the cloud. If the temperature is assumed known, the Jeans criterion
gives the minimum density or equivalently the maximum radius which a cloud
of given mass must have if it is to collapse gravitationally. It is difficult to
give a more detailed specification of _the initial conditions, however, since this
depends on the poorly understood previous history of the material which
makes a protostar, and also on the exact time chosen as the initial instant

for the collapse, which is somewhat arbitrary. Because of the uncertainty

in the initial conditions, a variety of different assumptions have been
experimented with by workers in the field (see, for example, Penston 1966,
Bodenheimer and Sweigart 1968, Larson 1969a).

With regard to the initial density distribution, one assumption which has
been tried is that the initial state is close to a hydrostatic equilibrium configur-
ation, either isothermal or polytropic. This presupposes that the conditions
preceding the collapse of a protostar are sufficiently quiescent to allow
approximate hydrostatic equilibrium to be established; however, it is not
clear whether this situation will ever be closely approached inside a collapsing
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and fragmenting interstellar cloud. At the opposite extreme, it has been
assumed that no approach to hydrostatic equilibrium is ever achieved during
the fragmentation process and that a protostar begins its collapse from a
state of uniform density with no central concentration. Fortunately, the
results of the collapse calculations show that the collapse always proceeds

in much the same way regardless of the exact choice of initial density
distribution. Thus, for example, even if the density of the protccjstar is
initially uniform, the density distribution soon develops a centrally con-
densed structure which is almost indistinguishable from that found during
the collapse of a cloud which was centrally condensed to begin with. Since
the exact choice of initial density distribution is not very important for the
collapse, most of the calculations to be described in this article have adopted
the simplest possible assumption, i.e. an initially uniform density distribution.

The initial velocity distribution is also difficult to specify in any detail
without a better understanding of how protostars are formed. Most calcul-
ations have assumed that a protostar begins its collapse from a state of rest,
but calculations have also been made with the assumption that a protostar
is initially expanding or contracting at approximately the free fall rate. As
with the initial density distribution, the assumed initial velocity distribution
does not make a great deal of difference to the behaviour of a collapsing
cloud; once the collapse gets well under way the details of the initial
conditions are largely forgotten and the interior part of the cloud coliapses
in much the same way, regardless of the assumed initial velocity distribution.
(This conclusion requires modification if the cloud is rotating, rather than
merely expanding or contracting; see Section 7.)

In addition to the initial conditions, it is also necessary to specify the
boundary condition for a collapsing protostar. The boundary condition is
even more difficult to specify than the initial conditions, since it depends
on the properties of the surrounding medium and on the interactions between
a protostar and its surroundings. Indeed, it is not even clear that one can
unambiguously define a ‘boundary’ for a protostar, since the protostar may
merge continuously with its surroundings, and it may not be clear initially
how much of the material will collapse into a star. Nevertheless, for computa-
tional purposes it is necessary to choose a boundary and to specify either the
velocity with which it moves or the pressure exerted on it by the surrounding
material. One possibility that has been considered is that the surrounding
medium continues to exert a constant pressure on the boundary of the proto-
star; in this case the boundary contracts with time, although not as rapidly
as.the interior of the cloud which still becomes strongly centrally condensed.
At the other extreme, one can assume that the protostar is surrounded by a
vacuum and that there is zero pressure on its boundary; in this case the
boundary expands while the inner part of the cloud contracts. A third
possibility, representing a compromise between these extreme cases, is that

3
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the boundary pressure remains just sufficient to prevent the boundary from
expanding but not sufficient to make it contract, so that the boundary remains
stationary. As was the case with the initial conditions, it is found that once
the collapse gets well under way the interior part of the cloud collapses in
much the same way in all cases, regardless of the exact choice of boundary
condition. Because of this, most of the collapse calculations to be described
have adopted the simplest assumption, i.e. that the boundary remains station-
ary; this corresponds to allotting a fixed volume to each collapsing protostar
in a forming protocluster.

While the principal qualitative features of the collapse are very similar in all
cases, there are, of course, quantitative differences in the time scales and other
results obtained with different initial and boundary conditions. These differ-
ences can cause a significant uncertainty or scatter in the properties of proto-
stars and newly formed stars; see Section 16.

For the case of an initially uniform spherical cloud which collapses iso-
thermally within a fixed boundary, the Jeans criterion is given by Eq. (3).
For numerical reasons, in order to avoid having the collapse stopped and
reversed by small numerical errors, the collapse calculations of Larson (1969a,
1972b) have instead used Eq. (2) which gives a slightly smaller radius and
higher density than Eq. (3). For a protostar with a mass of 1 M, and a
temperature of 10°K, Eq. (2) gives a radius of 1.63 x 10'7 cm (0.053 pc)
and an initial density of 1.1 x 107'° g cm™ (4.8 x 10* atoms cm™),
assuming that the gas constant ® is equal to 3.36 x 107 erg g* “K™ as
would be the case for a composition of 65% molecular hydrogen, 32%
helium, and 3% heavier elements (Gaustad 1963). For protostars with other
masses and temperatures, the radius scales as M/T and the density scales as
T3/M? , assuming that the Jeans criterion (2) is always satisfied.

If we assume that the temperature of a protostellar cloud is related to its
density in the manner given by the third column of Table I, the Jeans mass
M; and the corresponding radius R; can be calculated as a function of the
initial density by making use of Eqs. (4) and (2). The resulting minimum
unstable masses and radii are given in Table II, which also gives the corres-
ponding visual optical depth at the center of the cloud. (These optical depths
should be regarded as lower limits, since in general the protostar will be
embedded in surrounding material which will provide additional shielding.)

It is evident from Table II that the Jeans mass decreases rapidly with increasing
density; in fact, the Jeans mass varies over almost the entire range of stellar
masses as the density varies from 1072! g cm™ to 1078 g em™. Thus we
expect that protostars can form by fragmentation at minimum densities in the
range between about 107! g cm™ and 1078 g cm™, depending on the mass.

It is interesting to compare the predicted properties of protostars as listed
in Table II with the ‘observed properties of the ‘Bok globules’, certain small
dense clouds which may represent protostars in an early stage of development
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TABLE 11
The Jeans mass and radius as functions of density

log p(g cm™) T(K) MyM) R;(pc) T
- 22 50.6 380. 3.9 0.30
- 21 25.4 43 0.88 0.68
- 20 15.6 6.5 0.22 1.7
- 19 8.4 0.81 0.051 3.9
- 18 5.1 0.12 0.013 10
- 17 5.4 0.042 0.0041 32
T T T
o x ]
x
log Ri{pc) X
-1 -
X
X
x
2 i
f ! !
-1 [0} 2
log M (Mp)

FIGURE 1 The crosses indicate the masses and radii of several dark globules as listed
by Bok et al. (1971); for comparison the curve shows the theoretical mass-radius relation
for protostars as given by Table 1I.
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(Bok et al. 1971). The question of whether or not the Bok globules are proto-
stars has been a controversial one; however, in a number of extended dark
clouds such as those in Taurus one observes dense clumps or condensations
which resemble some of the larger Bok globules, and star formation is almost
certainly taking place in these dense condensations, as is suggested by the
presence of large numbers of T Tauri stars. The classical Bok globules may
represent some of the more isolated examples of such condensations. In
Figure 1 the masses and radii of a number of typical globules, as estimated
by Bok et al. (1971), are compared with the theoretical mass-radius relation
for protostars as given by Table II. Considering that the estimated masses of
the globules are probably uncertain by at least a factor of 2, the agreement
between the properties of the globules and the predicted properties of proto-
stars is striking and lends support to the possibility that at least some of the
globules may be pre-stellar objects. Conversely, if it is accepted on other
grounds that the globules are or resemble protostars, then the agreement
with the theoretical predictions supports the assumption that the initial state
of a protostar is given approximately by the Jean criterion.

5 THE COLLAPSE OF A SPHERICAL PROTOSTAR: ISOTHERMAL PHASE

We have seen that a protostar of moderate mass is expected to remain at an
approximately constant temperature during the early optically thin stages of
its collapse. Therefore it has usually been assumed in studying the early stages
of the collapse of protostars that the collapse is isothermal. The mathematics
is then simplified considerably, since the heating and cooling rates and the
equation of conservation of energy need not be included explicitly. More
detailed non-isothermal calculations have shown that small or moderate
deviations from isothermality make no great difference to the development
of a spherically collapsing cloud; therefore, in the next three sections we
shall be concerned mainly with the results of isothermal collapse calculations.

For a system with spherical symmetry, the Eulerian equations of fluid
dynamics with self gravitation can be written as follows:
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where u is the velocity in the radial ( r ) direction and m is the mass inside
radius 7 . For an isothermal gas, the pressure P in Eq. (14) can be eliminated
in favor of the density p by writing. P = pRT , where ®RT is a constant;
the third term in Eq. (14) then becomes ®Td In p/dr . We then have a set of
three partial differential equations for the three dependent variables p , u ,
and m as functions of the independent variables r and ¢ .

The solution of Eqs. (13)—(15) is uniquely determined once the initial and
boundary conditions for the collapsing cloud are specified. No analytical
solution of these equations is known, but numerical solutions can be readily
computed using a number of more or less standard numerical techniques for
solving fluid dynamical problems with spherical symmetry. Such calculations
have been made by several authors, each of whom has experimented with a
number of different assumptions for the initial and boundary conditions
(Penston 1966, Bodenheimer and Sweigart 1968, Larson 1969a, Appenzeller
1972). Despite the different methods of calculation and the different assump-
tions used, the results obtained are in all cases qualitatively very similar. The
outstanding feature of the collapse which emerges from these calculations is
that, contrary to some previous expectations, the collapse is always highly non-
‘homologous: even if the density of the cloud is initially uniform, the density
distribution soon becomes strongly centrally condensed, and the degree of
central condensation increases at an ever accelerating rate, leading to the
runaway growth of a sharp central spike in the density distribution. As the
collapse proceeds, the rapidly collapsing central core of the cloud shrinks in
size and mass, and the bulk of the protostellar mass is ‘left behind’ in a more
slowly collapsing extended envelope of infalling matter whose size and mean
density are still much the same as those of the initial protostellar cloud. The
growth of the central density peak continues unimpeded until the central
density rises above 1072 g cm™ and the central part of the cloud becomes
opaque to the infrared emission from the dust grains.

For a cloud whose density distribution is initially somewhat peaked at the
* center, the runaway growth of a sharp central density peak is readily under-
stood from the fact that the free fall time

37T 172
ty = 16
d (3209) | o

is shortest at the point where the density is highest, i.e. at the center of the
cloud, and therefore the central part of the cloud collapses most rapidly. As
a result, the density contrast between the center and the outer part of the
cloud is strongly amplified during the collapse. Even if the density distri-
bution is initially uniform, an outward gradient of density and pressure is set
up at the boundary of the cloud as soon as the collapse begins, and this
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gradient begins to propagate inward at the speed of sound relative to the infall-
ing material. In the language of classical gasdynamics (e.g. Zeldovich and Raizer
1968), a rarefaction wave is created at the surface of the cloud and begins to
propagate inward at the speed of sound relative to the infalling material. The
resulting outward pressure gradient causes the collapse to be decelerated from
a free fall, first near the outer boundary and then progressively closer and
closer to the center, so that the outer parts of the cloud collapse less rapidly
than the central region and a centrally peaked density distribution is set up.

A central ‘plateau’ remains in the density distribution until the rarefaction
wave reaches the center, and the stage at which the plateau disappears depends
on the ratio of the sound travel time to the free fall time (Bodenheimer and
Sweigart 1968); however, if the initial conditions satisfy the Jeans criterion,
the sound travel time is comparable with the collapse time, so that the rare-
faction wave reaches the center and the central plateau disappears at an early
stage in the collapse. From this point onward the density is no longer uniform
anywhere but decreases monotonically outward from the center of the cloud,
and the collapse continues nonhomologously as described above. The non-
homologous nature of the collapse cannot be avoided with any reasonable
choice of boundary condition; in fact, the only situation in which homo-
logous collapse can occur is in an infinite medium of strictly uniform density,
which will maintain a uniform density as it collapses. However, this situation
is clearly not relevant to star formation in our galaxy.

The development of the density distribution in an isothermally collapsing
protostar is illustrated for a typical case in Figure 2, which shows the result
for a protostar of mass 1M, and temperature 10°K which collapses from
a uniform initial density of 1.1 x 107 g cm™ , with a fixed boundary of
radius 1.63 x 10'7 cm . It is evident from the diagram that when the
collapse gets well under way the major changes in density occur in a smaller
and smaller region at the center and on a shorter and shorter time scale,
while almost nothing happens in the outer part of the cloud, which still
contains most of the mass. Note that the density distribution closely
approaches the form p « F2 | which is characteristic of all isothermal
collapse calculations with spherical symmetry, regardless of the details of
the initial and boundary conditions.

It is important that, while the time of collapse is approximately that of
free fall, pressure gradient forces never become negligibly small but continue
to play an important role in the dynamics of the collapse. This is because
of the nonhomologous nature of the collapse and the resulting steep pressure
gradients which are established within the collapsing cloud. Typically,
pressure forces are found to be about half as large as gravity, and it is in
fact the partial balance between pressure and gravity forces which is respon-
sible for establishing the r™ density law. The way in which this density
law comes about can be understood as follows: Suppose that the initial
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conditions satisfy the Jeans criterion, so that the rarefaction wave propagating
inward from the boundary reaches the center at an early stage of the collapse;
we then consider the later stages of the collapse when there no longer exists a
central plateau of strictly uniform density. If we consider the part of the
cloud within a very small radius r from the center (say, r = 10" c¢m ), the
density near the center is initially too low for this very small region to be
gravitationally bound (or equivalently, for it to satisfy the Jeans criterion);
the material in this region is confined by the pressure of the outer layers of
the cloud rather than by its own gravity, and therefore its density remains
nearly uniform as the collapse proceeds. As the density rises, however, a
point is eventually reached where the mass within radius » becomes large
enough that the Jeans criterion becomes satisfied in this region; the material
in this region can then collapse gravitationally on its own without external
compression, and the density distribution within radius r starts to become
centrally condensed in the usual nonhomologous fashion. At the point when
the Jeans criterion becomes satisfied for the region within radius » , the mass
in this region is proportional to r (Eq. (2)), and the (still nearly uniform)
density in this region is therefore proportional to r™2 . As the collapse
proceeds, further changes in density occur mainly at radii smaller than r

so that the density at radius r remains proportional to r2 . In this way

a density law of the form p «r™2 is progressively established at smaller

and smaller radii.

It may be noted that what we have been discussing could be viewed as a
fragmentation process, except that in a spherically symmetric cloud only one
‘fragment’ is formed, i.e. the central dense core of the cloud.

It can be demonstrated that in the isothermal case Egs. (13)—(15) possess
an asymptotic similarity solution, i.e. a solution in which the density and
velocity distributions maintain the same form as the collapse progresses, and
only the scale factors vary with time (Penston 1969a, Larson 1969a). It is
evident from Figure 2 that the density distribution does show approximately
this behavior, and although the density and velocity distributions do not agree
exactly with the similarity solution of Penston (1969a) and Larson (1969a)
they appear to approach the similarity solution asymptotically as the collapse
progresses. Thus the similarity solution can serve as a useful semi-analytic
limiting form for the density and velocity distributions produced during the
collapse of an isothermal sphere. We shall therefore summarize some pro-
perties of the asymptotic similarity solution which may be of interest:

1) At large distances from the center, the density and velocity distri-
butions approach the asymptotic forms

&T
p = 0705 —r an
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u = 328 (RT)V2 . (18)

These relations also give the limiting values of p and u which are attained
at any fixed radius 7 as the central density increases indefinitely. Note that
the collapse velocity during the isothermal phase of the collapse never exceeds
3.28 times the isothermal sound speed; for a temperature of 10°K, this
means that the maximum collapse velocity attained during the isothermal
phase of the collapse is 0.6 km s,

log r

FIGURE 2 The density distribution at several times during the isothermal collapse of a
protostar with a mass of 1 M , a radius of 1.63 x 10'” c¢m , and a temperature of 10°K.
The numbers marked on the curves give the time elapsed in units of 10'%s. (From Larson
1969a).

2) At the center of the cloud the ratio of pressure to gravity forces is 0.60,
so that the acceleration of the collapse i$ reduced to 0.40 times the free fall
acceleration and the collapse time scale is increased by a factor of
(0.40)Y% = 1.58 relative to the free fall time. At large distances from the
center, the ratio of pressure to gravity forces drops to a limiting value of 0.23.
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3) . The asymptotic similarity solution depends only on the isothermal sound
speed (RT)'? and is independent of the initial and boundary conditions for the
collapsing cloud; for example, it is independent of such quantities as the mass
and the radius of the cloud. Thus, aslong as the temperature remains isothermal
and is the same in all cases, the behavior of the inner part of a collapsing cloud is
independent of the total mass or size of the cloud.

6 THE COLLAPSE OF AN AXISYMMETRIC NON-ROTATING CLOUD

Since there is no a priori reason why a collapsing cloud should begin with a
spherical shape or maintain spherical symmetry as it collapses, it is necessary
before one can have a complete understanding of the dynamics of collapsing
clouds to investigate the effect of deviations from spherical symmetry on the
collapse. At present the only available non-spherical collapse calculations

-refer to the case of a cloud with axial symmetry (Larson 1972a). The restric-
tionsto axial symmetry still allows one to study the important special cases of
clouds with prolate or oblate shapes. It is known that in the absence of pressure
forces, an oblate spheroid will collapse to a disc, whereas a prolate spheroid will
collapse to a line (Lin, Mestel, and Shu 1965); clearly, it is important to establish
whether the same type of behavior occurs in a more realistic fluid dynamical
calculation in which pressure forces are included.

Another important problem which can be studied under the assumption of
axial symmetry is the collapse of a rotating cloud, at least as long as deviations
from axial symmetry do not become important. This problem will be discussed
in the following section, but in order to avoid repeating equations which are
nearly identical we shall include the rotation terms in the equations for the
collapse of an axisymmetric cloud which are given below.

In terms of the spherical polar coordinates r, 6 , ¢ , and the correspond-
ing velocity components u , v, w, the Eulerian fluid dynamical equations
for a system with axial symmetry can be written as follows, where ® denotes
the gravitational potential:

dp
ot
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In order to calculate the gravitational potential @ these equations must be
supplemented with the Poisson equation:

0 o 1 0 10®
V2o = 12 2 — 4 — (sine———> = 4nGp . (23)
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As before, we can assume that during the early stages of the collapse the cloud
remains isothermal, so that the equation of conservation of energy need not be
included explicitly and the pressure P in Eqs. (20) and (21) can be evaluated
from P = pRT where QT is a known constant. In writing Eq. (22) we have
assumed that no torques act on the cloud and that the angular momentum of
each fluid element is conserved during the collapse. In the present section we
shall consider only the case of a non-rotating cloud, ie. w=0.

Numerical solutions of Eqgs. (19)—(23) have been computed by Larson
(1972a) for a number of choices of initial conditions. These calculations
employed a fixed spherical boundary, as in many of the spherically symmetric
collapse calculations, but the density distribution within the boundary was
allowed to be either elongated (prolate) or flattened (oblate). The results of
these calculations showed that if the initial conditions are approximately
consistent with the Jeans criterion, then small deviations from spherical
symmetry are not amplified during the collapse, contrary to the results for
the pressure free case; instead, small deviations from spherical symmetry
tend to oscillate between prolate and oblate forms as the collapse proceeds.
Apart from these small oscillatory deviations from spherical symmetry, the
collapse proceeds just as in the spherical case with the runaway growth of
a central spike in the density distribution. Thus it is clear that in these
calculations the pressure forces, while not sufficient to halt the collapse, are
nevertheless sufficient to maintain approximate spherical symmetry as the
cloud collapses.

When large initial deviations from spherical symmetry were assumed, the
calculations again showed that pressure forces, if important initially, tend to
produce an approach to spherical symmetry or at least to prevent the growth
of large deviations from spherical symmetry. A typical result is illustrated in
Figure 3; here the initial density distribution is elongated vertically and the
iso-density contours are vertical cylinders (Figure 3(a)). After the cloud has
collapsed significantly, it becomes strongly centrally condensed and the density
contours in the rapidly collapsing central part of the cloud become nearly
spherical (Figure 3(b) ). Although the calculations were not carried very far
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beyond this point, it seems likely that the collapse would continue very much
as in the spherical case. Similar results are found in the case of an initially
flattened density distribution if pressure forces are important initially. It is
noteworthy that in both cases all of the material in the cloud collapses into a
single central condensation; the cloud shows no tendency to develop more
than one center of condensation, i.e. no tendency to fragment.

If the initial ratio of pressure to gravitational forces is smaller than in the
cases discussed above, appreciable deviations from spherical symmetry may
persist or even grow during the collapse. Here it is important to distinguish
between a flattened and an elongated density distribution. In the case of an
initially flattened density distribution, the density contours can retain an
appreciable degree of flattening as the cloud collapses and condenses centrally,
but the degree of flattening remains approximately constant and does not
increase indefinitely as the collapse proceeds. The more interesting case is
that of an elongated cloud; in this case, the behavior of the cloud is found
to depend on whether the mass per unit length is larger or smaller than a
critical value

= — (24)

appropriate for an equilibrium isothermal cylinder (Ostriker 1964). If M/L

is smaller than the critical value (24), the cylinder expands laterally and the
density distribution becomes more nearly spherical, as in Figure 3(b). If M/L
exceeds the critical value (24) the cylinder collapses toward its axis and
becomes a thin filament, as expected from the discussions of McCrea (1957)
and Mestel (1965a). An example of this is illustrated in Figure 4, which
shows the result obtained when the same initial configuration as in Figure 3(a)
is assumed but the (constant) temperature is reduced from 10°K to 7.5°K,
thus making the right hand side of Eq. (24) (~7.4 x 10" g cm™) smaller
than the left hand side (~1.0 x 10'® g cm™). It is evident in Figure 4 that,
while collapsing toward its axis, the cloud has also begun to fragment, i.e. to
develop two centers of condensation somewhat removed from the center of
the cloud along the vertical axis. The result that an elongated cloud collapsing
toward its axis tends to fragment into subcondensations along its length is not
surprising in view of the fact that the Jeans criterion indicates that a cylinder
which is unstable to collapse toward its axis is also unstable to longitudinal
fragmentation on scales comparable to or greater than the thickness of the
cylinder (Mestel 1965a).

Thus from the available non-spherical collapse calculations it appears that ,
in most cases, if the initial conditions approximately satisfy the Jeans criterion,
pressure forces will tend to maintain rough spherical symmetry during the
collapse of an isothermal non-rotating cloud and thus prevent fragmentation.
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FIGURE 3(a) The initial density distribution assumed in calculating the collapse of an
axisymmetric cloud with an elongated density distribution. The vertical axis is the axis
of symmetry, and only one quadrant of the meridional plane is shown. The solid lines

are the isodensity contours corresponding to integral values of log p, as marked, and the
dashed lines are for half-integral values. The dots represent the grid points at which the
densities are calculated.

The principal exception to this is the case of an elongated cloud whose mass
per unit length exceeds the critical value (24); in this case the cloud collapses
toward a thin filament, but at the same time the filament tends to fragment
into subcondensations along its length. These results suggest that the only
type of deviation from spherical symmetry which is likely to be amplified by
gravitational collapse is an elongated or filamentary structure, and that if a
cloud does not collapse roughly spherically it will tend to collapse to a filament
which then fragments into subcondensations along its length. This prediction
may be relevant in connection with certain filamentary dark clouds such as
those in Taurus, which contain conspicuous knots or condensations along their
length. In addition, the existence of chains of galaxies is suggestive that the
intergalactic gas may in some cases have condensed into filaments which then
fragmented into galaxies.
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FIGURE 4 The density distribution resulting from the collapse of the configuration
illustrated in Figure 3(a) when a constant temperature of 7.5°K is assumed. (From
Larson 1972a.)

FIGURE 3(b) The density distribution resulting from the collapse of the configuration
illustrated in Figure 3(a) when a constant temperature of 10°K is assumed. (From Larson
1972a.)
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7 THE COLLAPSE OF AN AXISYMMETRIC ROTATING CLOUD R ~ VAL

In general, a collapsing protostellar cloud will probably have a significant or - (25)
amount of angular momentum, and if this angular momentum is conserved < GM
during the collapse, it will have an important effect on the dynamics of the R = 042 QT + E,

collapse. In particular, it is clear that in the presence of a finite angular
momentum the material of the cloud cannot all fall into the center. The only where
available collapse calculations for rotating clouds (Larson 1972a) are rather
crude, but they suffice to illustrate some of the important possible effects of
rotation on the collapse.

If a cloud is rotating rapidly enough, its rotation can help to stabilize the . s
cloud against gravitational collapse. The Jeans criterion must therefore be ; is the rotational kinetic energy per unit mass. This cnte.rlon indicates, as
modified for a rapidly rotating cloud. Some trial collapse calculations have 4 would be expected, that if a cloud is TOt?tlng (B > 0) it m‘_JSt be more
been made for cases in which both pressure and centrifugal forces are import- compressed (i.e., must have a smaller radius) than a nonrotating cloud if
ant (Larson 1972a); in these calculations it has been assumed that the cloud gravity is to overcome the combined effects of pressure and centrifugal
begins with uniform density and uniform rotation and collapses within a fixed forces and cause the cloud to collapse. )
spherical boundary, as before. With these assumptions, it is found that collapse If criterion (25) is safely satisfied and centrifugal force is initially less
will occur if the following approximate criterion is satisfied: important than gravity, the cloud begins to collapse-in the same nonhomo-
logous fashion as was found for a non-rotating cloud: the central part of
the cloud collapses most rapidly, and the density distribution soon becomes

Ep, = — w*R?

S
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peaked at the center. If the angular momentum of each fluid element is
conserved, as assumed in the calculations of Larson (1972a), the ratio of
centrifugal to gravitational forces increases as the collapse proceeds. Since
the collapse proceeds most rapidly at the center, it is in the dense central
‘core’ of the cloud that the centrifugal force first becomes large enough to
balance or overbalance gravity and halt further collapse toward the axis of
rotation. Meanwhile, in the outer part of the cloud centrifugal force has
not yet become large enough to balance gravity, and the material continues
to fall inward and accumulate in a ring-shaped region around the periphery
of the central region which has stopped collapsing. As a result, the density
in this ring-shaped region rises more rapidly than the central density, and
soon exceeds the central density. Gravity then tends to pull more material
into the ring-shaped region of maximum density, and a doughnut-like
configuration with a central density minimum begins to form in the inner
part of the cloud. A typical result is illustrated in Figures 5(a) and 5(b);
Figure 5(a) shows the density contours in the outer part of the cloud, and
Figure 5(b) is an enlargement of the central part of Figure 5(a) showing
clearly the ring-shaped region of maximum density, which has a radius of
about 5% of the radius of the cloud and contains about 20% of the total
mass.

r(10'%em) 10

FIGUR_E S5(a) The.density distribution resulting from the collapse of an initially uniform
and uniformly rotating cloud of mass 1 M, , initial density 4.8 x 10™*° g cm™?, and initial
initial angular velocity 3 x 107'* 's™. The vertical axis is the axis of rotation.
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FIGURE 5(b) An enlargement of the central part of Figure 5(a) to show more clearly
the ring-shaped region of maximum density which forms near the center of the cloud.

(From Larson 1972a.)

A rapidly rotating doughnut-like configuration such as that shown in Figure
5(b), whose maximum density occurs away from the axis of rotation, is
almost certainly unstable to non-axisymmetric perturbations and will presum-
ably fragment into two or more subcondensations orbiting about the center
of the cloud. This is suggested by the stability criterion of Ostriker and
Bodenheimer (1973), according to which a rotating fluid configuration is
unstabie to non-axisymmetric modes if the ratio of rotational kinetic energy
to gravitational binding energy exceeds about 0.26; for comparison, the
value of this ratio for the configuration shown in Figure 5(b) is approximately
0.4, well above the critical value for instability. In fact, it is likely that non-
axisymmetric deformations will become important even before a well defined
ring-shaped configuration has formed in the central part of the cloud; this is
suggested by the fact that the available stability analyses for rotating fluid
configurations (e.g. Bardeen 1971) show that the non-axisymmetric modes
always become unstable before the ring modes. A sufficiently rapidly rotating
cloud might then fragment directly into two or more condensations orbiting
around each other, without ever forming a ring.

Evidently a full three-dimensional calculation will be required to follow
the collapse of a rotating cloud beyond the point where deviations from axial
symmetry become important, and since such calculations are not yet available,
the later development can only be conjectured. If the cloud fragments into
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subcondensations, as seems likely, the subcondensations will in general have an
appreciable amount of intrinsic or spin angular momentum; this follows from
* Kelvin’s circulation theorem, which states that the vorticity of any fluid ele-
ment must increase as it is compressed (provided that magnetic or viscous
torques do not act). Consequently, the subcondensations may undergo
further stages of rotational fragmentation as they continue to collapse to
higher densities. The tendency toward further fragmentation will be counter-
acted by tidal interactions between neighboring subcondensations, which will
tend to slow down their rotational motions and transfer angular momentum
from spin to orbital form, thus facilitating further collapse of the subconden-
sations and making their fragmentation less likely. Thus without detailed
calculations it is difficult to say just how much fragmentation is likely to
occur. In any case, it appears probable that the end result of the collapse
of a rotating cloud will be the formation of some sort of multiple system of
stars orbiting around each other. This would then account naturally for the
prevalence of binary and multiple systems in the sky, and even the single
stars might be plausibly accounted for as escapers from small multiple
systems which have disintegrated (Larson 1972a).

If we confine attention to the formation of a single star in one of the
subcondensations that form in a rotating cloud, this will probably have some
basic similarities to the formation of a star in a non-rotating cloud. This is
suggested by the fact that all of the available collapse calculations, including
those which incorporate rotation, show a very non-homologous behavior
characterized by the development of small regions of much higher than
average density which then act as centers of condensation for the remaining
material. In the spherical, non-rotating case a small stellar core or ‘embryo
star’ first forms at the center of the cloud and then grows into a pre-main
sequence star of normal mass by accretion of part or all of the remaining
uncondensed material in the cloud (Sections 9—13). A similar process may
occur even in a more general situation, for example in a subcondensation in
a rotating cloud, the principal difference being that more than one embryo
star may form in a single cloud or condensation. The results to be described
in Sections 9—13 for the collapse of a spherical, non-rotating protostar may
then have a more general relevance, at least as far as the basic qualitative
features are concerned. The relevance of the spherical collapse calculations
to more general circumstances is also supported by the generally good agree-
ment between the predicted and observed properties of protostars and young
stars (Larson 1972b). Consequently we shall in the rest of this article confine
attention primarily to the case of a spherical, non-rotating protostar.
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8 COMMENTS ON MAGNETIC FIELDS

It has long been realized that magnetic fields, like rotation, can play an impor-
tant role in the dynamics of collapsing interstellar clouds. A number of authors
have discussed the effect of a magnetic field on the collapse of a gas cloud,
generally within the context of simplified models in which it is assumed, for
example, that the collapsing cloud maintains uniform density (Mestel 1956b,
Spitzer 1968a, b). However, such simplifying assumptions may not be very
closely realized in practice, in which case it is difficult to draw many quanti-
tative conclusions about the effect of a magnetic field on a collapsing cloud.
It will be necessary for this purpose to carry out detailed dynamical collapse
calculations incorporating magnetohydrodynamic effects, but as yet no such
calculations are available.

One of the major problems in estimating the importance of magnetic fields
in collapsing clouds concerns the degree of coupling between the magnetic field
and the gas; this depends critically on the degree of ionization, which in turn
depends on the detailed processes responsible for ionization and recombination.
It is thought that jonization may be produced mainly by cosmic rays, whereas
recombination may occur primarily on the surfaces of dust grains (Spitzer
1968b). Both ionization and recombination rates are uncertain, the former
because it depends on the opacity of the cloud to low energy cosmic rays,
and the latter because it depends on the properties of the dust grains. Spitzer
(1968b) has estimated that during the early stages of the collapse of an inter-
stellar cloud the time required for a magnetic field to diffuse out of the cloud
will exceed the free fall time, so that the magnetic field remains closely coupled
to the gas (frozen in) and is compressed as the cloud collapses. However, in
some dense cold clouds the measured magnetic field is much weaker than
would be predicted if the magnetic field had remained frozen into the cloud
after its formation (Verschuur 1971). This suggests that in at least some cases
the magnetic field may be able to escape from the cloud at an early stage of
the collapse and may play a less important role than anticipated for the
dynamics.

Even if the magnetic field remains frozen into the gas during the early

“stages of the collapse, the cloud will eventually become so dense that cosmic

rays are completely shielded out and the degree of ionization drops to an
extremely low value, allowing the magnetic field to escape from the cloud.

For a cloud of mass 10% M, this occurs at a density of the order of

107 gem™ (Nakamo and Tademaru 1972). Up to this point the magnetic
field may inhibit the formation of small condensations in the collapsing cloud,
but at higher densities collapse and fragmentation can proceed freely, unimped-
ed by magnetic fields. Thus the principal effect of a magnetic field may be to
inhibit fragmentation and to increase the effective initial density from which a
protostar can begin to collapse freely, but the later stages of the collapse
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process should not be much affected by magnetic fields. As will be seen, an
increase in the initial density by a few orders of magnitude does not alter the
basic qualitative features of the collapse, but can result in some significant
quantitative differences in the properties of the resulting star.

9 THE COLLAPSE OF A SPHERICAL PROTOSTAR: NON-ISOTHERMAL
STAGES

We proceed now to consider the further evolution of a spherically collapsing
protostar following the initial isothermal phase described in Section 5. Calcula-
tions of the later non-isothermal stages of the collapse have been carried out
by Larson (1969a, 1972b) and Appenzeller (1972).

When the central density in a collapsing protostar reaches a value of the
order of 107 g cm™, the central part of the cloud starts to become opaque
to the infrared radiation from the dust grains; the thermal energy generated
by the collapse is then no longer freely radiated away and the central temper-
ature begins to rise significantly above its initial value of ~10°K. The assump-
tion of isothermality can then no longer be used, and it becomes essential to
incorporate the equation of conservation of energy (i.e., the first law of
thermodynamics) into the fluid dynamical equations and to treat explicitly
the transfer of energy by the infrared radiation from the dust grains.

In Eulerian form the equation of conservation of energy for a system
with spherical symmetry can be written

E 3 1 E 91 3 0L
: — =0 (26)
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where E(r, t) is the specific internal energy of the gas and L(r) is the rate
at which energy is transported by radiation or convection across a surface of
radius r . During the early stages of the evolution of a protostar, convective
instability does not arise and energy is transported only by radiation; the
energy flux L(r) is then given by the solution of a radiative transfer problem,
which in general is quite complicated because of the spherical geometry and
because of the large range of optical depths which must be considered. For
large optical depths, however, the radiative transfer problem simplifies greatly
and we can use the radiative diffusion equation as used in the theory of stellar
interiors; this equation can be written

64nor® T3 dT

L = .
3kp dr
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The evolution of the opaque central region of the collapsing protostar can then
be computed by using Egs. (13), (14), (15), (26), and (27) together with an
equation of state specifying P and E as functions of p and T .

While Eq. (27) is strictly applicable only in optically thick regions, it happens
that when it is applied in an optically thin region it has the effect of artificially
forcing the temperature to be constant and equal to the boundary temperature.
Since the outer optically thin part of the protostar is expected to be nearly iso-
thermal anyway, Eq. (27) can in fact be applied throughout the cloud and will
yield approximately the correct temperatures in both the optically thick and
the optically thin regions if a boundary temperature of ~10°K is specified.
This fortunate situation does not hold during the later stages of the collapse
when the luminosity from the hot central core of the protostar begins to heat
up the outer optically thin layers. A better approximation for calculating the
temperature distribution throughout the cloud in these circumstances will be
described in Section 11.

In using Eq. (27) to calculate the radiative energy flux, it is necessary to
know the Rosseland mean opacity k of the protostellar material. For the
temperature range below about 1500—2000°K in which dust grains can exist,
the dust grains constitute by far the most important source of opacity. Data
for the Rosseland mean opacities produced by dust grains of various composi-
tions have been given by Gaustad (1963) and by Kellman and Gaustad (1969);
however, because the composition and the structure of the dust grains are still
not well determined, the Rosseland mean opacity of the protostellar material
at the relevant low temperatures remains rather uncertain. The collapse
calculations of Larson (19692, 1972b) have adopted a simple constant value
of 0.15 cm?®g™ for the Rosseland mean opacity of the dust grains; this was
intended to represent a rough mean value of the available data over the rele-
vant temperature range. Fortunately, trial calculations made with different
opacities have shown that for a protostar of mass near 1 M, the principal
results of the collapse calculations are rather insensitive to the assumed infra-
red opacity of the dust grains. (For massive protostars this conclusion may
require modification, since in this case the effect of radiation pressure on the
dust grains may be important for the dynamics of the collapse; see Sections
13 and 14))

As we have noted, when the central density rises above ~ 1073 g ¢m™
the central dense core of the cloud starts to become opaque, and radiative
energy losses from this region soon become relatively unimportant; the
further collapse of the core of the cloud then becomes nearly adiabatic
rather than isothermal, and the central temperature and pressure begin to
rise rapidly. By the time the central density has reached ~107!% g cm™3,
the rising pressure has begun to decelerate the collapse at the center, and
by the time the central density has reached ~107° g ¢cm™ and the central
temperature has risen to a value somewhat over 100°K, the collapse has been
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practically brought to a halt within the opaque core of the cloud.

Because of the non-homologous nature of the collapse, the opaque core
contains only a very small fraction (= 1%) of the total mass of the cloud;
most of the mass remains in the outer part of the cloud which is still optically
thin and still continuing to fall inward almost in free fall. Thus at the bound-
ary of the opaque core there arises a steep velocity gradient between the inner
region where the collapse has almost been stopped and the outside region
where the material continues to fall in freely; this velocity gradient quickly
steepens into a shock front in which the infalling material is suddenly stopped
as it strikes the surface of the core.

When the collapse of the opaque core is first halted by pressure gradients,
there is a small rebound amounting to about 20 percent in radius, followed by
a series of radial oscillations of the core about a hydrostatic equilibrium con-
figuration. The initial mass and radius of the core are approximately
6 x 102 M, and S AU respectively, and its central density and temperature
are about 3 x 107° g cm™ and 200°K respectively; these numbers are
rather uncertain owing to the difficulty in defining precisely the instant at
which the core forms. The initial properties of the opaque core depend on
the temperature and opacity of the material in the collapsing protostellar
cloud, but not on the total mass of the cloud, as long as the initial conditions
approximately satisfy the Jeans criterion; this is because during the isothermal
phase of the collapse the density and velocity distributions in the inner part of
the cloud approach the asymptotic similarity solution described in Section 5,

which depends only on the temperature and not on the total mass of the cloud.

As material continues to fall into the core, the core grows in mass but
shrinks in radius because the outer part of the core continues to lose energy
through radiative energy transfer, even though the optical depths are large.
Meanwhile the central part of the core remains nearly adiabatic, and the
central density and temperature rise rapidly as the core grows in mass and
shrinks in size. After about 300 years the core attains a mass of about
1.1 x 107 M, and a radius of about 1.7 AU ; at this point the central
density and temperature are about 1077 g cm™ and 1900°K respectively,
and the hydrogen molecules at the center of the core are beginning to
dissociate. This reduces the ratio of specific heats y below the critical
value 4/3 and triggers a second phase of dynamical collapse near the center
of the core. Since most of the internal energy generated by the collapse
goes into dissociating the hydrogen molecules rather than into thermal
motions, the temperature rises only slowly with increasing density. The
central collapse of the core therefore resembles the initial isothermal
collapse of the whole cloud, and again leads to non-homologous develop-
ment of a sharp central peak in the density distribution. The dynamical
collapse of the central part of the opaque core continues through several
orders of magnitude in density until nearly all of the hydrogen molecules
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have been dissociated and 7y again rises above 4/3. The central temperature
and pressure than begin to rise sufficiently rapidly to once again halt the
collapse and cause the formation of a second hydrostatic core at the center

of the first core, part of which is now falling inward almost in free fall. The
outer layers of the first core and the shock front bounding it have not changed
significantly during the short time interval (~ 1 year) since the beginning of
the second central collapse, but the material of the first core continues to fall
inward and accrete on the second core, and after a further ~ 10 years all
traces of the first core and of the shock front bounding it have disappeared.

When the second core first forms, it has a mass of ~1.5 x 107 M , a
radius of ~1.2 R, , a central density of ~2 x 1072 g cm™ , and a central
temperature of ~2 x 10* °K . Again, these numbers are difficult to define
precisely and they depend somewhat on the temperature and opacity of the
initial protostellar cloud, but they do not depend on the total mass of the
cloud or on the precise initial conditions for the collapse. The second core,
like the first, is bounded by a shock front in which the material falling into
the core is suddenly brought to rest. It is noteworthy that, apart from its
initially very small mass of ~107> M, , the second core has properties much
like those of an ordinary star; we shall therefore refer to it as a “stellar core’.

The time elapsed from the beginning of the collapse to the formation of
the stellar core is approximately equal to the free fall time for the initial
cloud. If the cloud begins at rest with a radius given by Eq. (2), the collapse
time is about 1.5 free fall times, or about 3 x 10° years for a protostar of
one solar mass with an initial temperature of 10°K. At the time of formation
of the stellar core, the bulk of the mass of the protostar still remains distri-
buted in the outer part of the cloud and has not fallen inward very far since
the beginning of the collapse because of the retarding effect of pressure
gradients in the outer part of the cloud. The infall of the outer layers of
the protostar requires a few additional free fall times for its completion, and
the infall of these outer layers into the already formed stellar core is the
dominant process of the later evolution of the protostar. The stellar core
continues to grow in mass at the expense of the rest of the cloud, and it
eventually acquires the bulk of the protostellar mass. After all of the original
material has either been accreted on the core or dissipated in some other way
(e.g., by radiation pressure), the stellar core emerges from its surrounding
envelope as a newborn pre-main sequence star.

In following these later stages of evolution of a protostar, it is necessary to
compute in some detail the evolution of the central stellar core or ‘embryo
star’. The evolution of this embryo star is governed primarily by the rate at
which material falls into it and by the properties of the shock front at its
surface through which the infalling matter passes. This is particularly true of
protostars with masses less than ~3 M, , for which radiative energy transport

* within the core is unimportant and the core material behaves isentropically,
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conserving the entropy which it acquired on passing through the shock front.
It is therefore essential to consider in some detail the properties of the shock
front and to incorporate an adequate treatment of the shock front in the
evolutionary calculations. Accordingly we discuss in the following section
the treatment of the accretion shock.

10 TREATMENT OF THE ACCRETION SHOCK

In ordinary adiabatic gas dynamics, shock fronts are generally thin enough to
be treated as discontinuities in the flow. One can then derive a set of ‘shock
jump conditions’ relating the values of the flow variables on the two sides of
the discontinuity, assuming that mass, momentum, and energy are conserved
in the flow across the shock front. In the present situation, however, the
temperature in the accretion shock becomes so high that radiative energy
losses become important; in this case the shock front is followed by a region
of radiative cooling in which the temperature decreases and the density rises,
both variables eventually approaching limiting values at large optical depths
inside the shock front. Since the thickness of the radiative cooling region
inside the shock front is small compared with the dimensions of the stellar
core, it is still adequate as far as the large scale dynamics is concerned to
treat the whole shock region, including the cooling region, as a discontinuity

in the flow. However, one can no longer assume conservation of energy in
the shock region without taking the radiative energy losses into account. In
order to determine the structure of the shock region and the limiting values
of the temperature and density inside the shock front, it is therefore necessary
to solve a radiative transfer problem in conjunction with the dynamics. Since

a detailed solution of this problem is not yet available, we shall describe a
simple approximation which involves treating the shock region as a discontinuity
and deriving analogues of the classical shock jump conditions relating the values
of the flow variables at two suitably chosen surfaces just inside and outside
the shock front.

The temperature profile expected in the vicinity of the shock front is
sketched schematically in Figure 6. The shock front is located at r =R and
is represented by the large discontinuous jump in temperature, followed by
a rapid drop in temperature due to radiative cooling. The temperature levels
off inside the shock front as large optical depths are approached, but it eventually
begins to rise again in the deep interior of the core. Outside the shock front
the infalling material absorbs some of the radiation from the hot region inside
the shock front, causing its temperature to rise as it approaches the shock.
In Figure 6 the surfaces r =r; and r=r, represent two suitable bounding:
surfaces of the shock region which are chosen such that most of the rapid
temperature variations connected with the shock front occur between r, and
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r; but the shock thickness |r, —r; | is still small compared with the core
radius R .

-— flow

r

FIGURE 6 A schematic illustration of the temperature distribution in the vicinity of the
accretion shock at r =R .

We now consider the problem of deriving analogues of the classical shock
jump conditions relating the values of the flow variables at r; and r, . This
may be done by considering the conservation of mass, momentum, and energy
in the shock region between r; and r, , taking into account the gravitational
force acting on this region and the radiative energy flux through it. Since the
velocity with which the shock front moves is much smaller than the infall
velocity, we can with good accuracy assume that the shock front is stationary
and use a fixed frame of reference. The equation of conservation of mass,
obtained by equating the mass flux at r, to that at r, , is then

Pl = pPaly (28)

where the subscripts 1 and 2 denote quantities evaluated at ry and r,; ,
respectively.

To derive the momentum conservation relation, we assume that the rate at
which momentum is added to the material passing through the shock region is
equal to the net force exerted on this region by pressure and gravity forces.
The momentum flux into the shock region at r, is equal to p,u? and the
outward momentum flux at r; is pjus® , so that the rate at which inward
momentum is added to the material passing through the shock region is
p1us® — pous? . The net inward pressure force acting on this region is
P, — P, , and the gravitational force per unit area is

T2
gf pdr
Y,

1
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where g = GM/R? is the gravitational acceleration at the surface of the core
and M and R are the mass and radius of the core. We then have, equating
the rate of momentum change to the force acting per unit area,

2
piul’ —pul = P, —P; +g pdr. (29)

(This equation can also be derived by integrating the momentum Eq. (14)
between r; and r, , neglecting the time derivatives and assuming a steady
flow.)

During most of the evolution of a protostar the last term in Eq. (29) is
unimportant, and the equation reduces to the standard momentum equation
for a thin shock front. During the final stages of the infall process, however,
the quantities p, , P, , and u; all become very small and the pressure P;
at the surface of the core is determined, as in a normal stellar atmosphere, by
the weight of the layers above 7, . In these circumstances it is convenient
to follow the usual practice for stellar models and take the surface r =r,
to be the photosphere of the stellar core, i.e. the surface at which the local
temperature T is equal to the effective temperature T, ; according to the
Eddington approximation this occurs at an optical depth of 2/3. The last
term in Eq. (29) can be re-expressed as an integral over optical depth if we
make the substitution gpdr = —(g/k) dr ; we then need the integral of this
quantity from optical depth 7=0 to 7= 2/3 . To obtain an approxima-
tion to this integral, we assume that its value is the same as that which it
would have in a normal hydrostatic stellar atmosphere; we can then use the
standard equilibrium relation for a hydrostatic atmosphere:

ap =% ar : (30)
K

(which also follows from Eq. (29) if the dynamical pressure pu® is neglected).
Assuming an isothermal atmosphere we have, roughly, k « p¥? o« PV2 .
substituting k = ko P2 into Eq. (30) and integrating this equation from
7=0 to 7= 2/3 we then readily obtain, if P at 7 = 0 is neglected,

B ¥, B
Pir=2[3) = f —dr = — (1)
0 K K3

where k; is evaluated at T = 2/3
this integral depends on the assumptions made, it is évident that Eq.
(31) must always be correct within a factor of order unity. Sub-
stituting this approximation for the integral term in Eq. (29) we obtain, finally,
the desired generalization of the shock momentum equation:

While the exact value of
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Py +pyul = Py +pou® +glky . (32)

We next consider the energy conservation relation for the shock region. The
rate at which energy is transported by mechanical means into the shock region
at ry is given by p; luz |(H; + 3us’) , and the rate of mechanical energy
transport out of the shock region at ry; is p; |u,|(H; + iu?) . In these
expressions H = E + P/p is the specific enthalpy of the material and it
includes both the internal energy transported by the flow and the work done
by pressure forces in the moving fluid. These expressions for the energy
transport rates are the same as those occurring in the classical theory of
adiabatic shocks, and equating them would yield the energy equation for an
adiabatic shock. In the present situation we must include also the radiative
energy flux into and out of the shock region; if we denote by F; and F,
the outward radiative energy fluxes per unit area at r; and r, , the energy
conservation relation for the shock region then becomes

pulugl(Hy +3ul) + Fo = polusl(H, +3ul) + F, . (33)

(This equation can also be derived by integrating the energy Eq. (26) between
ry and r, , neglecting time derivatives and assuming a steady flow as before.)
The term F; in Eq. (33) represents the radiative energy flux outward
from the interior of the core and is known given the interior structure of the
core, being related to the temperature gradient in the outer layers of the core
through Eq. (27). If convective energy transport is important at the surface
of the core, the convective energy flux must be added to the radiative flux
Fy . The term F, in Eq. (33) represents primarily the flux of radiation
emitted outward from the hot region just inside the shock front, but it also
contains a small negative contribution due to radiation emitted inward across
the shock front from the material outside it; this latter effect is relatively
unimportant and will be neglected here. The outward flux F, at r=r,
may be significantly less than the outward flux at the shock front (r = R)
if there is a large optical depth between R and r, ; however, since the
choice of r, is largely a matter of numerical convenience, we can assume
for the moment that r, is close enough to R that the intervening optical
depth is small. The flux F, is then just equal to the outward flux at the
shock front, which depends on the temperature structure inside the shock
front. In the present simple treatment of the shock region, only the single
parameter T is available to specify the temperature distribution inside the
shock front; therefore we require some approximation to relate F, to Ty .
It will be convenient to define an effective temperature T, for the shock
front by setting F, = oTe4 ; the problem is then to relate T, to T, . If
T, represents the asymptotic value to which the temperature inside the
shock front falls after radiative cooling has become negligible, it is clear that
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we must have
r,>T,, (34)

since T, represents a sort of mean temperature for the (optically thick)
radiating region in which 7> T, . On the other hand, T, cannot be much
greater than T , even if the peak temperature just inside the shock front
becomes orders of magnitude larger than T , as is the case during the final
stages of the collapse. This is because the hot layers inside the shock front
emit an outward radiative flux of o7 (by definition), and they must also
emitaa similar amount of energy in the inward direction; therefore the
radiation intensity inside the shock front must be comparable with that of
a blackbody of temperature 7, , so that the minimum temperature 7T}
cannot be much smaller than T, . In fact, it can be demonstrated (Larson
1969a) that in the case of a grey opacity T; must lie within the limits

078 T, <T; <T, . (35)

Thus the error in T, will not exceed ~20% if we adopt the simple
approximation
n=7T,, (36)

which is consistent with our earlier identification of the surface r =r, with
the photosphere of the stellar core where T; = T, . If we accordingly set
F, = aTe4 = ¢Ty* , we finally obtain the desired form of the energy conserva-
tion relation for the shock region:

Py luy | (Hy +%u12) + 0T14 = pg lus|(H, + %Uzz) + F 37

where F, is evaluated as indicated following Eq. (33).

In order to relieve the numerical method of the necessity of handling the
steep temperature rise which can occur in a thin region immediately outside
the shock front if the infalling material is optically thick, it is sometimes
convenient to choose the point 7, to be at a finite distance (but still less
than one grid zone) outside the shock front. If there is a large optical depth
7 between R and r; , the radiative flux F, at r, may be substantially
smaller than 07,* . While the relevant radiative transfer problem has not
been solved, a limit can be set to the reduction factor by neglecting the re-
emission of radiation between R and r, ; the flux is then reduced by a
factor €7 between R and r, , so that we have F, = ¢ "oT,* . It turns
out, however, that the insertion of a factor ¢ 7 makes no difference to the
final results, since the layers just outside the shock front become optically
thin anyway at an early stage in the evolution of the stellar core.
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Egs. (28), (32), and (37) now provide the three ‘shock jump conditions’
required to relate the values of the flow variables u, , p; and 7T, inside
the shock front to their values u, , p, , and 7, outside the shock front.

11 TREATMENT OF THE TEMPERATURE DISTRIBUTION IN THE
INFALLING CLOUD

After the formation of the stellar core, the radiation emitted from the shock
front at the surface of the core begins to heat up the outer parts of the
protostellar cloud. The assumption that the outer optically thin region
remains nearly isothermal is then no longer valid, and a2 more detailed consider-
ation of the radiative transfer problem and the temperature distribution in the
infalling protostellar envelope is required. Since the infalling cloud extends
over several orders of magnitude in radius, it is essential to take the spherical
geometry into account. At present, detailed solutions of the radiative transfer
problem in an extended spherical ‘atmosphere’ are available only for the
special case of a grey atmosphere with a density distribution of the form

p <r™" (e.g., Hummer and Rybicki 1971). For a protostar the assumption
of a grey opacity is not likely to be closely satisfied; however, since the non-
grey case is much more complicated to treat and since the dynamical results
are in any case not very sensitive to the details of the temperature distribution,
the assumption of a grey opacity may provide a reasonable first approximation
for purposes of calculating the dynamics. The assumption of a power law
density distribution in a collapsing protostellar envelope is in fact a good one,
since during the later stages of the collapse the density distribution is closely
approximated by p o r™? throughout most of the infalling cloud (see
Section 12(c)).

It has been shown by Hummer and Rybicki (1971) that a good approxima-
tion to the exact solution for the source function J in an extended spherical
atmosphere in which kp o r™ can be obtained by adding together the simple
analytic expressions for J which hold in the limits of large and small optical
depths. If we assume pure thermal emission and absorption by the dust grains
and neglect scattering (a good approximation at infrared wavelengths), then J
is proportion to 7* and we can obtain a close approximation to the tempera-
ture distribution throughout the cloud by adding together the expressions for
T* holding at large and small optical depths. In the case of a density distri-
bution of the form p «r™? the maximum error in this approximation is
only about 13%in 7% ,or 3% in T (Hummer and Rybicki 1971).

Adopting this method of approximating the temperature distribution, it is
possible to derive a simple formula which can replace the radiative diffusion
Eq. (27) in the dynamical calculations and which will yield approximately
correct temperatures at all optical depths. We consider first the expressions
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for T* holding at large and small optical depths. In the limit of large optical
depths radiative transfer is described by the diffusion Eq. (27); rewriting this
to yield an expression for T* | we obtain

-1
3kpTL (dT

T4 = — >\ . . - (38)
64mor dr _

In the limit of small optical depths, i.e. at large distances from the center of
the cloud, the radiation field approaches that of a point source of luminosity

L at distance r . For a grey opacity the temperature is then independent of
the opacity and is given by

T4 = L . (39)
16mor?

To obtain an approximation to the temperature distribution which is valid at
all optical depths we now add together expressions (38) and (39) for T* .
The resulting equation can be rewritten in a form analogous to the diffusion
equation relating L to the temperature distribution:

64nor:T® dT 4 ar |
R L (40)

3kp dar kpT dr

A slightly modified form of Eq. (40) was used by Larson (1972b) in comput-
ing dynamical models for collapsing protostars.

For purposes of computing the emitted spectrum of a protostar the grey
approximation is not adequate, since the spectrum is quite sensitive to the
wavelength dependence of the opacity. An approximate solution for the
temperature distribution in the non-grey case was obtained by Larson (1969b)
using a method similar to that employed here; this will be described in more
detail in Section 15 in connection with the observed properties of protostars.
Meanwhile. we note that comparison of grey and non-grey solutions for the
temperature distribution shows differences which at worst do not exceed a
factor of 2; this may be taken as an indication of the maximum error which
can arise from using the approximation described in this Section. As was
mentioned earlier, the effect of this error on the dynamics is probably not
severe, especially when compared with the many other uncertainties affecting
the calculations.

A different and more elaborate treatment of radiative transfer in the outer
layers of a protostar has been employed by Narita ef 2l (1970). This method,
which involves computing the radiation intensity I(r, #) as a function of both
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the position r and the direction 8 , is in principle more accurate than the
simple approximation employed here; however, because of the computational
complexities, it has not yet been applied in calculating the evolution of proto-
stars whose envelopes are as extended as those considered here. = .

12 LATER EVOLUTION OF A PROTOSTAR OF ONE SOLAR MASS

A. Expansion of the stellar core

Calculations of the stages of evolution following the formation of the stellar
core have been carried out by Larson (1969a, 1972b); we shall describe here
the principal results. When the stellar core first forms, the density of the
material in the core and just outside it is so high that radiative energy trans-
port is negligible and the flow into the core is adiabatic. In particular, the
shock front at the surface of the core is initially adiabatic, the radiative energy
flux across it being negligible compared with the mechanical energy flux. As
material falls into the stellar core, the density and pressure just outside the
shock front drop rapidly, and because of the shock momentum Eq. (32) the
density and pressure in the outer layers of the core also decrease rapidly,
causing the core to expand. Soon a point is reached where the layers just
outside the shock front are no longer completely opaque and radiation begins
to carry a significant amount of energy away from the shock front. When
radiative energy losses from the surface of the core become important, the
core stops expanding and begins to contract.

The stellar core reaches its maximum radius at a time about 1 year after
the formation of the core; at this time the mass and radius of the core have
both increased by about an order of magnitude to about 0.01 M, and 15 R,
respectively. These numbers are somewhat uncertain since they depend on the
opacity of the layers immediately outside the shock front; this opacity is not
very well known because in the relevant temperature range (=~ 2000—2500°K)
the dust grains have evaporated and molecules make a large but uncertain
contribution to the opacity (Tsuji 1971). Nevertheless, experimentation with
large changes in the assumed opacity (Larson 1972b) has shown that in all
cases, significant radiative energy losses from the shock front begin to occur
within a few years after the formation of the stellar core, i.c. at a time when
the core mass still is only about 0.01 M, . After this point essentially all
of the energy emitted from the shock front is effectively radiated away,
although it does not immediately leave the protostellar cloud but is first
absorbed by the dust grains in the cooler outer regions of the cloud, from
which it is re-emitted thermally at infrared wavelengths. This infrared radiation
is then efficiently transported out of the protostellar cloud, so that the infrared
luminosity of the protostar is the same as the luminosity emitted from the
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shock front.

The evolution of the stellar core in an HR diagram is illustrated for a
protostar of one solar mass in Figure 7. The initial adiabatic phase of
evolution is represented by the dashed section of the curve; the luminosity
indicated by the dashed curve is not observed, however, since this energy
does not escape from the protostar. The point where 90% of the energy
emitted from the surface of the stellar core begins to escape from the
protostar as infrared radiation is indicated by the beginning of the solid
curve.

At the end of the short adiabatic phase of evolution, most of the mass
which originally formed the first core has fallen into the second (stellar) core.
The first shock front is still in existence but is beginning to die out as materi-
al falls away from it. The time elapsed is still too short for any significant
dynamical changes to have taken place outside the first shock front, where
most of the protostellar mass still lies. However, the infalling cloud is rapidly
heated to temperatures well above 10°K, as given by Eq. (40), as soon as
radiation begins to escape from the immediate vicinity of the shock bounding
the stellar core.

B. Cooling and contraction of the core

When radiative energy losses form the shock front first become important, the
specific entropy of the material entering the stellar core begins to drop, causing
the core radius to decrease. (For a discussion of the relation between entropy
and core radius, see Appendix A.) Also, the entropy gradient in the outer part
of the core becomes negative, and therefore this region becomes unstable to
convection and a convection zone appears. Meanwhile the density and pressure
at the surface of the core continue to drop, with the result that the opacity of
the surface layers decreases and radiative energy transport starts to become
important near the surface of the core. The core then begins to lose a signifi-
cant amount of energy, which is carried by convection from the interior of the
core and then radiated away from the surface. The outward energy flow from
the interior soon becomes the dominant energy flux at the surface of the core,
which thus assumes the character of a stellar atmosphere. The structure of
the core at this time is similar to that of a conventional “Hayashi’ model for a
pre-main sequence star with an outer convection zone (Hayashi et al. 1962),
and the core proceeds-to evolve along a ‘Hayashi track’ in the HR diagram,
as represented in Figure 7 by the section of the curve between about 10 and
100 years. However, the mass of the stellar core is still very small at this time
(~0.01 M,), so that its Hayashi track occurs at a lower effective temperature
(~2700°K) than for a conventional pre-main sequence star of one solar mass.
As the core contracts and grows slowly in mass, the infall velocity and
hence the kinetic energy of the infalling material increase with time, while
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FIGURE 7 The evolution of the stellar core in the HR diagram for a protostar of mass
1 M, . The numbers marked along the track give the time in years since the formation of
the stellar core. The solid dot represents the point where half of the total mass has been
accreted on the core, and the open circle represents the point where the optical depth of
the infalling envelope drops below unity and the stellar core becomes visible as a newborn
pre-main sequence star. (From Larson 1972b.)

the energy outflow from the interior of the core decreases. After the core has
contracted by about a factor of 2 in radius, the kinetic energy inflow becomes
the dominant energy input to the shock region. The effective temperature of
the core then begins to rise significantly above that corresponding to the
‘Hayashi track’ and the specific entropy of the material entering the core stops
decreasing and begins to increase, haiting the contraction of the core and caus-
ing the convection zone to disappear. At this time, which occurs about 100
years after the formation of the stellar core, the core radius is about 5 R,
and its mass is still close to 0.01 M, . By this time all traces of the first core
and of the shock front bounding it have disappeared, the material having fallen
into the second (stellar) core. At this stage and afterward practically all of the
protostellar mass is either in the stellar core or in the outer part of the infalling
cloud where the material has not yet had time to fall inward very far; very
little mass remains in the intervening region, which extends over some orders
of magnitude in radius.
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C. Density distribution in the infalling cloud

Once all traces of the first core have disappeared, the density distribution in
the inner ‘evacuated’ part of the infalling cloud closely approaches the simple
form p «r7/? | This may be understood as follows. Since the amount of
mass in the inner part of the cloud is negligible, the mass flux must be con-
stant (independent of r ) throughout this region; thus

4 7r* pu = const. @1

Since the material is essentially in free fall, we also have

GM
= — 42)
r
where M is the mass of the stellar core. Substituting u «r ™2 into Eq.
(41), we then find
p = por>?. @3)

In the outermost part of the cloud the density distribution still has approxi-
mately the form p =72 resulting from the initial isothermal phase of the
collapse; However, as the collapse proceeds and more material falls into the
stellar core, the region in which Eq. (43) applies expands outward, eventually
occupying almost the whole infalling cloud. The evolution of the density
distribution in the infalling cloud is illustrated in Figure 8 where the curves..
are labeled with the logarithm of the time in years since the formation of the
. stellar core. The disappearance of the first core after ~ 10 years is evident, as
is the steady decrease in p, as the cloud becomes depleted of material.

The applicability of Eq. (43) is not necessarily restricted to the spherical
collapse problem considered here, but may also extend to more general circum-
stances. This has been shown by Hunt (1971), who has solved numerically the
accretion problem for an object moving supersonically through a surrounding
medium of uniform density. For the equation of state considered, i.e.

P o p33 it was found that near the accreting object the increase in pressure
caused by the converging flow is sufficient to make the inflow radially sym-
metric; the density distribution is then once again described by Eq. (43)
near the accreting object.

D. Later evolution of the stellar core

The evolution of the stellar core is governed by the rate at which material falls
into it and by the physical properties of the incoming material after passing
through the shock front at its surface. The properties of the shock front
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depend in turn on the density and velocity of the infalling material; its temper-
ature is relatively unimportant, since the thermal pressure and energy of the
infalling gas soon become negligible compared with the dynamical pressure

and the kinetic energy. Since the infall velocity depends on the mass and
radius of the core through Eq. (42), there is only one independent variable
governing the evolution of the core, which can be taken either as the density
of the infalling material or as the mass inflow rate. This is fortunate since it
means that the later evolution of the stellar core can be treated without refer-
ence to the detailed properties of the infalling protostellar envelope, except
insofar as they affect the accretion rate.

(g cm™3)
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FIGURE 8 The density distribution throughout the infalling enevelope at several times
during the evolution of a protostar of 1 M, . The dotted curve represents the locus
followed by the surface of the stellar core, and the numbers marked on the curves give
the logarithm of the time in years since the formation of the stellar core.

During the later evolution of the stellar core, most of the terms in the
energy conservation relation (37) for the shock region become small compared
with the two dominant terms, i.e. those representing the kinetic energy inflow
and the radiative energy outflow from the shock; Eq. (37) then reduces to

oTy = oT} = % palusl®. (44)
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Thus the surface temperature 7T, of the stellar core is determined by the
condition that essentially all of the kinetic energy of the infalling material
is converted into radiation in the shock front. As the core mass increases,
the infall velocity u, increases in accordance with Eq. (42), and the increase in
[21® initially overbalances the decrease in the infall density p, and causes the
effective temperature T, and the luminosity L = 47R26T2 of the core to
increase with time, as determined by Eq. (44). The increase in T inside the
shock front causes the specific entropy of the material entering the core to
increase with time, which tends to increase the radius of the core (see
Appendix A); on the other hand, the increase in the core mass has the
opposite effect of tending to decrease the radius, and the net effect is that the
radius of the core remains nearly constant as it grows in mass. This phase of
evolution is represented in Figure 7 by the section of the evolutionary track
between about 10 and 10° years. Approximately half of the total protostellar
mass is accreted on the core during this phase of evolution.

The solid dot in Figure 7 indicates the point at which half of the total mass
has been accreted on the stellar core; at this time, which occurs about 7 x 104
years after the formation of the core, the radius of the core is about 3 R, ,
its effective temperature is about 8000°K, and its luminosity is about 25 L, .
The structure of the. core at this time is determined mainly by the entropy
distribution in the outer layers which have been acquired by accretion during
the later stages of the accretion process, i.e. between 102 and 10° years after
the formation of the core. Since radiative energy transport is negligible in the
interior of the core, each fluid element retains the specific entropy imparted
to it on passage through the shock front, and the structure of the core is
therefore determined primarily by the properties of the shock front during
the later stages of the accretion process. The material acquired during the
earliest stages of formation of the core has a much smaller specific entropy,
reflecting the low entropy of the matter from which the core formed; how-
ever, after 10° years the initial core material constitutes only a small fraction
of the mass and volume of the core, and its properties hardly make any differ-
ence to the structure of the rest of the core. Thus the details of the formation
and early evolution of the core, including the various uncertainties which arise
during this stage, have little effect on the later evolution of the stellar core;
the later evolution of the core and the properties of. the resulting pre-main
sequence star are determined mainly by the infall rate during the later stages
of the accretion process.

After slightly more than half of the total protostellar mass has been accreted
on the core, the rate of increase of the infall velocity u, becomes insufficient
to keep the kinetic energy inflow rate in Eq. (44) increasing; the continuing
decrease in the density p, then begins to dominate, and the kinetic energy
inflow rate begins to decrease. The effective temperature and luminosity of
the core then also begin to decrease in accordance with Eq. (44). In addition,
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the specific entropy of the material entering the stellar core begins to decrease,
with the result that a convection zone appears at the surface of the core and
begins to grow inward. The decrease in the surface temperature of the core
causes a decrease in the opacity and allows radiative energy transport to
become important near the surface of the core; together with the convective
energy transport taking place deeper in the interior of the core, this causes
the core to lose energy and to contract somewhat as it cools. The kinetic
energy inflow to the shock front continues to decrease as the infalling
envelope becomes depleted of material, and when nearly all of the protostellar
mass has fallen into the core, the kinetic energy inflow becomes unimportant
compared with the convective and radiative energy outflow from the interior
of the core. The stellar core then becomes a normal pre-main sequence star
of one solar mass, and its surface layer becomes a stellar atmosphere in which
infall no longer plays a dominant role. The position of the stellar core in the
HR diagram at this time is indicated by the open circle in Figure 7, which
represents the point at which the visual optical depth of the infalling cloud
drops to unity and the newly formed pre-main sequence star first becomes
visible.

When the stellar core first becomes visible as a pre-main sequence star, it
has a convection zone extending over roughly the outer half of its mass and
radius, and it lies quite close to the classical Hayashi track for the convective
phase of pre-main sequence evolution. However, it appears near the lower end
of the Hayashi track with a radius of only about 2 R, , an effective temper-
ature of about 4400°K, and a luminosity of about 1.5 L, . These properties
place the newly formed star in the middle of the region of the HR diagram
occupied by the T Tauri stars (Herbig 1962), which is consistent with the
generally accepted interpretation of the T Tauri stars as newly formed stars.
The time elapsed between the formation of the stellar core and the appearance
of the final T Tausi star is about 9 x 10° years, or about 4 times the free fall
time of the initial cloud; the time elapsed since the beginning of the collapse
is about 1.2 x 10° years, or about 6 free fall times.

The position of the newly formed T Tauri star in the HR diagram depends
on the initial and boundary conditions assumed for the collapsing protostar.
For example;if for some reason Eq. (2) is inapplicable and the radius of the
protostellar cloud is a factor of 10 smaller than has been assumed, the radius
and luminosity of the resulting star are increased to about 6 R, and 9 L,
respectively, and the total formation time is reduced to about 3.5 x-10* years
(Larson 1969a). This is perhaps an extreme case, but variations of at least a
factor of 2 in the radius and a factor of 4 in the luminosity of the resulting
star can plausible result from variations or uncertainties in the initial and
boundary conditions (Larson 1972b). This may account for some of the
observed scatter of the T Tauri stars and other pre-main sequence stars in the
HR diagram.
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E.  The results of Hayashi and collaborators At present, no observed objects have been shown to be explained by the

calculations of Narita e al. (1970); rather, as will be mentioned briefly in Sections
15 and 16, most of the observations believed to relate to very young or newly
formed objects seem to be in better agreement with the results of the calcula-
tions described earlier. This suggests that the initial conditions assumed by
Narita et al. are too extreme and that the actual initial conditions for protostars
are, as expected from the discussion in Sections 2—4, closer to what would be
estimated from the Jeans criterion.

Even more extreme results have been found in the calculations of Hayashi and
his collaborators (see Narita ef al. 1970 and references), who started their
collapse calculations with initial configurations of much higher density than

we have considered up to now. For example, for a 1 M, protostar model,
Narita et al. (1970) begin with a polytropic sphere of index 4 whose radius is
only 5 x 10° R , its central density is then 7 x 10 gcm™ and its mean
density is 1 x 107" g cm™ , about 8 orders of magnitude higher than the
initial density of ~ 107" g cm™ indicated by the Jeans criterion (Section 4).
This choice of starting configuration for the collapse calculations was made
because Narita et al. assumed that when a protostar collapses to sufficiently
high densities it becomes completely opaque throughout, and that its structure
at the beginning of the opaque phase can be adequately approximated by a
polytropic sphere. However, the collapse calculations which we have described
in Sections 5 and 9 show that the early stages of the collapse are much more
nonhomologous than was anticipated by Narita et al., so that only a very small
region at the center becomes opaque and most of the mass remains behind in
an extended optically thin region of much lower density; the resulting structure °
is very different from a polytropic sphere. Thus the assumptions of Narita ez
al. do not appear to be justified on the basis of present calculations of the
early stages of collapse of a protostar. However, since we cannot conclusively
rule out the possibility that, for reasons not yet understood, a protostar may

be compressed to a density very much higher than that give n by the Jeans
criterion before it begins to collapse freely, we shall briefly describe the results
of Narita et al. as an example of what might happen under such extreme
conditions.

Even though the models of Narita et al. (1970) are opaque and they collapse
adiabatically rather than isothermally, the results show qualitatively the same type
of nonhomologous behavior as was described in Section 5. After about 1/2
year has elapsed, the central pressure becomes high enough to stop the collapse
at the center and a small ‘stellar core’ in hydrostatic equilibrium is formed; as
before, the core is bounded by a shock front in which the infalling material is
brought almost to rest. The core initially contains a few percent of the total
mass and has a radius of a few R, , but its mass and radius grow rapidly as
more material falls into it. After about 2 years, the core contains about 95
percent of the total mass and has a radius of approximately 100R, . At
this point, the optical depth of the layers outside the shock front becomes
small enough to allow a large amount of radiation to escape from the surface
layers of the core, and the protostar brightens rapidly within about one day
to a luminosity of the order of 10% L, . Within about 10 years most of the
remaining material falls into the core and the core begins to settle into a
convective configuration located near the top of the ‘Hayashi track’ in the
HR diagram. :

13 EVOLUTION OF MORE MASSIVE PROTOSTARS

According to the results of Larson (1972b), the evolution of protostars with
masses between 0.25 M, and 1.5 M, is qualitatively very similar to that
already described in Section 12 for a protostar of 1 M, . The main differ-
ence in the results for different masses is that the effective temperature and
luminosity of the resulting T Tauri star increase gradually with increasing mass,
varying from about 3700°K and 0.5 L, respectively for a star of mass
0.25 M, to about 4700°K and 3 L, respectively for a star of mass
1.5 M, . In all cases the radius of the resulting newborn star is close to
2 R, , so that the predicted positions of newborn stars fall along a line in
the HR diagram corresponding to a nearly constant radius of about 2 R, ,
again in general agreement with the observed properties of the T Tauri stars.
For a protostar of mass 1.5 M, , the resulting star first appears almost
at the bottom of its Hayashi track, and the convective ‘Hayashi phase’ of
pre-main sequence evolution is almost non-existent; the star begins to evolve
toward the main sequence along a ‘radiative’ track almost immediately after
it is formed. For a protostar of mass 2.0 M, , as illustrated in Figure 9,
there is no real Hayashi phase at all, and radiative energy transport becomes
important in the interior of the core even before all of the protostellar mass
has been ‘accreted on it. About 1.2 x 10° years after the formation of the
stellar core, at which time the infalling envelope has a mass of about
0.01 M, and an optical depth of about 3, radiation begins to transport
energy at a significant rate from the central part of the core to its outer
layers, causing the outer layers to heat up and expand. As the outer part
of the core comes into radiative equilibrium with the energy flux from the
interior, the core brightens rapidly from about 15 L, to 25 L, within
only a few days. Once the core has settled into a radiative equilibrium
configuration, it begins to contract and evolve toward the main sequence’
along a ‘radiative track’. The optical depth of the infalling cloud finally
drops below unity during this phase of evolution; the effective temperature
of the core is then about 6800°K and its luminosity about 30 L, . At
this point the time elapsed since the formation of the core is about
14 x 10% years.




48 : R. B. LARSON

1 i i
M=2Mo
To=10°K
Po=3% I0’2°g em™3 |
te =4x105 yr

+1i

e loa-Lo
Mbot P N> og To

N

+2
+3
+4

+5

4.2 4.0 3.8 " 36 3.4

THE EVOLUTION OF PROTOSTARS — THEORY 49

core evolves all the way onto the main sequence while still surrounded. by an
optically thick cloud of infalling material. For example, in the 5.0 M,
calculation illustrated in Figure 10, the stellar core evolves onto the main
sequence about 5 x 10° years after it is formed, when its mass is about
4.6 M,, ; at this time the infalling cloud still has a mass of about 0.4 M,
and a visual optical depth of about 30. If the continuing infall of matter is
not impeded by radiation pressure or other effects, it will continue for at least
another 5 x 10° years, during which time the central stellar object evolves up
the main sequence as its mass increases to its final value of 5.0 M, . Thus a
star with a mass of the order of 5 M, or more should already be a main
sequence star by the time it first becomes visible through its remnant proto-
stellar envelope. Stars more massive than 5 M, should never be visible as
pre-main sequence stars at all, since they remain heavily obscured by their
protostellar envelopes until they have already reached the main sequence.
This prediction is consistent with the observed paucity or absence of very
luminous pre-main sequence stars with masses exceeding about 5 M, .

In reality, the final phases of the accretion process for a protostar of mass

greater than about 3 M, are likely to be influenced by the effects of radiation
pressure and possibly also by mass ejection from the central star. Both of these
effects are difficult to treat quantitatively, and therefore they have not yet been

log Te

FIGURE 9 The evolution of the stellar core in the HR diagram for a protostar of

mass 2 M, . (From Larson 1972b.)

Protostars with masses greater than 2 M, all experience a phase of
evolution corresponding to that just described, during which radiative energy
transport from the hot interior of the core causes the outer layers to heat up
and expand as they approach radiative equilibrium. For the more massive
protostars this occurs at an earlier stage in the accretion process, i.e. when a
substantial fraction of the protostellar mass still remains in the infalling cloud
and most of the luminosity of the protostar is still produced by the kinetic
energy inflow to the shock front. Since the expansion of the core causes a
reduction in the initial velocity (Eq. (42)), it is accompanied by a drop in
the kinetic energy inflow rate and hence in the luminosity of the protostar.
For a protostar of 5.0 M, , this phase of rapid core expansion and decreas-
ing luminosity occurs between about 7 x 10* and 1.1 x 10° years after
the formation of the core, at which time the core mass is about 2.5 M, .
As the outer layers of the core come into radiative equilibrium, the core
brightens rapidly and then begins to contract and evolve toward the main
sequence along a radiative track. However, its evolution still differs from
classical calculations of pre-main sequence evolution in that it is still growing
in mass by accretion, and much of its luminosity is still supplied by the infall
of matter into the shock front. .

For protostellar masses much greater than about 3 M, , the pre-main
sequence contraction time for the stellar core becomes shorter than the time
required for all of the protostellar envelope to be accreted, so that the stellar

incorporated in any of the model calculations. However, it is easily demon-
strated that for masses greater than about 3 M, radiation pressure must
eventually become dominant over gravity when the infalling cloud becomes
optically thin. In an optically thin region, the ratio of radiation pressure to
gravity is independent of the distance from the central star and is given by

radiation pressure L/L,

MM,

= 7 x 1075k (45)

gravity

Assuming that the visual opacity of the protostellar material is 250 cm? g™*,
we find from Eq. (45) that radiation pressure is dominant over gravity if

L/L,

2 50, (46)
MM,

which occurs for masses greater than about 3 M, . For such stars the accre-
tion process must eventually be cut off after the cloud becomes optically thin.
Eq. (46) does not hold while the cloud is still optically thick, because the
luminosity is then emitted at infrared wavelengths for which the opacity «

is much smaller.
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The effects of radiation pressure may become important even before the
circumstellar cloud has become optically thin if the radiation pressure acting
on the inner part of the cloud becomes comparable with the dynamical
pressure of the infalling material. The innermost part of the cloud will
contain no dust because the temperature there is high enough to evaporate
the dust grains; thus the radiation from the stellar core will first be signifi-
cantly absorbed or scattered at the inner edge of an outer dust-containing
shell in which the temperature is low enough for dust grains to exist. To
determine when radiation pressure becomes important for the dynamics of
the collapse, we must compare the radiation pressure L/4nrZc at the inner
edge of the opaque dust shell withthe dynamical pressure pu® of the in-
falling material at this pointt. For example, if we assume that the dust
grains evaporate at 2000°K and examine the results obtained for a protostar
of 5 M, , we find that radiation pressure becomes competitive with the
dynamical pressure when the infalling cloud has a mass of about 0.05 M,
and a visual optical depth of about 6. What happens after this points remains
to be determined by more detailed computations, but it is possible that the
dust shell will be disrupted at least temporarily by a Rayleigh-Taylor-like
instability. If this occurs, visual radiation will begin to escape from the
inner regions of the protostar and, if condition (46) is satisfied, it can blow
away the rest of the cloud. The dust shell then will not be replenished by
inflow from the outer part of the cloud, and it therefore disappears perman-
ently. The dissipation in this way of an opaque dust shell might lead to a
rapid brightening of the protostar similar to what has been observed for the
pre-main sequence objects FU Ori and V 1057 Cyg (Larson 1972b), although
Grasdalen (1973) has argued against this type of interpretation for these
objects (see Section 16). ,

For protostellar masses greater than 10 M, the dynamical effects of the
radiation field of the central stellar core become increasingly important, but
also increasingly difficult to treat accurately; for this reason no model cal-
culations are yet available for masses greater than 10 M, . These are at
least four effects which may become important for massive protostars (Larson
and Starrfield 1971): (1) The high luminosity of the stellar core may heat up
the outer layers of the infalling cloud to the extent that pressure gradients
become large enough to retard or prevent the infall of the outermost layers
of the cloud. (2) Radiation pressure acting on the inner edge of the dust shell
may become sufficient to impede or halt the accretion process at an earlier
stage than in the 5 M, example considered above, i.e. when a substantial
fraction of the total mass remains in the infalling cloud. (3) For a very

T The expression given here for the radiation pressure assumes pure absorption by the
dust grains and neglects the effect of scattering; the effect of scattering would be to
increase the radiation pressure (Faulkner 1970).
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FIGURE 10 The evolution of the stellar core the HR diagram for a protostar of mass
5 My . (From Larson 1972b.)

massive protostar the pressure of infrared radiation on the outer layers of the
cloud may become sufficient to blow them off and halt further infall. (4)
Eventually, if the above effects do not intervene first, the stellar core of a
very massive protostar will become sufficiently luminous at ultraviolet wave-
lengths to ionize the whole infalling cloud around it. Since the ionization is

“accompanied by an increase of at least two orders of magnitude in the temp-

erature and pressure, pressure forces then become completely dominant over
gravity and quickly blow away the remaining uncondensed gas. Clearly all of
these effects will tend to limit the mass which the stellar core can attain before
accretion onto it is halted. The implications of this for the upper limit of
stellar masses have been discussed by Larson and Starrfield (1971); in the
following section we shall briefly review the conclusions which are found
concerning the upper limit of stellar masses.

14 THE UPPER LIMIT OF STELLAR MASSES

According to Larson and Starrfield (1971), the dynamical effect of the heating
of the outer layers of the protostellar cloud by the luminosity from the stellar
core is not important for masses less than =~ 10 M, , but becomes gradually
more important for larger masses, for which it may play a significant role in
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the dynamics of the collapse. However, because of the uncertainties involved
and because of the weak mass dependence of this effect, it does not yield any
well defined upper limit to the mass which the stellar core can attain.

The dynamical importance of the radiation pressure acting on the inner
edge of the opaque dust shell increases rapidly with increasing mass, and
extrapolation to higher masses of the results described in Section 13 indicates
that for a total protostellar mass of 40 M, , radiation pressure becomes equal
to the dynamical pressure when the core has accreted only half of the total
mass, i.e. about 20 M, . However, infall of matter into the core can continue
beyond this point if the infalling material forms dense concentrations or blobs,
whose motions will then be less affected by radiation pressure. Thus this
effect does not set a firm limit to the mass which the stellar core can attain,
but suggests that it will become gradually more and more difficult to build up
the mass of the stellar core for core masses exceeding something like 20 M, .

The radiation pressure exerted by the infrared radiation from the hot inner
part of the protostellar cloud on the outer layers of the cloud is very uncertain
owing to the poorly known infrared opacity of the dust grains. Different
estimates of the infrared grain opacity indicate that this effect may become
important at a core mass anywhere from 25 to 90 M, , depending on the
opacity. Thus this effect may well be important in limiting the mass which a
star can attain, but it is difficult to predict an accurate value for the mass
limit.

The effect which appears to be most important in limiting stellar masses is
the formation of an H II region in the infalling protostellar cloud when the
stellar core has attained a sufficiently high mass and luminosity. The ioniza-
tion of the cloud will effectively cut off any further infall of material into the
- stellar core, except perhaps for any small blobs of material which may be
dense enough to escape being dispersed by ionization or blown away by
radiation pressure. Because of the importance of this effect, both for the
formation of massive stars and for the formation of H Il regions, we review
here how the conditions required for ionization of the protostellar cloud can
be estimated. '

If S(r) denotes the total flux of ionizing photons across a surface of
radius r , we can write the following differential equation for S(r) (Spitzer
1968b, Eq. (54)):

das(r
dE') = —4nr’x’ny’a 47

where x is the degree of ionization, here assumed to be equal to unity
throughout the ionized region; ny is the number density of hydrogen atoms;
and @ = 2.6 x 1073 cm®s™ s the recombination coefficient for recombin-
ations to the second and higher levels of hydrogen. The size of the ionized
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region surrounding a massive stellar core can then be estimated as in the elemen-
tary theory of HII regions by integrating Eq. (47) outward from the stellar
surface to the point where the ionizing photon flux S(r) drops to zero. Egq.
(47) assumes that the H II region is optically thin at wavelengths longward
of the Lyman limit; if this is not the case and if Balmer continuum photons
contribute appreciably to maintaining the degree of ionization, then the use
of Eq. (47) will underestimate the extent of the ionized region and over-
estimate the core mass at which ionization becomes important.

If the protostellar material consists of 70% hydrogen by mass, we have
nyg = 4.2 x 102p . The density distribution p(r) throughout much of the
protostellar cloud is of the form p = por™/2 (Eq. (43)). With these
substitutions, Eq. (47) becomes

ds
© = —58x10% pirt. 48)

Integrating Eq. (48) from the surface of the stellar core (r = Rg) out to the
boundary of the HII region (r =Ryy) , defined as the point where S()
drops to zero, we obtain

S(Rg)

— 49
5.8 x 10% pd 49

RHH = RS €xp

Because of the exponential dependence of Ryy; on the flux of ionizing

~photons emitted by the stellar core, the H Il region can be expected to grqw

rapidly once S reaches a certain critical value depending on po . To estimate
the value of S required to ionize the whole protostellar cloud, we equate
Ryyq to the cloud radius R , which we assume to be given by Eq. (2); we
then have Ryy/Rg ~ 107 , or In (Ryp/R,) =~ 16 . From Eq. (49) we then
obtain

S = 9x10% pg (50)

as the number of ionizing photons per second required to ionize the whole
cloud.
If for illustration we consider the point in time when half of the total mass

has been accreted on the stellar core, we find from the collapse calculations
that po is given approximately by .

po = 0.05 MR™3/? (51)

where M is the total protostellar mass. If we substitute in Eq. (51) values of
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M and R taken from Table II, we find that po is nearly independent of )
mass for the larger protostellar masses (provided that M and R always
satisfy the Jean criterion); for example, p, varies from 8.9 x 10° g cm™/2
for M =380 M, to 1.16 x 10° g cm™" for M= 6.5 M, . Adopting a
representative value of po = 10° g cm™/2 |, we find from Eq. (50) that the
flux of ionizing photons required to ionize the entire protostellar cloud is
approximately ‘
S = 9x10% g1, (52)

From data given by Hjellming (1968) we find that this ionizing photon flux
can be produced by a main sequence O star with a mass of about 30 M, and
a spectral type of about O 6.5. Thus, under the adopted assumptions, the
maximum mass which the stellar core can attain before ionization cuts off
further mass accretion is of the order of 30 M, .

This limit is increased if the mass of the initial protostellar cloud is more
than twice the mass of the final star, since the value of p, then becomes
larger than that estimated from Eq. (51). For example, if the total mass of
the collapsing cloud is four times (rather than twice) the mass of the resulting
star, the value of p, is increased by an estimated factor of about 2 over that
given by Eq. (51); the value of S required to ionize the cloud then becomes
about 3.6 x 10% s | corresponding to a star with a mass of about 60 M,
and a spectral type of ~ O 4.5. Note, however, that the mass of the initial
collapsing cloud now becomes four times 60 M, or about 240 M, , so that
a very massive star can form only from the collapse of a cloud whose mass is
much larger yet than that of the star to be formed. A further increase in the
mass of the cloud can raise the final stellar mass somewhat above 60 M, but
probably not by a very large factor; . detailed collapse calculations will, however,
be required to establish more precise numbers.

It should be noted also that the predicted mass limit is rather sensitive to
the assumed initial and boundary conditions for the collapsing protostar; in
particular, we see from Egs. (50) and (51) that the ionizing photon flux §
required for complete ionization of the cloud is proportional to R~ . Thus
if for any reason the radius of the cloud is smaller than has been assumed, the
mass limit is increased. For example, if the initial protostellar cloud has an
optical depth smaller than unity, its hydrogen may be mostly in atomic rather
than molecular form, as has been assumed up to now; the value of the gas
constant & in Eq. (2) is then increased by a factor of about 1.8, and the
cloud radius R is decreased by the same factor, raising the mass limit from
30 M, toabout 70 M, (assuming once again that Eq. (51) is applicable).
The mass limit will also be influenced by the heating and cooling mechanisms
and particularly on the abundances of the heavy elements which provide most
of the cooling. For example, depletion of the heavy elements by a factor of
10 increases the initial temperature by approximately a factor of 2, which in
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turn reduces the cloud radius by a factor of 2 and raises the limiting mass from
30 M, to about 85 M, .

In view of the various uncertainties, it is difficult to predict a precise upper
limit for stellar masses, and perhaps no very sharply defined upper limit exists.
It appears, however, considering all of the effects which have been discussed,
that under normal circumstances it will be difficult to make stars with masses
exceeding approximately 60 M, , and very difficult, if not impossible, to
make stars with masses exceeding ~ 90 or 100 M, . This prediction is
consistent with the observed upper limit of stellar masses which is of the
order of 60 M, , except perhaps for a few rare and exceedingly luminous
objects like n Carinae, which may be a star with a mass of the order of
100 M, .

1t is also clear from the above discussion that the formation of massive stars
and the formation of H II regions are indissolubly related problems which
cannot be treated in isolation. Not only does the formation of an H II
region put a halt to the collapse of the cloud, but the collapse process itself
determines the initial density distribution in the H II region when it first
becomes ionized. Thus, for a spherically collapsing cloud the density distri-
bution will be approximately of the form p «r™/2 in the inner part of
the cloud and p «r™ in the outer region. The density distribution within
the Orion nebula is in fact roughly of this form, and therefore can probably
be understood as having been produced by the same collapse process which
led to the formation of the Trapezium stars.

15 THE INFRARED EMISSION OF PROTOSTARS

“During most of its evolution, the stellar core remains heavily obscured by the

dust in the infalling envelope around it, so that the protostar is observable only
or primarily as an infrared object. Although the evolution of the stellar core
is not very sensitive to the detailed structure of the infalling envelope, the
observable properties of the protostar are much more strongly affected by the
structure of the envelope. Since calculations are presently available only for
the case of a spherically symmetric protostar, we shall discuss in this section
the infrared emission from a spherical protostar, but it should be kept in mind
that the appearance of the protostar could be rather different if the cloud is
not spherical but is asymmetric or flattened. Other uncertainties affecting the
results include the gas-to-dust ratio and the poorly known infrared optical
properties of the dust grains. Thus it is difficult to predict with quantitative
accuracy the infrared appearance of a protostar, and probably only the
qualitative results are very significant.

In order to predict the infrared spectrum of a protostar, it is necessary to
consider the transfer of infrared radiation through the extended spherical
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‘atmosphere’ of the protostar; here we follow the approximate treatment
adopted by Larson (1969b). In common with previous treatments of the
radiative transfer problem with spherical symmetry, we assume that the
density p(r) varies as a negative power of the radius r :

p = por . (53)

As we have seen, a law of this form with n = 3/2 is a good approximation
for the inner part of the infalling protostellar envelope; in fact, the relation
p =r™2 holds with good accuracy throughout the entire region of interest
for the radiative transfer problem. We shall retain a general value of n in
most of the equations, substituting »n = 3/2 at the end in order to obtain
numerical results. .

A simple first approximation to the temperature distribution throughout
the infalling cloud can be obtained by a procedure similar to that used in
Section 11, which consisted of adding together the expression for T* which
hold in the optically thick and optically thin limits. For purposes of calculating
the infrared spectrum of a protostar, it is necessary to take into account the
non-greyness of the opacity «, , since the assumption of a grey opacity yields
an unrealistically broad spectrum (Larson 1969b). In the absence of a good
knowledge of the infrared absorption properties of the dust grains, we assume
a simple power law dependence of Ky on A:

Ky = KoXN P .~ (54)

The values ko = 7 x 107 (cgs) and p = 3/2 were found to be consistent
with the (scanty) available data for interstellar extinction at near infrared
wavelengths (Larson 1969b), but we shall again retain a more general expres-
sions for k, in the formulas to be derived.

In the inner optically thick part of the cloud, radiative transfer is described
by the diffusion Eq. (27), where k denotes the Rosseland mean opacity kp .
Since the luminosity L(r) is very nearly constant throughout the infalling
cloud and since its value is known from the calculations for the evolution of
the stellar core, the diffusion Eq. (27), together with Egs. (53) and (54), can
be used to solve analytically for the temperature distribution in the inner
optically thick part of the cloud. Using Eq. (54), the Rosseland mean
opacity required in this calculation can be evaluated analytically as a function
of temperature, and the result is

Kp = AroTP (55)

where
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4 = 24 ¢{(4) ( L)” (56)
I'C —p) §@4 —p) \ke

and { is the Riemann Zeta function. When Egs. (53) and (55) are substituted
into the diffusion equation (27) and the resulting differential equation for

T(r) is solved with the conditions L(r) = constant and T(*) > 0 as r —> o,
the result can be written

T* = B(kopoLr"—1)H@p) (57

—o\ 34 146@—p)
B =|(2F . (58)
n+1/ 64dq0

In the case of a non-grey opacity, the temperature of the optically thin
outer part of the cloud depends on the spectrum of the radiation emitted from
the opaque inner part of the cloud. In the special case of a blackbody spt‘actrurr}
with temperature T, , the temperature distribution in the optically thin region,
as determined by equating the energy absorbed and the energy emitted by the

dust grains, is given by L 4/(4 +p)
| T4 = T,%/¢+P (16n0r2>

where

(59)

In the more general case of a non-blackbody spectrum, the temperature distri-
bution in the optically thin region will have the same form but with a different
numerical constant. We write

(60)

apfd+5) L \4@+p)
4 = cr.4Pia+p
d s 16m0*

where C is a constant of order unity and T , an approximate ‘photospheric
temperature’ for the protostar, is defined as the temperature at the point
where the optical depth is equal to unity at the wavelength of the local
blackbody maximum, assuming that the temperature at this point is given
by Eq. (57). (This assumption, is adopted only for convenience in defining

T , and does not affect any of the subsequent results.) From Egs. (53) and
(54), the optical depth 7, at wavelength A and radius r is given by

~ KoPo
T =

1 XPntl (61)
q n-—
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Using Eqs. (57) and (61) to solve for the temperature T, at the point where
T\, =1 at the wavelength of the local blackbody maximum (defined by
AT = hc/4.965k ), we obtain, after some algebra,

Ty = [D(kopo)™ L= D2} 1n+p=2) (62)

where

D =

he \P n+1)/2
-1 B(4“P)(n—1)/8 . 63
[(n ) (4.965k) J (63)

We can now construct an approximation to the temperature distribution
throughout the cloud by adding together the expressions for 7'*(r) given
by Egs. (57) and (60) for the optically thick and optically thin regions
respectively. Once the temperature is known as a function of radius (or
equivalently, as a function of optical depth) throughout the protostellar
envelope, the luminosity emitted at any wavelength can be calculated by
integrating the contributions from all optical depths, using a procedure quite
analogous to that used for a plane paralle] stellar atmosphere. Correspond-
ing to the expression

Fy, = 2n L By (1)) By(r,) dry

giving the flux F, per unit wavelength interval emitted by a plane parallel
atmosphere, we have, in the case of an extended spherical atmosphere in
which p «r3/2 | :

L, = 16n* f r*(my) Gas2 (1) By (1) dry, (64)
)

where L, is the luminosity emitted per unit wavelength interval, B,(1,) is
the blackbody function, and the function G,,, (r,) is defined and tabulated
by Larson (196b). The constant C in Eq. (60) remains an undetermined
parameter; however, for any assumed value of C the emitted spectrum of
the protostar can be computed by numerical integration using Eq. (64), and
C can be varied until the integrated luminosity computed in this way is equal
to L, as required. With n = 3/2, the values of C determined in this way
for p=1,3/2,and 2 are equal to 1.75, 2.36, and 2.34 respectively. The
spectrum computed for the case n = 3/2, p = 3/2 is illustrated in Figure
11, where it is compared with a blackbody spectrum and with the available
data for the Becklin-Neugebauer infrared point source in Orion, which may be
an opaque protostar with a mass of about 5 M, (Larson 1972b). Both
spectra have been positioned to give the best fit to the data. It is seen that
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FIGURE 11 The computed spectrum of a protostar for the case n =3/2, p = _3/2
(solid curve) and a blackbody spectrum (dashed curve) are compared with observations of
the Becklin-Neugebauer infrared point source in Orion. Solid circles with error bars are
from Becklin and Neugebauer (1967), corrected for recalibration of the 10u observation
(Becklin, private communication), and the triangles are from Kleinmann and Low (1967).

the computed protostar spectrum is fairly similar to a blackbody spectrum, but
it falls off more rapidly than the blackbody spectrum at short wavelengths and
less rapidly at long wavelengths. Both spectra give a fairly good fit to the data
for the B-N object at most wavelengths, but the observed strong decrease in

flux at the shortest wavelength is matched only by the computed protostar
spectrum and not by the blackbody spectrum. The spectra calculated for

p=1 and p =2 do not fit the observations quite as well as that for p = 3/2;
the case p =1 yields a broader spectrum than that illustrated, whereas p = 2
yields a narrower spectrum.

As a protostar evolves, the peak of the infrared spectrum steadily shifts
toward shorter wavelengths as the density of the infalling cloud decreases and
the surface of optical depth unity or ‘photosphere’ moves inward to smaller
radii and higher temperatures. Correspondingly, the ‘photospheric temperature’
T, increases steadily with time. The wavelength A, of peak infrared
emission is related inversely to T by a relation similar to that for a black-
body, i.e. A,,T = constant . From the computed spectra for n = 3/2 , the
values of this constant for p = 1, 3/2, and 2 are found to be 0.28, 0.28,
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and 0.29 cm °K respectively. Since these values are very close to the black-
body value of 0.290 cm °K, the spectrum peaks at nearly the same wavelength
as a blackbody of temperature T, . The dependence of T, on po and L
is given by Eq. (62); for the case n=3/2, p=3/2 thxs yields

Ty = 0.55 (kopo) /*LY™® (cgs units) (65)

and
Np = 051 (kopo)*S L7V, (66)

These equations can be used to predict the variation of Ty or A, with time,

given the fime development of po and L which is obtained from the
dynamical calculations. For example, if we substitute the representative values
Po =10° g cm™? and L = 10* ergs™ into Egs. (65) and (66) and if we
assume ko = 7 x 107° , we obtain T, = 320°K and A, = 8.8u . Thus
typical protostars would be expected to radiate most strongly at infrared wave-
lengths of the order of 10u, and to have apparent temperatures of some
hundreds of degrees K. It is evident from Egs. (64) and (65) that these
numbers are made somewhat uncertain because of the uncertainty in the

dust opacity kg .

The time development of the luminosity L and the peak wavelength A
for an opaque protostar can be conveniently illustrated by plotting the evolutxon-
ary track of the protostar in an infrared HR djagram showing log L plotted vs
log A,,, . Such a diagram is shown in Figure 12, taken from Larson (1972b).
Evolutionary tracks are illustrated for masses from 0.25 M, , and the time scales
are indicated by the dashed isochrones. As expected, protostars of low or
moderate mass (up to about 2 M, ) are predicted to be most prominent at
wavelengths of the order of 10u; the evolutionary time scale at this stage is
of the order of 10° years. These low mass protostars subsequently decline in
luminosity as they evolve toward higher apparent temperatures, owing to the
decreasing kinetic energy inflow into the shock front. The more massive
protostars continue to brighten as they evolve toward higher temperatures,
since in these cases much of the luminosity comes from the interior of the
core and therefore increases as the core mass increases. In all cases, the total
duration of the infrared stage of evolution is predicted to be of the order of
5x10° to 10° years.

Also shown in Figure 12 are the positions of several objects which are visible
only or primarily at infrared wavelengths and which are thought to be proto-
stars or newly formed stars. Since the more massive and luminous protostars
spend most of their time at relatively high temperatures and are also most
luminous during their later stages of evolution, one would expect luminous
protostars to be observed mostly with temperatures of the order of 500 to
1000°K, corresponding to peak wavelengths of about 3 to 6u; this is in
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agreement with the observed properties of many of the infrared objects which
are thought to be protostars or newly formed stars.
log Ty 2

0 0.5 .o 1.5
log Aplp)

FIGURE 12 Evolutionary tracks of protostars in an infrared HR diagram showing log L
plotted vs log A, , where A, is the wavelength of peak infrared emission. The proto-
stellar masses from 0.25 M, "o 10 M, are marked on the curves. The dashed lines are
isochrones for the times marked at the bottom Open circles indicate the positions of (1)
the Becklin-Neugebauer object, {2) R Mon, (3) R CrA, and (4) LkHe 101. The solid dot
on each curve indicates the point where the stellar core contains half of the total mass.
(From Larson 1972b.)

16 PROPERTIES OF T TAURI STARS AND OTHER PRE-MAIN
SEQUENCE STARS

The theory of the hydrostatic phase of pre-main sequence evolution has already
been thoroughly reviewed by Upton (1968), Cox and Giuli (1968), and
Bodenheimer (1972); therefore we shall not attempt any complete discussion
of this subject here but merely conclude by pointing out some implications of
the collapse calculations described in the preceding sections.

Towards the end of the collapse, the amount of material remaining in the
infalling envelope of a protostar diminishes steadily, and after most of this
material has either fallen into the core or been dissipated by radiation pressure
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or other means, the visual radiation from the central stellar core begins to shine
through the surrounding dusty envelope. At first the visual radiation may not
escape directly from the cloud but only after scattering from dust grains, so that
what is seen from the outside is not the central star itself but rather scattered
radiation from the surrounding dusty envelope. In any case, the spectrum of
the protostar will begin to show two components, i.e. a visual or ‘stellar’
component and an infrared component similar to the infrared spectrum from
an opaque protostar. A number of such objects are known, the best studied
example of which is the T Tauri star R Mon (object 2 in Figure 12), which
emits over 90% of its total luminosity at infrared wavelengths. The properties
of R Mon can be understood, at least qualitatively, if this object is interpreted
asa protostar with a stellar core of mass ~ 4 M, and effective temperature
~ 10* °K, surrounded by a remnant protostellar cloud with a mass of perhaps
1 M, which absorbs nearly all of the visual light from the central star and
converts it into infrared radiation. The infrared spectrum of R Mon closely
resembles that of the Becklin-Neugebauer object in Orion, and is also reasonably
well fitted by theoretical spectra computed in the way described in Section 15
(Neugebauer, Becklin and Hyland 1971).

Eventually, after a time of the order of 10° years, the circumstellar envelope
thins out enough to allow most of the visual radiation from the central star to
escape, and the object then radiates predominantly at visual wavelengths with
only a small or moderate infrared excess produced by the remnant circumstellar
material. Most of the T Tauri stars appear to be identifiable with this stage of
pre-main sequence evolution, i.e. the stage when the circumstellar envelope has
almost completely disappeared and no longer dominates the observed properties
of the star. A good example is the star T Tauri itself, which on photographs is
accompanied by only a small wisp of nebulosity, as contrasted with the bright
dense cometary nebula around R Mon. Correspondingly, T Tauri has a much
less conspicuous infrared excess than R Mon and radiates a smaller fraction of
its total energy at infrared wavelengths. Most T Tauri stars have even less infra-
red emission than T Tauri, although they still show a measureable infrared
excess. The more ‘normal’ T Tauri stars typically have radii of the order of 2
or 3 R, and effective temperatures in the range from about 3500 to 5500°K,
in good agreement with the predicted properties of newly formed stars with
masses 2 M, . The appreciable scatter of the T Tauri stars in the HR
diagram, even within a single cluster, may have several causes, among which
are differences in the initial conditions for different protostars, differences in
the amount of remnant circumstellar abscuration, and a possible age spread of
the order 107 years (Larson 1972b).

The more massive analogues of the ‘classical’ T Tauri stars discussed above
appear to be found among the relatively luminous Ae and Be stars studied
by Herbig (1960) and Strom er al. (1972b). According to the collapse calcul-
ations described in Section 13, the stellar core in a protostar of mass greater

THE EVOLUTION OF PROTOSTARS — THEORY 63

than about 3 to 5 M, evolves all the way to the main sequence before becom-
ing visible through its obscuring protostellar envelope. Thus newly formed
stars with masses larger than this should first appear on or near the main
sequence, surrounded initially by a dense and conspicuous cloud of interstellar
matter and showing strong infrared emission. These predictions are in good
general agreement with the properties of the Herbig Ae and Be stars, all of
which are associated with visible nebulosity and most of which lie on or not
far from the main sequence. Also, most of these objects show spectroscopic
and/or infrared evidence for circumstellar shells. The observations are all
consistent with the interpretation of these objects as newly formed stars with
masses between 2 M, and 6 M, and ages of the order of 3 x 10° years to
3 x 10% years, which are still surrounded by the remnants of their initial
protostellar clouds.

The collapse calculations indicate that the infall of the last remnants of the
protostellar cloud into the stellar core may still be going on at a rate of the
order of 1077 M, /yr when the star first becomes visible. Therefore one might
expect to see some evidence for infall of material in some of the youngest T
Tauri stars, provided that the infall has not already been halted by radiation
pressure or by a stellar wind. Such evidence has been found by Walker (1972),
who has observed redshifted absorption lines in the spectra of certain T Tauri-
like stars which he called YY Ori stars. The observed infall velocities of ~ 150
to 400 km s™ are comparable with the expected free fall velocities at the
surfaces of pre-main sequence stars with masses S 1M, and radii of a few
R, . Also, there is evidence that part of the luminosity of the YY Ori stars,
particularly in the ultraviolet, is supplied by the infall of matter. Thus the
observations appear to be consistent with the interpretation of the YY Or
stars as some of the very youngest T Tauri stars which are still accreting the
last remnants of their protostellar envelopes.

The predicted locus of newborn stars in the HR diagram is illustrated in
Figure 13, taken from Larson (1972b). The open circles indicate the predlcted
positions of newly formed stars of various masses at the time when the optical
depth of the surrounding cloud becomes equal to unity, and the heavy curve
shows the predicted locus of such stars. The dashed curve shows the position
of this locus when the radius of the initial cloud is reduced by a factor of 2
for all masses, and the difference between the solid and dashed curves gives
an indication of the uncertainty involved. It is seen that the predicted locus
of newborn stars falls near the isochrone corresponding to an age of 10° years,
and that an appreciable scatter in the position of such stars in the HR dia-
gram can result from uncertainties or variations in the initial conditions. These
predictions are in fairly good agreement with observations of very young
clusters, which show that the pre-main sequence stars generally scatter below
an upper envelope which roughly coincides with the dashed curve in Figure 13.
The observed scatter probably has a number of causes, including an age spread
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. scatter: preqludes a straightforward interpretation of the HR diagrams of
young clusters in terms only of the ages and masses of the stars (Strom et al.
" 1971, 1972a; Larson 1972b).
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FIGURE 13 The heavy solid curve is the predicted locus along which newborn stars of

different masses should first appear in the HR diagram, and the dashed curve shows the -

position of th.is locus if the initial radius of the protostellar cloud is arbitrarily reduced by
a factor of 2 in all cases. Isochrones from Iben and Talbot (1966) are also shown for
reference. (From Larson 1972b.)

Recently, much interest has been generated by the discovery that the object
V1057 Cyg, previously identified as a T Tauri star, flared up by about 6 magni-
tudes within one year in 1969 and then remained nearly constant at the higher
luminosity, in a manner reminiscent of FU Ori (see Grasdalen (1973) for a
discussion of the properties of V1057 Cyg and its relation to FU Ori and other
objects). The evidence strongly suggests that V1057 Cyg is a pre-main sequence
star, and according to Grasdalen (1973) it presently has a luminosity of the
order of 10° L, , an effective temperature of about 8000°K, and a mass of
about 8 M, . It appears to have only a small amount of circumstellar material
in contrast to the Ae and Be stars discussed above. At present the properties ,
of FU Ori and V1057 Cyg are not reproduced quantitatively by any theoretical
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model, and it is not even clear whether the great increase in luminosity is to be
interpreted as an intrinsic change or as an apparent effect caused by the rapid
disappearance of a circumstellar dust shell (although Grasdalen (1973) argues
for the former interpretation). The estimated mass and present lurninosity of
V1057 Cyg are somewhat larger than might be expected for a newly formed
star still located well away from the main sequence, if the theoretical results
described in Section 13 are correct; according to these results, a star as
massive as 8 M, should remain embedded in a dense, opaque protostellar
cloud until it has already reached the main sequence. Two possible inter-
pretations of this discrepancy are: (1) the initial protocloud from which
V1057 Cyg formed may have been denser than expected from the Jeans
criterion, so that it collapsed in a shorter time, or (2) as suggested in Section
13, the protostellar envelope may have been blown away by radiation pressure
or a stellar wind before the collapse process was completed. Since both of
these possibilities are reasonable ones, considering the uncertainties in the
theory, the present properties of V1057 Cyg are not seriously inconsistent
with the theoretical picture developed in this article. However, the rapid
brightening of FU Ori and V1057 Cyg remains unaccounted for by any
detailed quantitative calculations, and it is evident that more theoretical and
observational work will be necessary before it can be established what
revisions or extensions of the present theoretical picture will be required to
fully account for these remarkable objects.

In summary, although the theory of collapsing protostars still contains
many uncertainties and much further work remains to be done, it appears that
a number of important qualitative or semi-quantitative predictions can be made
with reasonable confidence and that these predictions are in reasonable agree-
ment with many of the observations thought to relate to star formation or
newly formed stars. Thus it may be hoped that many of the essential qualita-
tive features of the theory outlined in this article will survive when more
elaborate and correct treatments of the evolution of protostars are developed.
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Appendix A

THE DEPENDENCE OF THE RADIUS OF A STELLAR CONFIGURATION
ON ITS SPECIFIC ENTROPY '

It is often of interest to be able to understand in a simple way how the radius
of a star is related to the conditions in its interior and how the radius varies as
the star evolves. It is evident that for a star of given mass M , the radius R
would be completely determined if it were possible to specify the density p
at each point in the star; equivalently, given the equation of state and the
condition of hydrostatic equilibrium, the same would be true if any other
variable of state such as the pressure P or the temperature T were specified
at each point. However, since the pressure, density, and temperature all vary
by several orders of magnitude within a star, it is difficult to specify their
distributions in any simple a priori way. There is, however, another variable
of state, namely the entropy per unit mass s , which is generally more nearly
constant throughout a star and whose value is in some cases more readily
predictable. For example, if there exist adiabatic conditions (such as would
exist in a convection zone) throughout part or all of a star, the specific entropy
s is constant throughout the adiabatic region. In discussing the structure and
evolution of the stellar core in a protostar of small or moderate mass it is
convenient to make use of the concept of entropy, since radiative transfer is
unimportant in such a core and each mass element therefore behaves adiabatic-
ally, conserving the entropy which it acquired on passage through the shock
front. Since the radius of the core plays an important role in the evolution
of the protostar, we consider the problem of relating the radius of such a
stellar configuration to the specific entropy of the material in it.

Dimensional argument
Considering the simplest case of a perfect gas with constant specific heats p

and ¢, and with ratio of specific heats cp/cv = v , the specific entropy s
is given in terms of the pressure P and the density p by

s = ¢, n(P/p7), 67)

apart from an additive constant which for present purposes can be taken to be
zero. For a hydrostatic stellar configuration of mass M and radius R we
have, dimensionally,

M GM*?

P P~

(68)
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By combining Eqs. (67) and (68), we can express R as a function of s and
M ; we obtain, after simple algebra,

exp (s/c,) | /B4
R~ [W—_J ' )

For the case of a perfect monatomic gas with v=5/3, Eq. (69) reduces to

exp (s/c,) '
R~ — 5 (70)

Thus we see that, dimensionally, the radius of a star can be considered to be
a function of its specific entropy and its mass, and that R increases with
increasing s and decreases with increasing M . Since the dependence of R
on M is relatively weak, we see that it is primarily the specific entropy s
which determines the radius of a stellar object.

Intuitively, the existence of a relation between the radius of a star and its
specific entropy is not surprising in view of the fact that in statistical mechanics,
the entropy of a system is a measure of the volume in phase space occupied d
by its constituent partcles; a higher entropy means that the particles are
dispersed over a larger volume in phase space. Thus it is intuitively reasonable
that a configuration of higher entropy, whose particles occupy a larger phase
space volume, should also occupy a larger physical volume, i.e. have a larger
radius.

Polytropic Models

From Eq. (67) we notice that the equation of state of the gas, considered as a
relation between P, p ,and s, can be written in the form

P = exp (s/c,) p” o))
which is closely analogous to the ‘polytropic equation of state’
P = Kp1+1/n (72)
on which polytropic stellar models are based. Thus we see that an isentropic
configuration in which s and v are constant throughout can be represented

as a polytropic sphere with

K = exp (s/c,) , n =-——, (73)
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The radius of a polytropic sphere of mass M is given by

K n/(3—n)

R = g (74)

(Chandrasekhar 1939), where N, is tabulated by Chandrasekhar. Thus, sub-
stituting for K and n from Eq. (73), we obtain for the radius of an isentropic
configuration with specific entropy s and ratio of specific heats +y

1/(3y—4)

ex S/C,

R = | 22 /ey) X (75)
| N,GM*—7

Note that this is identical to Eq. (69) except for the constant N, . In the
case <y = 5/3 , corresponding to a polytrope of index n = 1.5 (which is
appropriate, for example, for a completely convective star), we have

N, = 0424 and

R = 236 ——2 . - (76)

Thus if the specific entropy s (or equivalently, the quantity P/p%? ) is known
at any point in a convective star of given mass, the radius of the star is
completely determined and has the value given by Eq. (76).

Discussion and comparison with models

In general, the above relations will not hold exactly, since the configurations of
interest are not completely convective and s is not constant throughout. How-
ever, since the radius of a star is determined primarily by the structure of its
outer regions and is relatively insensitive to the properties of the central region,
one would expect the radius to depend mostly on the specific entropy of the
outer layers of the star; the entropy of the central region should be much less
important. This expectation is confirmed by looking at the structure of the
stellar cores and pre-main sequence models described in this article and in
previous investigations of pre-main sequence evolution; it is found that the
radius is always more or less closely related to the specific entropy of the outer
layers of the star, but is nearly independent of its value at the center. The
relation between specific entropy and radius is particularly simple in the case
of a star with a deep outer convective zone in which s is constant or nearly
so (e.g., a star on the ‘Hayashi track’); in such cases, Eq. (76) does, in fact,
yield a reasonably close approximation of the radius of the star if s is taken
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as the specific entropy of the convection zone. Thus, for example, the radii
of various published pre-main sequence models with outer convection zones
are generally predicted by Eq. (76) with an accuracy of about 5 to 10 per-
cent, except for stars close to the main sequence where the convection zone
becomes small, and stars with very large radii (£ 30 R,) in which the
assumption of the constancy of s and < breaks down in the outer layers.
In the case of the stellar core in a collapsing protostar, Eq. (76) predicts the
radius of the core with an accuracy of about 5 to 15 percent as long as the
core has any appreciable outer convection zone.

Thus we see that, at least for protostellar cores and pre-main sequence
stars, there is a close relation between the radius of such an object and the
specific entropy of its outer layers, which is useful in discussing its structure
and evolution. The existence of such a relationship makes particularly clear
the importance of the shock front at the surface of the core for the evolution
of protostars, since it is the properties of this shock front which determine
the specific entropy of the material added to the outer layers of the core.
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Electron Plasma Resonances
in the Topside lonosphere

’

J. R. MCAFEE ; )
National Oceanic and Atmospheric Administration, Boulder, Colorado 80302, U.S.A.

A very large variety of responses can follow if pulses in the topside ionosphere. Most of
those which can not be identified as normal electromagnetic echoes show a resonant-like
behavior, or a ringing for times long after the exciting pulse. The general characteristics
of the major ionospheric resonances, at the plasma, upper hybrid, and cyclotron harmonic
frequencies, can be explained by treating the phenomena as one of electrostatic wave
propagation and reflection. The well-developed theory for the resonances at the plasma
and upper hybrid frequencies, presented in detail, may also point to similar explanations
at the cyclotron harmonics and also at the maximum frequencies of the Bernstein modes.
The theory not only provides a check on the dispersion relations for electrostatic waves,
but raises the possibility of using the observations to measure electron temperatures.
Some of the other resonant-like behavior, observed more sporadically, can be explained
in principle by considering possible nonlinear effects. These include the low-frequency
subsidiary resonances and the diffuse resonances, as well as the resonance at twice the
upper hybrid frequency. Others, like the resonance at the cyclotron frequency and
proton echoes are unexplained.

1 INTRODUCTION

Bottomside ionosondes have been a standard tool for ionospheric measurement
and monitoring for many years. However, since radio waves return to the
ground only from the portion of the ionosphere below the level of maximum
electron density (bottomside), ionosondes provide no information about the
ionosphere above this level (topside). With the advent of useful research
satellites, it became obvious to put a sounder in orbit above this level to
perform a function in the topside ionosphere entirely analogous to the
bottomside sounders. Topside sounder satellites were then launched under

the ISIS program (Jackson, 1965; Chapman, 1965; Calvert, 1966; Chapman
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