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THE EVOLUTION OF STAR CLUSTERS 

Richard B. Larson 

(Received i97o|January¡i3) 

SUMMARY 

The method for computing the evolution of star clusters which was developed 
in a previous paper (Larson 1970) is here applied to calculating the evolution 
of a number of different models of star clusters. As in Paper I, the calculations 
refer only to the special case of equal masses, the stars all being assumed to 
have a mass of iM Q. Three types of systems are considered, and their 
evolution is described in some detail: (1) a globular cluster of mass 2 x 105 M0, 
(2) a galactic cluster of mass 100 M 0, and (3) a dense galactic nucleus of mass 
10s M Q. In general, the results are in fair agreement with the predictions of 
classical relaxation theory, except that in some respects the classical picture 
is seen to be over-simplified. Some of the principal conclusions of the project 
are (1) the rate of evolution and the stellar escape rate are quite sensitive to 
the structure of the system; (2) the velocity distribution always tends to be- 
come strongly anisotropic in the outer part of the system ; and (3) the 
existence of a tidal limit has a strong effect on the escape rate, and may 
increase it by a large factor compared to an isolated cluster. 

I. INTRODUCTION 

In a previous paper (Larson 1970, hereafter referred to as Paper I) a method 
was described for computing the evolution of a star cluster, using a fluid-dynamical 
approach based on moment equations derived from the Boltzmann and Fokker- 
Planck equations. In Paper I the method was applied to a rather artificial example 
consisting of a system of particles enclosed in a rigid spherical container with 
perfectly reflecting walls. In the present paper we apply the method to some 
more realistic models of stellar systems, including a globular cluster, a galactic 
cluster, and a dense galactic nucleus. As in Paper I, the present calculations refer 
only to the idealized case in which all stars have the same mass. 

For convenience, we repeat the definitions of some of the important quantities 
used in the method of Paper I. We denote by p(r) the mass density of stars at 
radius r, and we denote by uy v, w the velocity components in the radial and two 
transverse directions, respectively. In addition to the density p and the mean 
radial velocity (u\ the following higher moments of the velocity distribution are 
to be calculated as functions of the radius r and the time t: 

a = <(m-<m»2> 

ß = (v'2') = <(zo2y 

eS<(M-<«»3> 

£ EE <(U-{U))4) -3(X2. 

As was explained in Paper I, a and ß are the mean squared random velocities in 
the radial and transverse directions, e represents an energy flux in the radial 
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94 Richard B. Larson Vol. 150 

direction, and £ represents an excess (if £ > o) or a deficiency (if £ < o) of high 
velocity stars relative to a Maxwellian distribution. Again the basic units of mass, 
length, and time are taken as iM0, 1 pc, and 106 yr; in this system the unit of 
velocity is 1 pc/106 yr = 0*978 km s_1, and the value of the gravitational constant 
G is 4* 50 x io~3. 

2. THE BOUNDARY CONDITIONS 

Since the method of Paper I utilizes an Eulerian computational scheme, the 
boundary conditions are most conveniently specified in Eulerian form, i.e. at a 

point fixed in space. In the example of Paper I this was easily done since the 
system was by assumption confined inside a rigid container, and the condition 

of perfectly reflecting walls was readily formulated by requiring that the odd-order 
moments of the velocity distribution vanish at the boundary. In the case of a 
real star cluster, however, it is necessary to allow for the escape of stars from 
the system, so some sort of porous or absorbing wall would clearly be a more 
appropriate boundary condition. Since the size of a star cluster is limited by galactic 
tidal forces, it seems most appropriate to set the boundary for the fluid-dynamical 
calculations at the ‘ tidal limiting radius ’ of the cluster, as defined, for example, 
by King (1962). One usually imagines that once an escaping star gets outside the 
tidal limit it will be effectively removed from the cluster by the galactic tidal field, 
and so need no longer be considered as a member of the cluster. This tidal removal 
of the escaping stars may be simulated in the fluid-dynamical model by assuming 
that the system is bounded by a perfectly absorbing wall, which effectively absorbs 
or removes all stars which reach it. The boundary condition on the velocity dis- 
tribution is then that there are no stars moving inward at the boundary, i.e. that 
the velocity distribution is truncated for radial velocities w < o. 

The method of Paper I requires that the odd-order moments <w> and € of the 
velocity distribution be specified at the boundary, or that they be related to the 
values of the other moments at the boundary. In the present case (u) and e may 
be related to the second moment oc if a specific form for the velocity distribution 
at the boundary is assumed. For this purpose we have assumed that the distribution 
of radial velocities u is gaussian for í/>o, i.e./(w)ocexp { — u2¡2b)y and is truncated 
for u<o. For a velocity distribution of this form we then have 

o> 

€ 

If the velocity distribution has a different form, or if the bounding wall is not 
perfectly absorbing as assumed, then the numerical coefficients in equations (2) 

would be different, but we would still have <i/>oca1/2 and eoca372. Fortunately, 
trial calculations made with different choices for the numerical coefficients in 
equations (2) show that the structure and evolution of a cluster are not very 
sensitive to the exact values of these coefficients, except in the region just inside 
the boundary. 
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No. i, 1970 The evolution of star clusters 95 

3. EVOLUTION OF A GLOBULAR CLUSTER 

As a typical mass for a globular cluster, we have adopted M = 2x io5M0. 
Also, for a typical tidal limiting radius we have taken R = 100 pc. The factor 
In (Z)max<T2>/2Gm) occurring in equation (25) of Paper I and in expressions for 
the relaxation time has been set equal to 10 throughout the calculations. Since 
the results are in some respects rather sensitive to the initial conditions chosen, 
we have made calculations for several different choices of the initial model for a 
globular cluster, taking the initial model in each case to be a hydrostatic equilibrium 
configuration. We describe first the results obtained when the initial model is 
assumed to be a polytrope of index n = 5 (‘ Plummer’s model Plummer 1911). 
The polytrope of index 5 has often been used as a model for globular clusters 
because of its convenient analytical properties and because it has been claimed to 
represent with fair accuracy the observed structure of at least some globular 
clusters (of course, this does not make Plummer’s model unique, since agreement 
with the observations has also been claimed for a wide variety of other models). 

The density distribution for a polytrope of index 5 is of the form 

p(r) = pc[i + (r/r0)2]~5/2. (3) 

In the example to be discussed, we have set ro = 6 pc; with a total mass of 

2 x io5 M0 and a radius of 100 pc, this leads to a central density 

pc = 2-2X io2 MG/pc3 

and a central velocity dispersion in one coordinate of olc
1/2 = 5*opc/io6yr 

Fig. i . The time development of the density distribution for a globular cluster with initial 
density distribution given by equation (3). The curves are labelled with the corresponding 
values of r in units of io6 yr. 
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(4-9 km s'"1). The relaxation time at the centre (see Paper I or Chandrasekhar 

1942, equation 2.379) is then Tc = 9-0x io8yr. In all of the calculations to be 
described, we have set (u) = (a—j5) = € = o in the initial model; the initial 
distributions of oc{r) and ¿j(r) have been calculated from the assumed initial density 
distribution p(r) by solving equations (16) and (19) of Paper I with all time deriva- 

tives set equal to zero. 
The time development of the density distribution for the initial conditions 

described above is illustrated in Fig. 1. As was found in the example studied in 
Paper I, the system becomes more and more centrally condensed, and the central 
density i runs away ’ and tends to approach infinity after a finite time which in 

this case is about 2*6x 1010 yr, or about 29 times the initial relaxation time at 
the centre. As in Paper I, it will be convenient to measure time from the instant 
to when the central density becomes infinite; thus we define r = to~t, and hence- 
forth we use T in place of t as the time variable. The curves in Fig. 1 are labelled 
with the corresponding values of r in units of iq6yr. We note that after io10yr 
have elapsed (r = i-6xio4), the central density has risen by a factor of 5 to 
about i • i x 103 M0/pc3, a value which would be fairly representative for a dense 
globular cluster. The density distribution at this time has not changed much in 
form from the initial density distribution, except that it drops off slightly less 
steeply near the centre and more steeply near the outer boundary. 

The variation of the central density and velocity dispersion with time is illus- 
trated in Fig. 2, which shows log pc and log olc plotted vs. log r. Although these 

Fig. 2. The variation with time of pc, occ, and rjTcfor a globular cluster (Case 1). 
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97 No. i, 1970 The evolution of star clusters 

curves become nearly linear during the later stages of the evolution, it appears 
that, at least over the time interval covered by the calculations, they never become 
strictly linear as they did in the example studied in Paper I; thus one cannot 
determine a precise limiting slope, but only a mean slope over some specified 
range in r. In the range i >log r >o, the slopes of the two curves are about — i * 53 
and —0*30 respectively, so that we have approximately 

/)C ocr-1*5 3 \ 
cxcOCr-0*30 j (4) 

over this time interval. 
Also illustrated in Fig. 2 is the variation with time of r/Tc, the ratio of the 

time scale of evolution to the central relaxation time. This ratio varies by a large 
factor during the course of the evolution, increasing from an initial value of about 
29 to a value of about 6-7xio2atr= 1 (unit of r is 106 yr). As far as the calcula- 
tions have been carried (r~o*3), the ratio t¡Tc shows no sign of approaching an 
asymptotic limiting value; however, it still has not become as large as the limiting 
value of 8-9 x 102 found for the example studied in Paper I. Examination of the 
results shows that the reason for the steady increase in t/Tc can be traced to the 
continuing relaxation of the central part of the cluster toward an isothermal 
structure with a nearly Maxwellian velocity distribution. Initially the cluster 
deviates considerably from an isothermal structure, and correspondingly the 
velocity distribution is significantly non-Maxwellian (|/a2 = — 0*42 at the 
centre, indicating a deficiency of high velocity stars relative to a Maxwellian 
distribution). As the system evolves, the velocity distribution at the centre relaxes 
toward a more nearly Maxwellian form, and a nearly isothermal region begins 
to develop at the centre and grow outwards. At the latest time shown in Fig. 1 

(T ^ 3‘3) ¡he deviation from a Maxwellian velocity distribution has become 
quite small at the centre of the cluster (£/a2 = —3*5x1o-3), and the central 
part of the cluster is very nearly isothermal out to a radius where the density is 

approximately a factor of 10 smaller than the central density. As was discussed 
in Paper I, the rate of evolution of a stellar system is quite sensitive to how much 
the central part of the system deviates from an equilibrium isothermal structure; 
the closer it is to an isothermal structure and the closer the velocity distribution 
is to a Maxwellian form, the slower is the evolution. This accounts for the con- 
tinual slowing down of the evolution relative to the relaxation time, as manifested 
by the steady increase in the ratio r/Tc. 

Fig. 3 shows the variation with radius of a and /?, the mean squared random 

velocities in the radial and transverse directions respectively, for two times: 
r = i*6x 104 (i.e., t = io10yr), and r = 3*3. These curves demonstrate clearly 

the increasing anisotropy of the velocity distribution in the outer region of the 
cluster. After io10yr (r = i^óx 104), the ratio a//J has increased from i*o to a 
value of about 6*8 at the outer boundary, corresponding to a ratio of velocity 
dispersions of (a/j8)1/2 = 2-6. We note, however, that if this state of evolution is 
taken as representative of the present structure of globular clusters, then it appears 
that this degree of anisotropy, while definitely a significant effect, is not as large 
as that postulated in some previous models of globular clusters (e.g., Michie 
1961). As the system evolves, the anisotropy of the velocity distribution increases 
steadily; at r = 3*3, the anisotropy at the outer boundary has increased to 
a//?^4x 103, corresponding to (a//3)1/2~63. 

7 
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98 Richard B. Larson Vol. 150 

Fig. 3. The variation with radius of a and ß for a globular cluster at two stages of evolution 
(Case 1). The corresponding values of r are marked on the curves in units of 10^ yr 

Because of the presence of the absorbing wall at the outer boundary, the 
mass of the cluster decreases steadily as it evolves. The variation with time of 

the total mass M remaining inside the outer boundary is indicated by the solid 
curve in Fig. 4, which shows log M plotted vs. log r. At r = 1 • 6 x 104, the total 
mass has decreased from 2-oxio5M0 to i-64xio5M0, and at r = 3*3 has 
decreased by a factor of about 6 to 3-5 x io4M0. It is noteworthy that during 

the later stages of the evolution, not all of the mass inside the outer boundary at 
r = 100 pc remains bound to the cluster, since many of the stars in the outer 

regions have by this time acquired velocities in excess of the escape velocity 
(here taken as the velocity required to escape to infinity); in fact, even the mean 
velocity begins to exceed the escape velocity in the outermost part of the 
system. In order to obtain an estimate of the mass which remains bound to the 
cluster, we have calculated a quantity M&, defined as the mass inside the radius 
at which becomes equal to the escape velocity. The time variation of Mb is 
indicated by the dashed curve in Fig. 4. At r = 3*3, for example, the radius at 
which <w> becomes equal to the escape velocity is about 15 pc, and the mass inside 

this radius is about 2* 5 x 104 M0. 
It is of interest to compare the time scale for the escape of stars, defined here 

by te=\d\n M/dt^1, with the central relaxation time Tc. Over the first io9yr 
of the evolution, during which there is little change in the structure of the cluster, 
we obtain | A*/A In M\ = 3*5x io10yr, which is about 39 times the initial 
relaxation time at the centre. Over the first 1010 yr we have 

|A¿/ÁlnM| = 5-oxTo1 5*ox io10yr, 

or about 56 times the initial value of Tc. At ¿ = io10yr the instantaneous value 
of te/Tc is about 2-2 x 102, and thereafter this ratio increases continually, reaching 
a value of approximately 3 x 103 at r = 3*3 (here we have used Mb in place of 
M in calculating te). Thus it is clear that the ratio teITc is quite sensitive to the 
structure of the cluster and increases by a large factor during the evolution. 
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No. i, 1970 The evolution of star clusters 99 

Fig. 4. The variation with time of the mass of a globular cluster {Case 1). M denotes the 
total mass inside the outer boundary at r — 100 pc, and Mb is an approximate measure 
of the mass which remains gravitationally bound to the cluster {see text). 

Similar conclusions and a similar range of values for te¡Tc were obtained by- 
King (1966), who considered a sequence of simple tidally bounded cluster models 
with increasing central concentration. It is difficult to make a more quantitative 

comparison with King’s results, however, since the present models differ some- 
what in structure from those studied by King; also, we note that while King 
predicted a nearly constant mass-loss rate, the present results give a steadily 
increasing mass-loss rate. In any case, the present results and those of King 
(1966) make it clear that the more classical theories of the escape of stars from 
clusters, e.g. King (1958), do not adequately represent the escape rate since they 
do not take into account the effect of the varying structure of the system or the 
effect of a tidal boundary. 

According to the formula given by King (1962), the tidal limiting radius of a 
cluster should vary proportionally to M1/3 as the mass of the cluster decreases. 
To test the importance of this variation in radius, the calculations were repeated 
with a boundary radius varying as M1/3; the radius then decreases by about a 
factor of 2 over the time interval of the calculations. The results are in all respects 
quite similar to those obtained with a fixed boundary; in fact, they would be closely 
reproduced by simply truncating the previously calculated models at a radius 
which decreases proportionally to M1/3. Calculations were also made with a 
fixed radius of 200 pc instead of 100 pc, and again the results for the region inside 
r = 100 pc are very similar to those previously calculated. Thus it appears that 
the exact location of the boundary is not a matter of critical importance, at least 
as far as the evolution of the central part of the system is concerned. 

In order to test the importance of the assumed initial conditions, calculations 
were made for a number of different initial models for a globular cluster. The 
various initial density distributions tried are listed in Table I, along with the 
initial values of Tc and t/Tc. In all cases the total mass is 2x io5M0 and the 
boundary radius i? is 100 pc. In Cases 2, 3, and 4 the initial density distribution 
has been chosen such that the density vanishes at the outer boundary, as advocated 
by King (1962, 1966). It is evident from the values of t¡Tc listed in Table 1 that 
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Case 
No. 

1 

2 

3 

4 

Richard B. Larson Vol. 150 

Table I 

pa{r) 
(MG/pc3) 

218 

188 

5/2 

+ (r/5)2 i+CR/5)2J 

239 [(i+(»-/3-5)2) _(i + W3-S)2) ] 

151 [i+(W3-5)2-i+(-R/3-5)2] 

3/2 

To t/Tc 
(io8 yr) 

9-0 

7-5 

4‘9 

4*3 

29 

46 

82 

152 

the rate of evolution of the cluster, as judged by the time required to reach infinite 
central density, is strongly dependent on the initial structure of the cluster. 
Examination of the initial models shows clearly that the rate of evolution is closely 

related to how nearly the central part of the cluster approaches an isothermal 
structure with a Maxwellian velocity distribution; the more closely it approaches 
an isothermal structure, the slower is the evolution. 

As an example of the results obtained with a different initial density distribu- 
tion, we present some results for Case 4 of Table I, which is the one differing 
most from Case 1 which we have already described. The time development of 
the density distribution for Case 4 is illustrated in Fig. 5. In this case the evolution 
proceeds more slowly than in Case 1, and after io10 yr the central density has 

togr(pc) 

Fig. 5. The time development of the density distribution for a globular cluster (Case 4). 
The curves are labelled with the corresponding values of r in units of io6 yr. 
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increased by only about 45 per cent to 2-2x 102 M0/pc3. Although the density 
distribution for Case 4 is initially rather different from Case 1, the two density 
distributions become more nearly similar as the evolution proceeds, and for 
central densities above about io5 MQ/pc3 they become almost indistinguishable 
in form. However, they still differ significantly for central densities characteristic 
of real globular clusters ( < 103 M0/pc3); thus it is clear that the presently observed 
structure of globular clusters cannot be explained solely on the basis of relaxation 
or evolutionary effects, but must still reflect the initial conditions. Thus if the 
globular clusters are all as similar as was claimed by King (1962), this must be 
ascribed to some similarity in the conditions of formation, unless additional 
relaxation is produced by some mechanism not considered here. Alternatively, 
the apparent similarity in structure of the globular clusters may just reflect the 
well-known ease of fitting the observations with a wide variety of theoretical 
models. 

We note also that, although the initial model has a density distribution which 
vanishes at the boundary, the evolved models all have a finite boundary density 
which increases with time. This occurs because of the finite and steadily increasing 
flux of stars escaping from the cluster, which requires a finite density at the 
boundary. In fact, there will be a finite density even outside the boundary, due 
to stars which have recently escaped from the cluster, and the density distribution 
will vary continuously across the boundary. Thus the concept of a discrete boundary 

Fig. 6. The variation with time of pc, ocC) and t/Tc for a globular cluster {Case 4). 
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characterized by a sharp cutoff in the density distribution is seen to be only an 
idealization; in general, a cluster will not show a sharp cutoff in the density distri- 
bution, and the boundary might be difficult to define with any precision. 

The variation of log log and log (r/Tc) with log r in Case 4 is shown 
in Fig. 6. During the later stages of the evolution the curves have very nearly 
the same slopes as for Case 1 ; however, for a given r, pc is smaller by a factor of 
o*57 and olc is smaller by a factor of 0*69 than in Case 1. Thus although the 
density and temperature distributions eventually become almost identical in form 
in Cases 1 and 4, there remain scale factors which differ between the two cases 

and which depend on the initial conditions. Similarly, the way in which the mass 
varies with time is much the same in the two cases, except that for a given value 
of T the mass is smaller in Case 4 than in Case 1 by a factor of about o • 77. 

4. EVOLUTION OF A GALACTIC CLUSTER 

In the case of small clusters with w# 100 stars, it is no longer valid to assume, 
as is the case with large systems, that relaxation effects occur primarily as the 
result of a sequence of small perturbations to the stellar motions ; large perturbations 
become quite important. Therefore the assumptions underlying the Fokker-Planck 
equation begin to break down, and theories such as the present one which are 
based on the Fokker-Planck equation cannot be expected to give very accurate 
results. Nevertheless, it seems interesting to try this case and see how the results 
compare with previous theories for small clusters. 

As a typical mass for a galactic cluster we have adopted M = 100 MG, and 
for a tidal limiting radius we have taken i? = 10 pc. The factor In (D^x^V^IzGm) 
occurring in the relaxation terms has been set equal to a constant value of 3 

throughout the calculations. For the initial model we have adopted a polytrope 
of index 5 with a density distribution given by 

p('')-3’1 [nW2]S,2Mo/pcS' <5) 

The initial velocity dispersion at the centre is olc
1/2 = 0*20 pc/106 yr, and the 

corresponding relaxation time is Tc = 1 - 3 x 107 yr. The evolution of the density 
distribution with time is illustrated in Fig. 7, where the curves are again labelled 
with the corresponding values of r in units of 106 yr. The time required to reach 
infinite central density is 4*1 x io8yr, or about 31 times the initial value of Tc. 
In the case of a galactic cluster the central part of the system runs out of stars 
at a relatively early stage in the evolution; in fact, at the last time shown in Fig. 7 
(r = 7’o), the mass inside the point where the density drops to half its central 
value is only about o-8MG. Thus it would not make much sense to carry the 
calculations any farther, if indeed this far. 

The variation of log pc, log ac, and log (r/Tc) with log r is shown in Fig. 8. 
The curves are seen to differ somewhat from those for a globular cluster (Fig. 2); 
in particular, we note that the curve for log (t/Tc) in Fig. 8 continues to rise 

steeply with no sign of levelling off. The primary reason for the difference in 
evolution between a globular cluster and a galactic cluster appears to be that in 
the case of the globular cluster the relaxation time Tc is always much longer than 
the dynamical time, as measured for example by the free-fall time tf at the centre, 
whereas in the galactic cluster Tc is of the same order as tf. In the present example, 
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No. i, 1970 The evolution of star clusters 103 

tog r (pc) 

Fig. 7. The time development of the density distribution for a galactic cluster with initial 
density distribution given by equation (5). The curves are labelled with the corresponding 
values of r in units 0/ 106 yr. 

the relaxation time rc is initially about 3 times longer than the free-fall time 
tf at the centre; at t^i*6x io2, Tc becomes equal to tf, and after this time Tc 

is smaller than tf. In this case, since the orbital periods of the stars are for the 
most part considerably longer than £/, the orbital periods are also longer than the 
relaxation time Tc \ consequently the orbital motions are unable to respond immedi- 

ately to relaxation processes, and the rate of evolution of the system becomes 
limited by the time scale of the orbital motions. In fact, we find in the present 
example that the ratio r/tf is more nearly constant than the ratio r/Tc, and it is 
closer to unity during the later stages of the evolution; for example, at r = 7-0 
we have rjtf~ 120 and tITc — ^6o. Thus the time scale of evolution appears to 
be more closely related to the dynamical time than to the relaxation time. 

The variation with time of the total mass of the cluster is shown in Fig. 9. 
In this case the mean outward velocity (u) never exceeds the escape velocity, so 
there is no distinction between M and M&. It is evident in Fig. 9 that the mass-loss 
rate remains nearly constant as the system evolves, instead of increasing with 
time as was found for a globular cluster. The reason for this appears to be that 
the mass-loss rate is limited by the time scale of the orbital motions of the stars 
in the outer part of the cluster; this time scale, as we have seen, is considerably 
longer than the relaxation time at the centre, and it does not change much as the 
system evolves, so the mass-loss rate remains roughly constant. It is clear also 
that the existence of a tidal limit, represented here by an absorbing wall, is a 
dominant influence in facilitating the loss of stars from the system, since most of 
the stars which cross the boundary have velocities too small to allow them to 
escape to infinity; therefore the mass-loss rate is considerably higher than it 
would be for a completely isolated cluster. 

In order to find how the evolution would proceed for a more nearly isolated 
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Log r(l06yr) 

Fig. 8. The variation with time of pCi «c, and rjTcfor a galactic cluster. 

cluster, the calculations were repeated with a boundary radius of ioo pc instead 
of 10 pc. In this case the evolution of the part of the cluster inside r = 10 pc 
is much the same as previously calculated; however, as might be expected because 
of the larger boundary radius, the mass-loss rate for the system is considerably 

Fig. 9. The variation with time of the mass of a galactic cluster with a tidal limit at 
r = 10 pc. 
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No. i, 1970 The evolution of star clusters 105 

reduced. The variation of mass with time is shown in Fig. 10, where the solid 
curve gives the total mass inside the boundary at r = 100 pc, and the dashed 
curve gives as previously defined. A calculation made with a boundary radius 
of 1000 pc yielded results for and for the mass inside r — 100 pc which are 

not significantly different from those shown in Fig. 10; thus the results shown 
in Fig. 10 may be taken as nearly the same as for a completely isolated cluster. 

100 

^90 

80 

0 I 2 3 4 5 
/(I0 )yr 

Fig. 10. The variation with time of M and Mb for a galactic cluster with a tidal limit at 
r = 100 pc. 

It is of interest to compare the mass-loss rate found here with that predicted by 
previous authors for the same cluster model (i.e., a polytropic model of index 
n ~ $ with no tidal cutoff). If we consider a time interval of 2 - 5 x 108 yr so as to 
be able to compare with the predictions tabulated by Widen (1968), we find that 
Mb decreases by 5-0M0 during this time interval. Comparison with Wielen’s 
Table 2 shows that this result is in good agreement, at least in order of magnitude, 
with the various classical estimates of the escape rate for an isolated cluster. For 
example, the theory of King (1958), when applied to the same initial model as 
considered here, predicts a mass loss of 3*0M0 in 2*5X io8yr. If we were to 
put In (Dmgi)X(V

2yi2Gm) = 3*0 in King’s formulas, as has been done in the 
present work, they would predict a mass loss of 3 • 8 M0 in 2 • 5 x 108 yr. 

Unfortunately, neither the present results nor the classical theories agree 
with the results of w-body calculations for isolated clusters, which in the case of 
equal masses show a much smaller escape rate than that predicted classically 
(Widen 1968). Hénon (i960) argued that the escape rate for an isolated cluster 
should be much smaller than that predicted classically, since the usual assumption 
that a star changes its energy through a succession of small increments will not 
lead to the escape of the star, but only to a gradual increase in the size of its orbit ; 
the only stars which escape, according to Hénon, are those which acquire the 
necessary energy in a single encounter. It is not clear to what extent this argument 
is applicable to a galactic cluster, where the time scale for large changes in the 
energy of a star is comparable with or less than the orbital period; however, the 
predicted mode of escape, i.e. through a single large change in energy, appears 
to be verified by the /z-body calculations, at least for small clusters with nxioo 
stars. In any case, it seems clear that the concept of a gradual diffusion of stars in 
velocity space, which is implicit in the Fokker-Planck equation and therefore 
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also in the present calculations, does not adequately predict the rate of escape of 
stars from small isolated clusters. 

If we return to the more realistic case of a cluster with a tidal boundary, how- 
ever, the diffusion process can still lead to the escape of stars, since stars need 
only reach the tidal boundary in order to escape; thus the present method may 

in fact give better results in this case than in the more artificial case of a completely 
isolated cluster. Widen (1968) found that the inclusion of tidal effects led to a 
great increase in the escape rate; over a period of 2* 5 x 108 yr he obtained a mass 
loss of 60-70 M0, which is about 2*5 times as large as the mass loss of 25 M0 

found in the present calculations (Fig. 9). In this case the difference may be due 

to the fact that Wielen’s calculations for the tidally bounded case were made 
with a distribution of masses, which is known (at least in the case of an isolated 
cluster) to lead to a substantially higher escape rate than is the case with equal 
masses. 

5. EVOLUTION OF A DENSE GALACTIC NUCLEUS 

The possibility that some exceptionally dense galactic nuclei may evolve to 
the stage where collisions between the stars become important has been a subject 
of considerable interest in recent years because of its possible connection with 
quasi-stellar objects (Spitzer & Saslaw 1966; Spitzer & Stone 1967). Von Hoerner 
(1968) has discussed the evolution of dense galactic nuclei using a simple theory 
for the dynamical evolution of a stellar system, and has shown how a dense galactic 
nucleus might within 1010 years evolve into a collision-dominated state resembling 

a typical quasi-steller object in its principal properties. According to Von Hoerner, 
this could be achieved if the central part of the nucleus originally has a mass of 
about 2 x 107 M0 and a radius of about o-6 pc, corresponding to a central density 

of about 2 x 107 M0/pc3. It must be assumed that this high initial central density 
was produced at the time of formation of the system, before all of the proto- 
galactic material had been converted into stars. The formation of a centrally 
condensed system with a sufficiently high central density might occur in the way 
that was described by Larson (1969). 

To illustrate how a dense galactic nucleus might evolve, we have considered 
a system having a mass of 108 M0, a boundary radius of 104 pc, and an initial 
density distribution given by 

p{r) 2-8 XI07 
(6) 

For this density distribution the central velocity dispersion is 

ac
1/2 = 2*o x 102 pc/106 yr 

and the central relaxation time is Tc = 2-i x io8yr. The quantity 

In (-Dmax< IzGtri) 

has in this case been set equal to 20 throughout the calculations. 
The evolution of the density distribution in the region inside r — 100 pc 

(a region which contains ~qo per cent of the total mass) is shown in Fig. 11. 
In this case the time required to reach infinite central density is 2*6x io10yr, 
which is about 124 times the initial value of Tc. As we have noted previously, 
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Log r (pc) 

IO7 

Fig. ii. The time development of the density distribution for a dense galactic nucleus 
with initial density distribution given by equation (6). The curves are labelled with the 
corresponding values of r in units of io6 yr. 

the time required to reach infinite central density is quite sensitive to the structure 
of the system, and can be as short as 30 times the initial value of Tc, or less; 
thus no special significance attaches to the evolution time of 2*6x io10yr found 
here, and it is possible that with different initial conditions the evolution to infinite 
central density could have occurred in io10 yr or less. 

It is interesting to note the form of the density distribution found in the 
present results and to compare it with the form predicted by the theory of Von 
Hoerner (1968). At the latest time shown in Fig. 11 (r = 11), the curve is approxi- 
mately linear between r~4x io_3pc and r~4xio-2pc, with a mean slope 
d In p/d In r~ —z-6; this is not very different from the value of —2*4 predicted 
by Von Hoerner for the inner part of an evolving cluster. (In the case of a globular 
cluster, the corresponding slopes obtained from Figs 1 and 5 are about —2-5 
and —2*6 respectively.) Between r~io-1pc and r~i pc there is another nearly 
linear section of the curve with a mean slope of about —4*5, which is somewhat 
steeper than the slope of —3 *75 predicted by Von Hoerner for the outer part 
of an evolving cluster. Here the difference may be related to the fact that in the 
present calculations the velocity distribution becomes strongly anisotropic in the 
region in question (4<a//3<5o), whereas Von Hoerner’s theory assumes that 
the velocity distribution is always isotropic. In the outermost part of the system 
(r>3opc), the curve is again nearly linear, with a slope of about —2-2. This 
outermost region is populated mainly by stars which are in the process of escaping 
from the system, and is characterized by nearly constant values of the mean 
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outward velocity (<^)~90 pc/106 yr) and of the velocity dispersion 

(a:1/2~7o pc/106 yr). 

In reality the escape of stars from a galactic nucleus would presumably be in- 
hibited by the gravitational field of the whole galaxy, which is much more massive 
than the nucleus; however, in view of the insensitivity of the results to the exact 
boundary conditions, this would probably not make much difference to the evolu- 
tion of the central part of the nucleus. 

Fig. 12. The variation with time of pc, ac> and t¡Tc for a dense galactic nucleus. 

The variation of log pc, log ac, and log (t/Tc) with log r is illustrated in Fig. 12. 
During the later stages of the evolution we have approximately 

/>coct-i-47 \ 
acOCT-0*30, f (7) 

and the ratio r/Tc has a value of about 5 x 102 and is increasing only very slowly 
with time. The exponents in equations (7) are somewhat different from the values 
of — i’SS and — 0-22 predicted by the theory of Von Hoerner (1968); however, 
they deviate in the opposite direction from the values of —1*56 and —0*37 
predicted by the earlier theories of Von Hoerner (1958) and King (1958). The 
closest agreement appears to be obtained with the simple derivation of Miller & 
Parker (1964) which assumes that the escaping stars carry away no energy; this 
gives pcocr-1*43 and acocT-0,29. This agreement is perhaps not surprising, since 
examination of the results shows that the escaping stars do indeed carry away 
only a very small amount of energy—-the mean energy of an escaping star is only 
# io~2 times the mean energy of the stars in the system. 
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We note that the calculations which we have described for a galactic cluster, 

a globular cluster, and a dense galactic nucleus all fall into a sequence of increasing 
mass, increasing size, increasing central concentration, and increasing (i.e. less 
negative) values for the slope d In pc¡d In r. Examination of the results shows 
that, because of the increasing central concentration along this sequence, the 
stars in the outermost part of the system, including the escapers, carry a smaller 
and smaller fraction of the total energy of the cluster. Simple derivations such 
as those given by King (1958) and Miller & Parker (1964) predict that the smaller 
the energy carried away by the escaping stars, the less negative is the value of 
d In pcjd In r, the limiting value for no energy loss being equal to — 1 - 43. These 
predictions fit well with the results of the present calculations. 

At the latest time shown in Fig. 11 (r = n), the central density /oc is 9 -1 x 1012 

Mo/pe3 and the velocity dispersion aic
372 is 6*4x io2 pc/106 yr, which implies a 

relaxation time Tc = 2-3 x io4 yr. Under these conditions collisions between the 
stars become quite important. The collision time may be estimated as 

icon = (NaV)~\ 

where N is the number density of stars, a is the collision cross-section, and 
V = (6a)1/2 is the mean relative velocity between two stars. If we take a^77(i?o)2 

as a representative cross section for a strongly disruptive collision and use the 
values quoted above for the central density and velocity dispersion, we obtain a 
collision time ¿C0ii~2 x io4 yr at the centre. Since this collision time is com- 

parable to the relaxation time Tc and much shorter than the evolutionary time 
scale T, it is clear that the collisions must by this time have an important and 
probably dominant effect on the further development of the system. The radius 
and mass over which the density and the collision time are within an order of 
magnitude of their central values are roughly 5 x io~3 pc and io6 MQ respectively, 
and the total collision rate is of the order of 15 strongly disruptive collisions per 
year. These numbers are quite similar to the results obtained by Yon Hoerner 
(1968), and they seem capable of accounting for some of the principal properties 
of quasi-stellar objects, particularly when one considers that the system is rapidly 
evolving into a state with even more extreme properties (Spitzer & Saslaw 1966; 
Spitzer & Stone 1967). 

6. CONCLUSIONS 

In so far as a comparison can be made, the results of the present investigation 
appear to be in general agreement with the predictions of classical relaxation 
theory. Thus the present technique may be regarded as essentially just a more 
elaborate and precise formulation of classical relaxation theory, which however 

is more powerful in that it allows the evolution of a stellar system to be computed 
in considerably more detail than was previously possible. 

The general conclusions of this project are summarized below. For the most 
part these conclusions are not new, but they are demonstrated particularly clearly 
in the present calculations. 

(1) The evolution of a stellar system is always such that the central part of 
the system tends to relax toward an isothermal structure with a nearly Maxwellian 
velocity distribution. (This contrasts with the results for the artificial problem 
studied in Paper I, where the evolution was away from an isothermal sphere; 
however, the final state obtained in Paper I was still more nearly isothermal than 
any of the models calculated in the present paper.) 
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(2) The rate of evolution and the rate of escape of stars from a cluster are 
strongly dependent on its structure, and are slower the more nearly the central 
region approaches an isothermal structure. Thus as a cluster evolves the rate of 
evolution slows down relative to the central relaxation time, although in absolute 
terms it continues to speed up. 

(3) In no case was a very close approach to homologous evolution of the 
central part of the system obtained; even though the density distributions approach 
similar forms, there remain scale factors which differ from case to case and which 
are determined by the initial conditions. If the state of homologous evolution 
found in Paper I is ever reached, it must be at such an advanced stage of evolution 
as to be of little or no relevance for real stellar systems. 

(4) The velocity distribution always tends to become strongly anisotropic in 
the outer part of the system, in the sense that the stellar motions tend to be pre- 
ferentially in the radial direction. However, the degree of anisotropy appears not 
to be as extreme as that postulated in some previous cluster models. 

(5) The ratio of the relaxation time to the dynamical time is an important 
parameter for the evolution of a star cluster, and this leads to some qualitative 
differences in the evolution of globular and galactic clusters. 

(6) The existence of a tidal boundary has a strong influence on the escape 
rate, particularly in the case of galactic clusters, where the escape rate is increased 
by a large factor compared with an isolated cluster. 

(7) In general the density distribution varies smoothly across the ‘ boundary * 
of a cluster, and does not suffer a cutoff or a sharp drop at the boundary; this 
might make it difficult in some cases to distinguish observationally any well-defined 
boundary for a star cluster. 
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