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SUMMARY

Numerical calculations have been made for the early stages of collapse of an
axisymmetric cloud, both with and without rotation. The results show that,
in the absence of rotation, deviations from spherical symmetry do not usually
grow as the cloud collapses; instead, pressure forces remain sufficient to
maintain rough spherical symmetry and prevent the cloud from fragmenting
during its collapse. Fragmentation can occur, but usually only if the initial
configuration is already unstable to fragmentation. In the presence of rapid
rotation, however, the central part of the cloud always appears to condense
into a rotating ¢ doughnut’ or ring with a density minimum at the centre.
Such a rotating ring is almost certainly unstable and will presumably fragment
into two or more condensations orbiting around each other. The formation
in this way of a binary or multiple system of stars would largely resolve the
classical ¢ angular momentum problem ’ and might account for the fact that
most stars are in fact found in binary or multiple systems; even the single
stars might be accounted for as escapers from unstable multiple systems.

I. INTRODUCTION

In recent years a number of authors have calculated the early stages of the
collapse of a spherically symmetric, non-rotating gas cloud (Bodenheimer &
Sweigart 1968; Hunter 1969; Larson 1969; Penston 1969; Disney, McNally &
Wright 1969; for a brief review see Penston 19771). Despite considerable differences
in the assumptions adopted by the various authors, there is substantial agreement
concerning the major features of the collapse. At the high densities ( 210721 g cm™3)
required for the collapse of a protostellar cloud with mass in the normal stellar
mass range, cooling mechanisms are very efficient and maintain the temperature
almost constant at a value of the order of 10 to 20°K; the cloud therefore collapses
essentially isothermally until the central part of the cloud becomes opaque to
infra-red radiation, which occurs at a density of the order of 10713 g cm=3. The
collapse is always found to be extremely non-homologous and the density distribu-
tion rapidly becomes very sharply peaked at the centre, the density law being
approximately of the form p oc 7~2. This non-homologous character of the collapse
is of great importance for the later development of the protostar (Larson 1969;
Larson & Starrfield 1971).

It is evident, however, that the assumption of spherical symmetry which has
characterized all calculations up to the present is a rather strong idealization, since
there is no a priori reason to expect a collapsing cloud to maintain spherical sym-
metry; in fact, there are arguments which suggest that the assumption of spherical
symmetry may be a poor one. It is known, for example, that if a uniform, pressure-
free spheroid collapses gravitationally, its eccentricity increases steadily during the
collapse (Lynden-Bell 1964; Mestel 1965a); the calculations of Lin, Mestel & Shu
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(1965) show that an oblate spheroid rapidly flattens to a disc, and a prolate spheroid
collapses to a line. The flattening of an oblate spheroid will be inhibited if finite
pressure gradients are included, but Mestel (1965a) has argued that the eccentricity
will still continue to increase indefinitely as the collapse proceeds. For a prolate or
cylindrical mass distribution, even the inclusion of finite pressure gradients cannot
prevent collapse to an infinitely thin cylinder if the mass per unit length exceeds
a certain critical value. These results suggest that a spherically symmetric collapsing
cloud will be unstable to the growth of both oblate and prolate deformations from
spherical symmetry. In order to investigate this question by numerical calculations,
it is clearly necessary to relax the assumption of spherical symmetry and compute
the collapse of an axially symmetric cloud.

A related question which cannot be answered by spherical collapse calculations
is whether an isothermally collapsing cloud will tend to fragment into smaller
condensations during its collapse. While it is generally believed that fragmentation
does frequently occur, the process of fragmentation remains poorly understood,
despite much discussion (Mestel 1965a, b; Hunter 1967; Arny 1967). Since frag-
mentation constitutes a deviation from spherical symmetry, any tendency toward
fragmentation will be suppressed in calculations which assume spherical sym-
metry throughout the collapse. To study the fragmentation problem numerically,
it would be desirable to undertake a full three-dimensional calculation, and it is
not clear a priori that much can be learned from an axisymmetric (two-dimensional)
calculation; nevertheless, this at least represents a first step in relaxing the assump-
tion of spherical symmetry.

Our primary reason for studying the collapse of an axially symmetric cloud has
been to investigate the effect of rotation on the collapse. The effect of rotation has
been a long-standing bugaboo in the theory of star formation. It has frequently
been pointed out, for example, that if a protostellar cloud begins its collapse with
an angular velocity comparable with that of galactic rotation, its angular momentum
is far too large to allow it to collapse into a star. Because of this, it has usually been
thought that angular momentum must somehow be removed from the cloud during
its collapse, and magnetic fields have often been invoked for this purpose (see, for
example, Mestel 1965b). The assumption that the initial rotation of the cloud is
related to galactic rotation may be questioned, since neither stellar rotation axes
nor the axes of binary systems show any preferential orientation perpendicular to
the galactic plane (cf. also Disney et al. 1969). The observed random orientation
of rotation axes suggests that the rotational motions may have originated in random
turbulent motions in the interstellar medium; in this case, the rotational velocities
of protostellar clouds would be expected to be comparable with their translational
velocities, which would lead to angular velocities even kigher than that of galactic
rotation. The effect of rotation would then be even more important than previously
believed. In any case, it seems difficult to escape the conclusion that for most
protostellar clouds the effects of rotation must become important at an early stage
in the collapse, long before stellar conditions are reached.

In this paper we report the results of a first crude attempt to compute numeri-
cally the collapse of an axisymmetric gas cloud, assuming a variety of initial con-
ditions, both with and without rotation. Because the possible role of magnetic
fields in the collapse of a protostar is still quite uncertain, and since the inclusion
of their effects would greatly complicate the calculations, we have neglected mag-
netic fields, as well as other possible sources of viscosity. The following section
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outlines the equations and assumptions which have been employed in these
calculations, and Sections 3 and 4 give the results for non-rotating and rotating
clouds respectively. The implications of these results for our understanding of star
formation and fragmentation are discussed in Section 5.

2. EQUATIONS AND ASSUMPTIONS

The present calculations have been intended to represent, as nearly as possible,
a generalization to two dimensions of the calculations already made for the collapse
of a spherical protostar (Larson 1969). Consequently, we have adopted the same
assumptions as before concerning the composition and opacity of the protostellar
material. During the initial optically thin stages of the collapse, the collapsing
cloud remains very nearly isothermal, and a temperature of 10°K has usually been
assumed, as in the spherical calculations. Also, we have adopted the same boundary
conditions as before, i.e. a spherical boundary fixed in space. In the spherical case,
it is well documented from the results of several investigations that the exact choice
of boundary condition makes little difference to the gross features of the collapse.
In the present case, it may seem restrictive to impose a spherical boundary on a
cloud whose internal density distribution is not spherical; however, we find in these
calculations that the most significant developments, including the largest deviations
from spherical symmetry, always tend to occur near the centre of the cloud, i.e.
well away from the boundary, so that the influence of the boundary condition
should not be very important.

The present calculations have all been made for a cloud with a mass of one
solar mass, and the radius has in most cases been set equal to 1017 cm. This radius
is somewhat smaller than the value of 1-63 x 1017 cm used in the spherical calcula-
tions (Larson 1969); the reason for this, as will be explained more fully in Section 4,
is that when the cloud is rotating, it must be compressed somewhat more than a
non-rotating cloud in order for gravity to overcome the combined effects of pressure
and centrifugal forces and cause the cloud to collapse. Since the cloud remains
isothermal during the early stages of the collapse, with which this paper is primarily
concerned, the results can be scaled to other values of the mass, radius, and
temperature as long as the ratio M/RT is kept constant.

The numerical calculations have been made using an Eulerian grid with
spherical polar coordinates 7, 8, ¢, where the azimuthal coordinate ¢ does not
appear explicitly in the calculations because of the assumption of axial symmetry.
Accordingly, we give below the Eulerian equations of inviscid gas dynamics ex-
pressed in spherical polar coordinates. Denoting by %, v and w the velocity com-
ponents in the 7, § and ¢ directions respectively, and denoting by ® the gravita-
tional potential, we have

Zf+ ( P+ 7 sin 939(31119,07)) - ° @)
67) ua( )+v8v Irg_lg_l_{rg%_;%_é 0 (3)
%z':“*'% o O g g G 0w) =0 @
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The gravitational potential @ is related to the density p through the Poisson

equation
2p — 12 za_q)) _I_E( ‘D)=
vie r?2 Er(r or +rsin060 in 0 r 00 47Gp- (©)

In equation (5), Fr and F, are the energy fluxes carried by radiation in the r and 8
directions respectively. As in the spherical case, we have considered it an adequate
approximation to relate the radiative energy flux to the local temperature gradient
by using the radiative diffusion equation; we then have

F, = 1670 T3 ﬂ" F, = _ 167731 0T )
3kp  Or 3kp 1 00"

The possible occurrence of shock fronts in the flow has been allowed for by
means of the standard artificial viscosity method, generalized to two dimensions
as described in the Appendix. Although incipient shock fronts are sometimes en-
countered in the calculations, they do not appear to play a major role duringthe
relatively early stages of the collapse studied in this investigation. The manner of
constructing difference equations and the methods used in solving them are out-
lined in the Appendix. In the present method, gravitational forces are obtained by
solving the Poisson equation (6) simultaneously with the other equations at each
time step. The only complication in using the Poisson equation is that boundary
values of the potential ® must be specified at all points on the boundary at each time
step. In some of the preliminary calculations, approximate values for @ at the
boundary were computed on the assumption that all of the mass in the cloud is
concentrated at the centre; later, accurate boundary values for ® were computed
by integrating over the mass distribution at each time step. This made almost no
difference to the results; thus the accurate specification of boundary values for ®
does not appear to be of crucial importance for the results.

Because of the strong demands on computer time and storage made by the two-
dimensional calculations, the calculations have so far been made only with very
coarse numerical grids. Also, it was thought that it would be more instructive to
be able to run many numerical experiments of low or moderate accuracy, rather
than only a few of high accuracy; again, a coarse grid is dictated. Most of the
calculations have been made with a 12 x 6 grid, with 12 subdivisions in the radial
(7) direction and 6 in the angular (6) direction. (We assume symmetry with respect
to the equatorial plane § = /2, so that only the interval o< 8 <=2 is considered.)
Needless to say, it is difficult to attain anything approaching quantitative accuracy
with such a coarse grid; however, considerable effort has been expended in an
attempt to ensure that the results are at least qualitatively reliable, and it is believed
that this is the case.

3. THE COLLAPSE OF AN AXISYMMETRIC NON=-ROTATING CLOUD

In order to investigate numerically whether deviations from spherical symmetry
tend to grow indefinitely during the collapse of an isothermal cloud, a number of
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calculations have been made for clouds whose initial density distributions deviate
from spherical symmetry and are either elongated (prolate) or flattened (oblate).
The calculations have all assumed a cloud mass of one solar mass, a radius of
1017 cm, and a temperature of the order of 10°K; the average density of the cloud
is then 4-8x10719gcm™3, i.e. approximately five times that required by the
Jeans criterion, so that gravity should be safely dominant over pressure forces. In
most cases it was possible to continue the calculations until the central density
reached a value of the order of 10715 g cm~3 or higher.

In the first calculations to be tried, the initial density distribution was approxi-
mately uniform but was given a small or moderate deformation from spherical
symmetry, either prolate or oblate. The results of these calculations revealed no
tendency for the initial deviation from spherical symmetry to be magnified during
the collapse; the density distribution always remained approximately spherical,
and the results were in all respects quite similar to those obtained previously for
the collapse of a spherical cloud. An interesting feature of the results was that the
(small) deviations from spherical symmetry tended to oscillate between prolate
and oblate forms, although usually only half a cycle of the oscillation could be
completed before the cloud became highly centrally condensed. Thus an initially
prolate density distribution ‘ rebounded ’ into an oblate shape, whereas an initially
oblate form rebounded into a prolate shape before rapid central condensation
dominated the motion. These results clearly indicate that pressure forces, while
not strong enough to prevent collapse, are nevertheless strong enough to maintain
approximate spherical symmetry during the collapse and prevent the indefinite
growth of small deviations from spherical symmetry.

In view of the above results, some further experiments were undertaken in which
the initial density distribution deviated more drastically from spherical sym-
metry. Two sets of calculations were made, one with an elongated cylindrical
initial density distribution, and a second with a flattened plane-parallel initial
configuration. In both cases the calculations were repeated with several different
assumed temperatures near 10°K in order to investigate the effect of varying the
ratio of pressure to gravitational forces. (Changing the temperature by a certain
factor is equivalent to leaving the temperature unchanged but changing all lengths
by the same factor.) The results of the two sets of calculations are illustrated in
Figs 1 and 2 respectively.

Fig. 1(a) illustrates the initial density distribution assumed in the first set of
calculations. The initial density distribution is given by

po(7, 0) = 7-8 x 10718[1 + (107 sin O/R)2]~1 g cm™3

where R = 1017 cm is the radius of the cloud; the isodensity contours for this
density distribution are then vertical cylinders, as illustrated in Fig. 1(a) for one
quadrant of the (7, 6) plane. (In virtue of the assumed symmetries, only one
quadrant of the (7, §) plane need be illustrated; the others may be obtained by
reflection about the axes.)

Fig. 1(b) shows the density distribution resulting at a typical time in the
collapse (¢ = 3-9x 1012s) when a temperature of 13°K is assumed. In this case
the horizontal pressure gradient is sufficient to cause the cloud to expand hori-
zontally and assume an oblate shape; the density distribution remains oblate as the
cloud collapses and becomes more centrally condensed, although the density
contours appear to become less oblate with time in the central rapidly collapsing

28
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{a) r=0

(b)  r=39+I2
7=13 °K

r (10" ¢cm)

F1G. 1. Results for the collapse of a cloud with an initially cylindrical density distribution.
(@) Density contours for the initial density distribution; (b) density contours after 3-9 x 1012 5
Jor T = 13°K; (c) density contours after 2+6 x 10125 Sfor T = 10°K; (d) density contours
after 2:1 X 1025 for T' = 7-5°K. Solid curves refer to integral values of log density, as
marked; dashed curves are for half-integral values. Dots indicate the grid points at which
densities are calculated.
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(c) t=26+12

N 7=10 °K

(@  t=21+12
\ T=7-5 °K

r (106 cm)

Fic. 1—continued
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part of the cloud. Fig. 1(c) shows the result obtained when a temperature of 10°K
is assumed; in this case the horizontal pressure gradient is less important and the
cloud retains a prolate shape, although the density distribution in the central
part of the cloud becomes very nearly spherical as the collapse proceeds. Finally,
Fig. 1(d) shows the result obtained when a temperature of 7-5°K is assumed. In
this case the horizontal pressure gradient is insufficient to prevent collapse in the
horizontal direction, and the cloud begins to collapse toward a very thin spindle.
At the same time, however, the cloud develops two density maxima somewhat
removed from the centre along the vertical axis (at # ~ 1016 cm); it appears that
the cloud has begun to fragment into two subcondensations.

These results can be understood by comparing the assumed initial conditions
with those required for the equilibrium of an isothermal cylinder. According to
Ostriker (1964a) and Mestel (1965a), a cylindrical equilibrium configuration is
possible only if the mass per unit length along the cylinder has the unique value

M 22T
I= ¢ )

It is expected (Mestel 1965a) that if the line density of a cylindrical mass distribu-
tion is smaller than this critical value the cylinder will expand indefinitely, whereas
if the line density exceeds this value the cylinder will collapse indefinitely toward
its axis. For the mass distribution illustrated in Fig. 1(a), the value of M/L is about
1-0x 1016 g cm~1, whereas the values of 2Z7T/G are about 1-3 X 1016, 1-0x 1016,
and 7-6 x 1015 g cm~1 for the assumed temperatures of 13, 10, and 7-5°K. Thus for
T = 13°K, the cylindrical mass distribution should begin to expand laterally; for
T = 10°K, pressure and gravity should nearly balance, whereas for 7' = 7-5°K
the cylinder should begin to collapse indefinitely toward its axis. In all cases there
is nothing to prevent collapse in the vertical direction, so that even if the line
density is initially below the critical value (8), collapse in the vertical direction
eventually brings it above this value, thus ensuring collapse in the horizontal
direction as well. Once the cloud has begun to collapse in both coordinates, the
form of the density distribution (i.e. its prolateness or oblateness) does not appear
to change greatly, except in the case with T' = 7-5°K, where a tendency toward
fragmentation is observed.

The tendency for a thin collapsing cylinder to break into fragments along its
length is expected from an elementary application of the Jeans criterion (McCrea
1957). While there appears to be no detailed stability analysis for an isothermal
cylinder, the Jeans length for such a cylinder is comparable with its thickness, so
that fragmentation would be expected to occur on length scales comparable to or
greater than the thickness of the cylinder. On this basis, one would expect the
cloud to fragment into at least two subcondensations in the case illustrated in
Fig. 1(d).

Fig. 2(a) shows the initial density distribution assumed in the second set of
calculations, the results of which are illustrated in Fig 2(b)—(d). The initial density
distribution is given by

po(r, 0) = 23 x 10718[1 4 (107 cos O/R)2]~1 g cm~3,

and the initial density contours are horizontal planes, as shown in Fig. 2(a).
Fig. 2(b), (c) and (d) illustrate the results obtained when temperatures of 12-3,
10 and 5°K are assumed. With 7 = 12-5°K, the vertical pressure gradient is
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strong enough to make the cloud expand vertically and assume a prolate shape, as
seen in Fig. 2(b); in the central part of the cloud, however, the density distribution
becomes more nearly spherical as the collapse proceeds. When T = 10°K there
is less vertical expansion, and the outer density contours become almost spherical,
as seen in Fig. 2(c); in this case, however, the density distribution in the central
part of the cloud becomes elongated, and its prolateness increases steadily as the
collapse proceeds. When T = 5°K, as in Fig. 2(d), pressure gradients are in-
sufficient to halt collapse in the vertical direction (except for a short time at the
beginning of the calculations), and the density distribution remains quite oblate
during the collapse, although the oblateness appears to decrease gradually in the
central part of the cloud as the collapse proceeds.

The fact that the density distribution in the central part of the cloud becomes
steadily more elongated in the case with 7" = 10°K (Fig. 2(c)) may be understood
from the fact that in this case the material remains concentrated near the equatorial
plane, so that when the cloud collapses horizontally to form a prolate configuration,
the line density in the prolate configuration exceeds the critical value (8). The
prolate configuration then cannot resist indefinite collapse toward its axis, and the
later development of the density distribution in the central region will presumably
resemble that seen in Fig. 1(d). In the case of a very flattened density distribution,
as in Fig. 2(d), there is no corresponding possibility for rapid collapse to an
infinitely thin disc, since there always exists an equilibrium configuration for any
value of the surface density (Spitzer 1942; Ledoux 1951). In the case illustrated in
Fig. 2(d), collapse in the vertical direction is in fact significantly retarded by pres-
sure gradients, and continuing vertical contraction is made possible mainly by the
increasing surface density produced by collapse in the horizontal direction. Since
the horizontal collapse is, as always, non-homologous, the horizontal extent of the
rapidly collapsing  core ’ of the cloud shrinks just as rapidly as the vertical extent,
so that the oblateness of the density distribution remains approximately constant,
instead of increasing steadily with time as predicted by Mestel (1965a) on the
assumption of homologous collapse in the horizontal direction.

Summarizing the results of this section, we find that even when the assumption
of spherical symmetry is relaxed, the behaviour of a collapsing cloud is generally
very similar to what was previously found for a spherically symmetric cloud. The
collapse is in all cases very non-homologous, and the cloud develops a strong
central condensation, just as in the spherical case; also, except for the most extreme
deviations from spherical symmetry, as in Fig. 1(d), the radial density variation is
roughly of the form p oc =2 in both the horizontal and vertical directions. The
numerical results show no tendency for small deviations from spherical symmetry
to be magnified during the collapse, provided that the initial conditions are roughly
in accordance with the Jeans criterion. Even large deviations from spherical sym-
metry are usually not amplified during the collapse; this was found to occur only
in the case of a prolate mass distribution whose line density exceeds the critical
value (8). In this case, however, the elongated cloud becomes unstable to fragmenta-
tion into smaller condensations along its length as it collapses.

An important implication of these results is that, contrary to most previous
expectations, an isothermal and roughly spherical cloud generally does not become
unstable to fragmentation as it collapses gravitationally; such a cloud usually
collapses into a single central condensation and does not develop more than one
density maximum. Fragmentation can occur, but it appears from the present results
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b)  +=50+12
\ 7=12'5 °K

r(10'% ¢m)

F¥ic. 2. Results for the collapse of a cloud with an initially plane-parallel density distribu-
tion. (@) Density contours for the initial density distribution; (b) density contours after
50X 10125 for T' = 12'5°K; (c) density contours after 37 X 10125 for T = 10°K; (d)
density contours after 27 x 10125 for T' = 5°K.
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(c) t=37+12
7=10°K

r (10'6 ¢m)

F1c. 2—-continued
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that this will happen only with somewhat special initial conditions such that a
tendency toward fragmentation is either present initially or arises at an early stage
in the collapse. Classical discussions of the fragmentation problem (e.g. Mestel
1965a) have usually assumed that the overall collapse of the cloud is roughly
homologous; in this case, pressure forces become less and less important as the
collapse proceeds, allowing fragmentation into smaller and smaller subcondensa-
tions to occur. In reality, however, we find from the numerical calculations that the
collapse is always quite non-homologous, and that because of this, pressure forces
generally remain sufficiently important during the collapse to inhibit fragmentation
and prevent the growth of large deviations from spherical symmetry. We shall
discuss the implications of this result again in Section 5; meanwhile, we proceed
in Section 4 to consider the effect of rotation on the collapse.

4. THE COLLAPSE OF A ROTATING CLOUD

The calculations of the collapse of a rotating cloud have all been made for a
mass of one solar mass and a temperature of 10°K. Most of the calculations have
been made with a cloud radius of 1017 cm, but other values have also been tried.
In all cases, the initial density distribution has been assumed to be uniform, and
the cloud has been assumed to start with uniform (solid body) rotation. Since the
primary purpose of these calculations has been to investigate the effects of rotation
on the collapse, the cloud has usually been given an initial angular velocity suffi-
cient to make the effects of rotation become important at a relatively early stage in
the collapse. According to the discussion in the Introduction, it is likely that this
will commonly be the case.

In carrying out the calculations, it was soon found that the results were quantita-
tively very sensitive to the conservation or non-conservation of angular momentum
during the collapse. Since it is impossible to conserve the angular momentum of
each fluid element exactly with an Eulerian method, some numerical inaccuracies
are bound to arise, particularly with the present coarse grid. In an effort to ensure
that the results are nevertheless qualitatively reliable, considerable experimentation
has been done with modifications to both the difference equations and the grid
structure. In all cases the results obtained were qualitatively similar, except for a
few cases where it was obvious that large errors were present. On the basis of this
experience, it is believed that the results are qualitatively correct, and that quantita-
tive errors do not usually exceed a factor of 2.

The first result to be found from the collapse calculations was that the cloud
can collapse only if its initial angular velocity wq is smaller than a certain critical
value which depends on the cloud radius R; if wg exceeds this value, the cloud does
not collapse but settles into a stable equilibrium configuration with only moderate
flattening and central concentration. Another way of stating this result is that for
any given value of wy, there is a critical value of the cloud radius R, such that the
cloud will collapse only if its radius is smaller than this critical value. The critical
radius depends inversely on wy, so that the higher the angular velocity, the more
compressed the cloud must be in order for collapse to occur. Thus the presence of
rotation modifies the Jeans criterion, and a generalized form of the Jeans criterion
must take into account the effects of both pressure and centrifugal forces in
inhibiting gravitational collapse.

A number of trial collapse calculations were made in order to determine the
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critical angular velocity w, for a number of different values of R. The results are
shown in Table 1, where R is expressed in terms of R, = 1-7% 107 cm, the
approximate maximum value of R for which collapse can occur in the absence of
rotation (cf. Larson 1969, where a more accurate value of 1-83x 1017 cm was
determined), and w, is expressed in terms of wy = (47Gpo/3)1/2, the value of
wq for which centrifugal force and gravity initially just balance in the equatorial
plane.

TaBLE 1
R (cm) R/Rp we (s71) wel wm
1-0(+17) 059 ~3:2(—13) ~0'9
1°4 (+17) 0-82 ~1+1(—13) ~0°§
163 (+17) 0-96 ~3:3(—14) ~02

It was attempted to find a simple approximate formula which would represent
the numerical results in Table I and serve as an approximate generalization of the
Jeans criterion for the case of a rotating cloud. Within the (low) accuracy of the
results, we find that a rotating cloud with a fixed boundary will collapse if the
following condition is satisfied:

ERr <042 %’%’— 2T

or (9)

GM
Rz042 GriER

where
Er=1w2R2

is the rotational kinetic energy of the cloud per unit mass. We note that 27 is
just two-thirds of the thermal kinetic energy per unit mass, and may be thought
of as the kinetic energy of thermal motions parallel to the equatorial plane; thus
the rotational and thermal kinetic energies for motions parallel to the equatorial
plane are roughly additive in their effects in inhibiting the collapse of the cloud.
We note also that a stability criterion similar in form to (g), but with somewhat
different numerical coefficients, was derived by Chandrasekhar (1961) for the case
of an infinite, uniform, and uniformly rotating medium.

If condition (9) is satisfied and the rotating cloud does collapse, its behaviour
is found to be qualitatively much the same in all cases, regardless of the exact
choice of R or wp (provided that wg is not too small). At first, gravity dominates
and the cloud begins to condense centrally in much the same way as is found for a
non-rotating cloud. As the material falls inward the rotational velocity increases,
as required by the conservation of angular momentum, and the density distribution
becomes flattened toward the equatorial plane, particularly near the centre of the
cloud where the density and the rotational velocity increase most rapidly with time.
Eventually, after a time depending on the initial angular velocity, centrifugal
forces in the central part of the cloud begin to exceed gravity, and collapse per-
pendicular to the axis of rotation is halted near the centre of the cloud. Meanwhile,
collapse along the axis of rotation, which is not inhibited by centrifugal forces,
continues unimpeded until nearly all of the material near the axis of rotation has
fallen into the central part of the cloud.
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After most of the low angular momentum material near the axis of rotation has
fallen into the centre of the cloud, the central density stops increasing and even
begins to decrease as the material rebounds outward in the equatorial plane. At the
same time, material from the outer part of the cloud continues to fall inward and
accumulate in a ring-shaped region around the periphery of the central region where
the collapse has been halted. The density builds up rapidly in this ring-shaped
region, while the central density continues to decrease, so that the density distribu-
tion begins to resemble a ‘ doughnut’ with a density minimum at the centre.
Once such a ‘ doughnut ’ or ring has begun to form, the gravitational attraction of
the ring draws more and more material into it, and the ring becomes steadily more
massive and more condensed.

Fig. 3 illustrates the result of a typical calculation, made assuming a cloud radius
of 1017 cm and an initial angular velocity of 3-0x 10713 571, roughly 10 per cent
less than the critical angular velocity w, ~ 3-2 x 10713 571, The results are shown
for a time 1-2x 1013 s or about four free-fall times after the beginning of the
collapse; by this time the ring has become well marked and contains about 15 per
cent of the total mass of the cloud. Fig. 3(a) and (b) show the density contours in
one quadrant of the (7, 6) plane, where the vertical axis is the axis of rotation;
Fig. 3(b) is an enlargement of the central part of Fig. 3(a) to show more clearly the
ring, whose radius is only about 5 per cent of the radius of the cloud. Fig. 3(c) and
(d) show the velocity vectors at each grid point, projected onto the meridional
plane. Fig. 3(c) shows clearly that the cloud collapses much more strongly along
the axis of rotation than in the perpendicular direction, and Fig. 3(d) shows that
in the central part of the cloud the material is all falling into the ring. In the vicinity
of the ring the rotational velocity w, which is not illustrated, increases with increas-
ing distance from the centre, reaching a maximum value of about o-6 km s™1 at a
radius r >~ 7 x 1015 cm, which is approximately at the outer edge of the ring.

The formation of a ring appears to be a very general result of the collapse of a
rapidly rotating cloud, since this result was found in nearly all of the calculations
tried, and even in a few cases where the effects of rotation did not become important
until the central part of the cloud had become opaque; in these cases, the material
in the ring attained densities above 10711 g cm—3 and temperatures above 100°K.
The non-homologous nature of the collapse appears to play an important role in
the formation of the ring, since this causes the collapse to be halted and reversed
first at the centre of the cloud, while material farther from the centre continues to
fall inward and accumulate in a ring-shaped region around the periphery of the
expanding central region. However, even apart from the details of the collapse
process, it is not surprising that a ring should appear, since it is known that a
flattened rotating disc is subject to numerous instabilities, both axisymmetric and
non-axisymmetric (Hunter 1963). In the present calculations, where axial sym-
metry is assumed, only the axisymmetric or ‘ ring mode ’ instabilities can appear.
The Maclaurin spheroids are known to become secularly unstable to the formation
of a ring when the ratio of thickness to diameter becomes less than about one-sixth
(Bardeen 1971); this degree of flattening agrees roughly with that observed in the
central part of the cloud when the ring begins to appear. Thus it is probably to be
expected that a ring will form just as a result of the ring mode instability of a
rotating disc, if for no other reason; it is worth noting, however, that in the present
calculations the ring begins to form during the dynamical collapse phase, before
any equilibrium disc has been formed.
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The radius of the ring is not accurately determined in the present calculations,
but the results nevertheless show clearly that the ring radius is very sensitive to the
initial angular velocity wo, being roughly proportional to wg3. Also, the structure
and evolution of the ring are not accurately calculated but it is clear that the ring
tends to collect a substantial part of the total mass of the cloud (more than half, in
some cases), and to become thinner and more condensed as it grows in mass; the
thickness of the ring eventually becomes less than 10 per cent of its radius. In
addition, the radius of the ring tends to shrink with time. Within the accuracy of
the calculations, the properties of the ring appear to agree approximately with those
derived for thin isothermal rings by Ostriker (1964b).

An important property of the isothermal rings studied by Ostriker (1964b) is
that for an equilibrium isothermal ring there is a unique value for the mass per
unit length which is the same as that for an isothermal cylinder, as given in equation
(8). In the present calculations, the line density of the ring happens to be approxi-
mately equal to the critical value (8) at the time represented by Fig. 3, but it con-
tinues to increase to higher values as the ring accretes more material. When the
line density exceeds the critical value, no equilibrium configuration is possible;
the ring must collapse to an infinitely thin hoop, and according to the formulas of
Ostriker, the radius of the ring must at the same time shrink indefinitely. In reality,
this predicted behaviour of the ring will almost certainly not occur, since such a
thin collapsing ring would almost certainly be highly unstable to non-axisymmetric
perturbations and would break up into fragments, perhaps in much the same way
asthethinisothermal cylinder studied earlier. The ultimate outcome of the collapse
of a rapidly rotating cloud would then be the formation of a system of two or more
condensations orbiting around each other.

It is likely, in fact, that non-axisymmetric instabilities will arise in the collapsing
cloud even before a well-defined ring has been formed. This is suggested by the
fact that Goldreich & Lynden-Bell (1965b) found that a rotating gaseous configura-
tion can become unstable to the growth of non-axisymmetric perturbations even
before the axisymmetric ring mode instabilities appear. Also, it is known that the
Maclaurin spheroids become unstable to non-axisymmetric deformations before
becoming unstable to the axisymmetric modes (Lyttleton 1953). Thus it may well
be that in reality a ring never forms at all, and the cloud condenses directly into a
system of two or more condensations orbiting around each other. This type of
result is also suggested by the work of Arny (1967). The ring found in the present
calculations would then be just an artifact of the assumption of axial symmetry,
i.e. an artificially axisymmetrized form of a more realistic non-axisymmetric con-
figuration consisting, for example, of two condensations orbiting around each
other.

In any case, whether or not a ring ever forms, it appears inescapable that the
ultimate outcome of the collapse of a rapidly rotating cloud will be the formation
of a binary or multiple system of condensations orbiting around each other. Since
fragmentation into a binary system is the simplest possibility and represents the
lowest order deviation from axial symmetry, one might expect that this would be
the most frequent outcome of the collapse. This possibility is reminiscent of
classical results in the theory of equilibrium configurations for rotating incom-
pressible fluids (Lyttleton 1953) which suggest that fission into a binary system may
eventually occur as the density of such a rotating equilibrium configuration is
gradually increased. In the present situation, however, we are envisioning not a
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F16. 3. Results for the collapse of an initially uniform and uniformly rotating cloud with
initial angular velocity wo = 30 x 1018 51, (a) Density contours Jor the outer part of the
cloud after 1-2 x 1013 5; (b) an enlargement (7-6 X ) of the central part of Fig. 3(a) showing
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the density contours in the inner part of the cloud; (c) the velocity vectors corresponding
to Fig. 3(a), projected into the meridional plane; (d) the velocity vectors corresponding to
Fig. 3(b). Solid curves refer to integral values of log density, as marked; dashed curves are
for half-integral values. Dots indicate the grid points at which densities are calculated.
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fission process but a condensation process in which two or more centres of con-
densation are formed orbiting around the centre of the cloud.

It is clear that once a rotating collapsing cloud becomes unstable to non-
axisymmetric deformations, the two-dimensional (axisymmetric) computing method
used in the present calculations is no longer adequate to follow the further develop-
ment of the cloud, and a full three-dimensional treatment becomes necessary.
This is the primary reason why it has not been attempted in the present calculations
to follow the collapse of a rotating cloud much beyond the point where a well-
defined ring is formed and non-axisymmetric instabilities seem likely to arise (if
they have not already appeared).

5. DISCUSSION

The results described in the previous sections have important implications for
our understanding of fragmentation and star formation. First, it appears from the
results of Section 3 that in the absence of rotation an isothermal cloud does not in
general become unstable to fragmentation as it collapses gravitationally; if the
initial conditions approximately satisfy the Jeans criterion, and if the cloud is
initially roughly spherical, then pressure forces remain sufficiently important
during the collapse to maintain approximate spherical symmetry and prevent
fragmentation. Fragmentation can occur, but usually only in circumstances where
the initial configuration is already unstable toward fragmentation, as was the case
for the calculation illustrated in Fig. 1(d). As we have seen in Section 3, this
somewhat unexpected result arises because of the unavoidable non-homologous
nature of the collapse.

It is still possible, of course, that fragmentation may occur in circumstances
where the temperature of the material decreases rapidly as the density rises; such
a situation was found by Hunter (1969) and by Disney et al. (1969) for the early
stages of collapse of a very massive, tenuous interstellar cloud. However, near
isothermality is expected to prevail at densities greater than about 10721 g cm—3;
this is still too low a density to allow fragmentation into condensations with masses
in the normal stellar mass range.

A further difficulty for fragmentation in a non-rotating cloud arises from the
fact that even if separate subcondensations do begin to form, as in Fig. 1(d), there
is nothing to prevent them from falling together and merging into a single con-
densation; thus it is not clear that permanent fragmentation can occur at all. In
any case, it would seem that fragmentation will at least be inhibited in the absence
of any rotational or turbulent motions to prevent the fragments from falling
together and merging.

From the results of Section 4, we see that the situation is quite different if the
cloud is rotating rapidly. In this case, unless magnetic torques are strong enough
to damp out rotational motions on a time scale less than the free-fall time, devia-
tions from spherical symmetry are steadily magnified during the collapse, and it
appears very likely that the central part of the cloud will eventually fragment into
a system of two or more condensations orbiting around each other. If so, we see
that, instead of inhibiting the fragmentation of a collapsing cloud, rotation will in
fact have the opposite effect of promoting fragmentation (provided, of course, that
the amount of rotation is not large enough to prevent collapse altogether). In view
of the conclusion reached above that fragmentation will usually not occur in an
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initially quiescent, non-rotating cloud, it thus appears that rotation plays an
important role in enabling fragmentation to occur, and may in fact be the primary
cause of fragmentation.

Layzer (1963) has argued that permanent fragmentation cannot occur since,
according to Layzer, the further contraction of any fragments that form will be
prevented by their intrinsic rotational motions, and they will therefore merge and
be obliterated during the continuing overall collapse or flattening of the cloud. The
present results for the collapse of a rotating cloud show, however, that the presence
of rotation can halt collapse perpendicular to the axis of rotation, but cannot
prevent some parts of the cloud (i.e. the material in the ring) from permanently
attaining densities much higher than the average density of the cloud. If the ring
breaks into fragments, as seems likely, the fragments will be prevented by their
orbital motions from falling together and merging, so that permanent fragmenta-
tion is indeed possible. The prospects for fragmentation should, if anything, be
even better if the cloud is not constrained to remain axially symmetric, as in the
present calculations, since this constraint prevents the material from becoming as
condensed as it might otherwise become, should it prefer to condense directly into
two or more orbiting centres of condensation without first forming a ring.

If the final outcome of the collapse of a rapidly rotating cloud is the formation
of a binary or multiple system of stars, this would largely dispose of the classical
‘ angular momentum problem ’, since much of the initial angular momentum of the
cloud can go into the orbital angular momentum of the stars. It would then seem
less necessary to invoke magnetic forces to remove angular momentum from the
cloud, as has often been done. In addition, we would obtain an attractive explana-
tion of the fact that most of the stars in the sky are in fact found in binary or
multiple systems (Heintz 1969). We note that if the ring illustrated in Fig. 3(b)
were to fragment into a binary system with the same angular momentum, the
separation of the resulting binary would be about 103 A.U., comparable with that
of a wide visual binary. Since the radius of the ring is very sensitive to the initial
angular velocity of the cloud (approximately proportional to wg3), a binary with a
much smaller separation can be formed if the cloud starts out with a smaller
angular velocity. Also, a close binary can result from a later stage in the fragmenta-
tion of a rapidly rotating cloud (see below).

While it thus appears that the formation of binary and multiple systems can
be accounted for as a result of the collapse of rotating clouds, we have yet to account
for the many single stars in the sky. A simple and attractive possibility for ex-
plaining the single stars as well as the binary and multiple systems within a common
framework arises if a rotating cloud often condenses into a small multiple system
containing say, 3 or 4 stars. Numerical n-body calculations such as those of
Agekyan & Anosova (1968) and Standish (unpublished) show that such systems
are nearly always unstable and rapidly disintegrate, ejecting (single) stars until
only a stable binary is left. In this way most of the single stars in the sky might be
accounted for. Such a mechanism might also account for the more eccentric binary
systems, since the binaries resulting from the disintegration of small multiple
systems tend to have large eccentricities (Standish, unpublished). The fact that
the frequency of binaries appears to be lower than average among the least massive
(red dwarf) stars (Heintz 1969) is consistent with this picture, since the least
massive stars in a multiple system are the ones most likely to he ejected and least
likely to remain in a stable binary system.
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Observational evidence that at least the more massive stars are commonly
formed in binary or multiple systems comes from the fact that the O stars, which
are very young and recently formed objects, nearly always occur in binary or
multiple systems (Blaauw 1961). Single O stars are very rare, except for the ‘ run-
away ’ stars, which are nevertheless thought to originate in binary systems which
have been disrupted as a result of explosive mass loss from one of the stars (Blaauw
1961). A possible alternative explanation for some of the ‘ runaway ’ stars is that
they may have resulted from the dynamical disintegration of close multiple systems
of massive stars, in much the same way as we have suggested for the origin of the
‘ normal ’ single stars.

A possibility which we have so far not considered is that the fragments which
form during the collapse of a rotating cloud may themselves have substantial rota-
tional motions. The likely angular velocities of the fragments cannot be reliably
estimated from the present results; however, in the absence of magnetic or viscous
forces, Kelvin’s circulation theorem applies (Hunter 1964) and shows that the
vorticity of any fluid element must increase as it is compressed. If so, simple argu-
ments suggest that centrifugal forces will be approximately as important for the
fragments as they were for the original cloud. The fragments may then subdivide
into even smaller condensations, and the fragmentation process may continue in
this way through several stages until large optical depths are reached and rising
temperatures and pressures inhibit further fragmentation. A final stage of fragmen-
tation can occur after the temperature has become high enough to dissociate Hy
molecules, thus triggering a second phase of dynamical collapse (Larson 1969);
fragmentation during this phase would in fact be required to account for the close
spectroscopic binaries.

Without undertaking full three-dimensional collapse calculations, it is difficult
to make any quantitative predictions about the final outcome of the fragmentation
process sketched above. It seems likely, however, that it would eventually lead to
the formation of a number of accreting cores or ‘ embryo stars > moving around
in an extended envelope of uncondensed material which still contains most of the
original mass of the cloud (cf. Larson 1969). The embryo stars would continue to
accrete material from the surrounding envelope until all of the remaining un-
condensed material has either been accreted or blown away by a newly formed
O star. This picture might account, at least qualitatively, for the observed mass
distribution of the stars; one would expect massive stars to be relatively scarce, for
example, since only a few favoured objects will be able to build up very large
masses before the accretion process is cut off by exhaustion of the uncondensed
material, or, more likely, by the formation of an O star.

Yale University Observatory, New Hawven, Connecticut 06520
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APPENDIX
THE NUMERICAL METHOD

The numerical method used in this project has been designed to represent, as
nearly as possible, a generalization to two dimensions of the method previously
used for computing the collapse of a spherical protostar (Larson 1968, 1969). In
particular, it was desired that in the special case of spherical symmetry the present
calculations should reduce identically to the previous ones. Consequently, an
implicit Eulerian computational scheme has been adopted, and spherical polar
coordinates (7 and ) have been used to define the numerical grid. In the spherical
case, Eulerian methods have the advantage over Lagrangian ones that a suitable
grid structure can be set up at the beginning and used throughout the calculations
without the need for extensive re-zoning. In the two-dimensional case this ad-
vantage becomes even more important, since the cells in a Lagrangian grid tend to
become highly distorted and stretched out.

As before, the cloud has been divided into a set of concentric shells whose
boundaries are arranged such that the ratio of radii of neighbouring shell boundaries
is a constant; usually a ratio of about 1-5 has been used (cf. the value of 4/2 used
previously). These spherical shells are divided into annular zones by a set of
conical surfaces of constant 8; usually the 8 values are not equally spaced, but are
spaced more closely near the equatorial plane in the case of a flattened density
distribution, or near the axis of symmetry in the case of a prolate distribution. The
variables of state p, T, P, and E, the gravitational potential @, and the rotational
velocity w are assigned values at the central point of each cell in the (7, 6) plane:
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the locations of these central points are indicated by the dots in Figs 1-3. The
velocity components # and v are assigned values on the cell boundaries perpendicu-
lar to the corresponding directions of motion. The potential gradients and radiative
fluxes are also evaluated at the cell boundaries.

The partial differential equations (1)-(6) have been represented by difference
equations constructed as far as possible in a manner similar to that used in the
spherical case; for example, pressure gradients are replaced by logarithmic pressure
differences, and where average values of quantities are required, geometric means
are used for the variables of state and arithmetic means are used for the velocities
(which can change sign). Artificial viscosity terms are evaluated separately for
motions in the # and v directions and are inserted separately in the difference
expressions referring to motions in the % and v directions.

Since backward time differences are used to ensure stability, the difference
equations are implicit and must be solved by an iterative method. We have used
the standard Newton-Raphson technique, which involves linearization of the
difference equations and the solution of a large set of linear equations. In the case
of two or more space dimensions, the matrix of coefficients no longer has all of its
non-zero elements near the diagonal; some non-zero elements occur far from the
diagonal. This makes a direct method of solution impractical, and one must resort
to iterative methods for solving the linear equations. We have used an alternating
direction method (Varga 1962), adapted for the case of six simultaneous differential
equations instead of only one. Although some difficulties were encountered in
obtaining good convergence with the alternating direction method, in the calcula-
tions reported here it was found possible to obtain adequate convergence with
4-6 iterations of the alternating direction method for each of 3-4 Newton-Raphson
iterations required in each time step. With a 12 x 6 grid, it then requires roughly
30's to compute each time step on an IBM 7094 computer, and a typical collapse
calculation requires about 20-30 min.
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