FTI6OMNRAS, I45. “Z711 5

Mon. Not. R. astr. Soc. (1969) 145, 271-295.

NUMERICAL CALCULATIONS OF THE DYNAMICS
OF A COLLAPSING PROTO-STAR*

Richard B. Larson

(Communicated by P. Demarque)

(Received 1969 February 4)

SUMMARY

Numerical calculations of the dynamics of a spherically symmetric collapsing
proto-star of one solar mass have been made for various initial conditions.
Calculations have also been made for masses of 2M  and 5M . In all cases
the collapse is found to be extremely non-homologous and is such that a
very small part of the cloud’s mass at the centre reaches stellar densities and
stops collapsing before most of the cloud has had time to collapse very far.
The stellar core thus formed subsequently grows in mass as material falls
into it, finally becoming an ordinary star when all of the proto-stellar material
has been accreted. During most of this time the stellar core is completely
obscured by the dust in the infalling cloud, the absorbed radiation reappearing
in the infra-red as thermal emission from the dust grains. The resulting star
is almost a conventional Hayashi pre-main sequence model, but it appears
rather low on the Hayashi track. For masses much greater than about 2M
the convective Hayashi phase does not exist at all. It appears that certain
properties of 'T' Tauri stars may find explanation in the results of the present
calculations.

In an appendix to the paper it is shown that limiting forms may be derived
for the density and velocity distributions near the centre of an isothermally
collapsing sphere. This may be shown to be possible also for a sphere with a
polytropic equation of state. Numerical results are presented for the limiting
solution in the isothermal case.

I. INTRODUCTION

The problem of the dynamical collapse of a proto-star under its own self-
gravitation has recently been considered by a number of authors, including Gaustad
(1963), Hayashi & Nakano (1965) and Hayashi (1966). These authors did not
actually solve the equations governing the collapse, which can only be done
numerically, but attempted to deduce the main features of the collapse by intro-
ducing a number of simplifying assumptions; for example, it has often been
assumed that the collapse is roughly homologous and that the density distribution
in the collapsing proto-star can be adequately approximated by a polytropic
density distribution. It has been the purpose of the present investigation to dispense
with some of these assumptions and solve numerically the hydrodynamical equa-
tions governing the collapse, with the aim of computing in detail the evolution of a
proto-star as it collapses under its self-gravitation.

* Based on a Ph.D. Thesis submitted at the California Institute of Technology (1968),
which may be consulted for more details. Copies of the thesis are available from University
Microfilms, Ann Arbor, Michigan 48106 (order no. 68-13,070).
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Since very little is known about the circumstances under which star formation
begins, it is necessary to start with a number of more or less arbitrary assumptions.
Our approach will be to consider a spherical volume of interstellar material having
a specified mass, usually one solar mass, and to follow its collapse from simple
assumed initial conditions. In order for this material to collapse gravitationally,
its initial density must be above a certain minimum value which for one solar
mass is several orders of magnitude higher than typical interstellar densities.
We do not consider the problem of the formation of a cloud with this high density,
but simply assume that such a cloud must form at some stage in the course of
star formation. In view of the many uncertainties, we have for the most part
not considered it worthwhile in this project to use other than the simplest possible
assumptions for the initial and boundary conditions for the collapsing cloud.

In Sections 2 and 3 we describe the various assumptions and approximations
which we have adopted in the present calculations, and in Section 4 we describe
the results of a collapse calculation for a proto-star of one solar mass made using
these assumptions. In Section 5 we describe the results of some further collapse
calculations in which certain of the assumptions and input parameters have been
changed in order to test their importance for the results. In Section 6 we summarize
the important results of the present calculations and indicate the possible relation
between our results and certain properties of T Tauri stars.

2. ASSUMPTIONS AND INPUT DATA
(a) General assumptions

In previous work it has generally been assumed for simplicity that the collapse
of a proto-star is spherically symmetrical, and rotation, magnetic fields, and
internal turbulent motions have been neglected. In order to keep the numerical
calculations tractable, we have retained these assumptions in the present work.
In reality some of the neglected effects, particularly rotation, are almost certainly
important, so the resulting model is clearly highly idealized and may not be at
all realistic.

(b) Composition of the proto-stellar material

We assume, following Gaustad (1963), that we are dealing with star formation in
an H 1 region with typical Population I composition, and we adopt Gaustad’s com-
position parameters. We assume that, at the rather high densities (210719 g cm—3)
required for the collapse of a proto-star of one solar mass, the hydrogen is
essentially all in molecular form. Dust grains are assumed to exist with the
properties adopted by Gaustad; the dust then constitutes roughly 1 per cent of
the total mass of the material.

(c) Opacity

The opacity of the proto-stellar material has been discussed by Gaustad
(1963), and Rosseland mean opacities based on Gaustad’s data have been tabulated
by Hayashi & Nakano (1965). Gaustad found that as long as dust grains exist at
all, they are by far the dominant source of opacity. Despite the work of Gaustad,
however, the nature and infra-red absorption properties of the dust grains must
still be considered as quite uncertain, particularly at the higher temperatures
where the more volatile grain constituents such as HyO evaporate. Consequently
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we have not considered it worthwhile in this project to represent in detail the
variation of opacity with temperature indicated by Gaustad’s data, but have instead
used a simple constant value for the Rosseland mean opacity: kg=0-15cm2 g~1.
The dust grains have been assumed to evaporate at a temperature of 1400°K.

When the dust grains evaporate, the Rosseland mean opacity drops by a
large factor and molecular absorption then becomes an important contributor
to the opacity at temperatures up to about 3000°K (Tsuji 1966). For the present
purposes, however, the opacity in this temperature range is not very important
and the opacities of Cox (1966) for 7> 1500°K appear to be adequate. In order
to avoid certain numerical difficulties associated with a discontinuous drop in
opacity at the dust evaporation temperature, we have used a logarithmically
linear interpolation of the opacity between 1400°K and 2000°K; the Cox opacities
have then been used for T'>2000°K.

(d) Temperature

At the high densities relevant for the collapse of a proto-star of one solar
mass, the dominant heating effect is expected to be compressional heating of the
material as it collapses gravitationally at approximately the free-fall rate, and the
dominant cooling processes are expected to be collisional transfer of energy from
gas molecules to dust grains and radiative cooling of the dust grains. We have
calculated the temperature resulting from these heating and cooling effects and
we find, in approximate agreement with Hayashi (1966), that the temperature
remains nearly constant at about 10°K over the whole density range from the
minimum density required to ensure gravitational collapse (~ 10719 g cm—3) to
the density at which the central part of the cloud becomes optically thick
(~10713 gcm™3). Accordingly we have assumed that initially and throughout
the early optically thin stages of the collapse the proto-stellar cloud is isothermal
at a temperature of 10°K.

(e) Boundary conditions

For the boundary condition on the collapsing proto-star we have in most
cases adopted the simplest assumption, namely that the outer boundary of the
cloud remains fixed in space at a constant radius. This corresponds to allotting a
constant volume to each collapsing proto-star in a proto-cluster or region of star
formation. In the lack of further knowledge about star formation, it would appear
difficult to justify any other assumption as more realistic.

(f) Initial conditions

For the initial conditions we have again adopted the simplest assumptions,
namely that the cloud starts from rest with a uniform density distribution. With
our choice of initial and boundary conditions, the maximum cloud radius for
which gravitational collapse will occur has been found from trial collapse calcula-
tions to be given by GM

Rmax=0'46-§7—_‘ (I)

where G is the gravitational constant, M is the mass of the cloud, and # is the
gas constant. For R> Rmax the cloud starts to collapse, but soon rebounds and
then oscillates about an equilibrium configuration without ever collapsing to a
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star. It was found in practice that if the calculations were started with a value
of R very close to Rmax, small inaccuracies in the calculations could cause the
cloud to rebound instead of collapse to a star. In order to avoid this difficulty,
we have set the cloud radius equal to the slightly smaller value

GM
Re=0-41 T (2)

which according to the work of McCrea (1957) and others is small enough to
ensure collapse from arbitrary starting conditions. With M=M_,, T=10°K,
and #=73-36x 107 erg g71°K~1 as appropriate for Gaustad’s composition,
we obtain R;=1-63x 1017 cm, corresponding to an initial cloud density of
1-10X 10719 g cm™3,

The importance of the assumed initial and boundary conditions has been
tested in a number of calculations by the author in which various kinds of initial and
boundary conditions have been tried; similar calculations have also been made by
Penston (1966) and Bodenheimer & Sweigart (1968). It appears from these calcula-
tions that the main features of the collapse are qualitatively much the same in all
cases, regardless of the details of the initial and boundary conditions. Consequently
the choice of initial and boundary conditions does not appear to be of critical
importance, at least as far as the qualitative features of the results are concerned.

3. EQUATIONS AND APPROXIMATIONS

The present calculations have been done mostly with Eulerian or modified
Eulerian computational schemes; accordingly we give below the equations of
gasdynamics and radiation transfer in Eulerian form. These equations are valid
as long as the material is optically thick and as long as convective energy transport
does not become important.

o (3)
FOCRES
3E+p%'+ (gf+Pa;:)+43ﬂV§r£;= (5)
- e o

L —643’"’ LEALEN (7)

In these equations m is the mass within a sphere of radius 7, u is the flow velocity,
V=1/p is the specific volume, E is the specific internal energy, o is the Stefan—
Boltzmann constant, and « is the Rosseland mean opacity; the other symbols
have their usual meanings. For the two non-trivial boundary conditions which
must be specified at the outer boundary r=R, we have taken u=o0 (corresponding
to a fixed boundary) and T'=10°K.

The use of the radiation diffusion equation (7) requires some discussion, since
we have used this equation even when the material is optically thin and the diffusion
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equation is physically inapplicable. During the initial optically thin stages of the
collapse, the use of the diffusion equation has the effect of artificially holding the
temperature isothermal at the assumed boundary temperature of 10°K. In reality
the temperature during this phase of the collapse is expected to remain nearly
constant at 10°K anyway; thus the use of the diffusion equation may in fact
provide a reasonably good approximation to reality. During the later stages of
the collapse the situation is less favourable, since the luminosity from the central
part of the cloud begins to heat up the outer optically thin parts of the cloud; the
temperatures calculated with the diffusion equation then become much too low
in this region. Over most of the cloud, this error is of little consequence for the
dynamics, since the material is very nearly in free fall anyway. Near the outer
boundary of the cloud the error may become significant, since if the temperature
were correctly calculated the pressure force might become sufficient to retard or
prevent the collapse of the outermost part of the cloud. It does not appear, however,
that this would seriously alter our main conclusions.

During the early stages of the collapse, shock fronts have been treated by the
standard artificial viscosity method, which allows shock fronts to be handled
automatically wherever they may arise in the flow, without the need for a special
treatment. During the later stages of the collapse, however, it becomes necessary
to abandon the artificial viscosity method and use a ‘shock fitting’ technique in
which the shock front is treated as a discontinuous jump in the flow variables.
It also becomes essential to take into account radiative energy transfer in the shock
front; the ordinary adiabatic shock jump conditions cannot be used. We have
not attempted to solve in detail the difficult problem of the radiative transfer in
the shock front, but have instead used some very simple approximations which
appear to be adequate for the present purposes; these are derived and discussed in
Appendix A.

During the later stages of evolution of a proto-star, convective energy transport
becomes important. To take this into account we have used a simplified form
of the conventional mixing length treatment of convection. The mixing length
has been set equal to the density scale height, and the velocity of convection has
not been calculated but has been treated as an arbitrary parameter, for which
a value of 1 km s~—1 has usually been used.

In view of the many uncertainties involved in this project, we have not con-
sidered it worthwhile to seek results of high numerical accuracy, and the calcula-
tions have accordingly been made with rather coarse space and time grids. A
general level of accuracy of the order of 20 per cent or so was considered a reason-
able goal; various checks have verified that numerical accuracies of this order
were indeed generally attained.

4. RESULTS
(2) Instial isothermal phase

Initially there are no pressure gradients in the cloud, so the whole cloud
begins to collapse in free fall. As the material falls inward, the density near the
boundary of the cloud drops, while the density in the interior of the cloud rises;
consequently a pressure gradient arises in the outer part of the cloud, causing
the collapse in this region to be significantly retarded from a free fall. The density
therefore rises more rapidly at the centre than in the outer parts of the cloud,
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and the density distribution becomes peaked at the centre. The collapse of the
central part of the cloud continues approximately as a free fall (even though
pressure gradients are not negligible), and since the free-fall time depends inversely
on the density, the collapse proceeds most rapidly at the centre where the density
is highest; thus the density distribution becomes more and more sharply peaked
at the centre as the collapse proceeds.

T I 1 I

log r

Fic. 1. The variation with time of the density distribution in the collapsing cloud (CGS
units). The curves are labelled with the times in units of 1013 s since the beginning of the
collapse. Note that the density distribution closely approaches the form pocr—2,

The development of the central density peak during the initial isothermal
phase of the collapse is illustrated in Fig. 1. It is evident in this diagram that
as the collapse proceeds the major changes in density occur in a smaller and
smaller region near the centre and on a shorter and shorter time scale, while
practically nothing happens in the outer parts of the cloud. At the latest time
shown, the width of the central density peak is only about 10-3 times the cloud
radius, and the mass contained in this region is also only about 10—3 times the
total mass. This extremely non-homologous character of the collapse is found
to occur regardless of the choice of initial and boundary conditions, and has been
found also in the calculations of Penston (1966) and Bodenheimer & Sweigart

(1968).

(b) Formation of the opaque core

When the central density reaches about 10713 g cm~3, a small region at the
centre of the cloud starts to become opaque; the heat generated by the collapse
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in this region is then no longer freely radiated away, and the compression becomes
approximately adiabatic. The central temperature and pressure then begin to
rise rapidly, soon becoming sufficient to decelerate and stop the collapse at the
centre. There then arises a small central ‘ core ’ in which the material has stopped
collapsing and is approaching hydrostatic equilibrium. Outside this core, the
material is still nearly isothermal and continues to fall inward almost in free fall;
consequently a shock front arises at the boundary of the core, where the infalling
material is suddenly stopped. The initial mass and radius of the core are about
1031 g and 6 1018 cm, respectively, and the central density and temperature
at this time are about 2 x 10710 g cm=2 and 170°K, respectively.

When the material at the centre of the core first stops collapsing there is a
rebound, followed by a series of radial oscillations of the core about an equilibrium
configuration. The rebound and the ensuing pulsations are however not very
large in amplitude (about 10-20 per cent in radius), and do not appear to be of
any importance for the subsequent evolution of the core. As the collapse proceeds,
the core grows in mass due to the infall of the surrounding material; at the same
time, however, the core radius decreases because of radiative energy losses from
the outer layers of the core. Thus the shock front bounding the core actually
moves inward in radius, although it moves outward in mass.

(c) Formation of the second (stellar) core

After the core mass has increased by about a factor of 2 and the radius has
decreased by a similar factor, the central temperature reaches a value of about
2000 °K, at which point the hydrogen molecules begin to dissociate. This reduces
the ratio of specific heats y below the critical value 4/3, with the result that the
material at the centre of the core becomes unstable and begins to collapse dynamic-
ally. Most of the energy generated by this collapse goes into the dissociation of
Hs molecules, so that the temperature rises only slowly with increasing density;
the situation is thus similar to the earlier isothermal collapse of the whole cloud.
In this second dynamical collapse phase, as in the first, the density distribution
in the collapsing region becomes more and more sharply peaked at the centre,
and the time scale becomes shorter and shorter with increasing central density.

The central collapse of the core continues until the hydrogen molecules are
nearly all dissociated and y again rises above 4/3. The central pressure then rises
rapidly and once again becomes sufficient to decelerate and stop the collapse at
the centre. A small central core in hydrostatic equilibrium then arises, bounded
by a shock front in which the surrounding infalling material is suddenly stopped.
When this second core forms there is again a small rebound, followed by a series
of radial pulsations of the core. The initial mass and radius of the second core
are about 3x1030g (1-5x1073M,) and gx10%cm (1-3 R) respectively,
and the central density and temperature are about 2 x 1072 g cm—3 and 2 x 104°K,
respectively.

At the time of formation of the second core, the outer part of the first core
has not yet had time to collapse very. far since the central collapse began, and the
first shock front is still in existence. The density and velocity distributions through-
out the cloud at a time shortly after the formation of the second core are illustrated
in Fig. 2. Because of the smoothing effects of the artificial viscosity method used
in the calculations, the shock fronts appear in this diagram not as discontinuities
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in the flow variables, but most conspicuously as regions of steep positive slope in
the velocity curve.

(d) Expansion of the stellar core

When the second core first forms, the density in its vicinity is so high that
the material is quite opaque, and radiative energy transport is negligible. Thus
the shock front forming its boundary is initially adiabatic. As material falls into

log o
log (-u)

First
core

____g___
__ _Second shock frent
First shock front

log r
F1G. 2. The density and velocity distributions at a time shortly after the formation of the

second (stellar) core (CGS units). The shock fronts are represented by the regions of steep
positive slope in the velocity curve.

this core, the mass originally constituting the first core becomes rapidly depleted,
and the density of the infalling material drops rapidly. Because of the shock jump
conditions, the density inside the shock front also drops rapidly, while the
temperature decreases only by a relatively small factor; therefore, the specific
entropy of the material entering the second core increases, with the result that
the core expands in radius. During this initial expansion phase the core radius
increases roughly proportionally with its mass, reaching a maximum value of
12 R, when the mass reaches 1-0x 1072 M. At this time, which occurs about
1 yr after the formation of the stellar core, the first shock front is still in existence
but is beginning to die out as material falls away from it.

As the core expands, the central temperature and density continually rise, as
does the degree of ionization. Because of the high central density, however, the
rate of increase of the degree of ionization is insufficient to reduce the ratio of
specific heats y below 4/3, so there is no further dynamical collapse of the core.
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The evolution of the stellar core in an HR diagram has been plotted in Fig. 3,
where the initial expanding phase of the evolution is represented by the dashed
section of the curve. The curve has been drawn dashed because it indicates only
the variation in radius and surface temperature of the core; the luminosity indicated
by the curve is not an observationally significant quantity, since the radiation
emitted from the shock front is completely absorbed in the very opaque material
immediately outside the shock front.

- F \ Total mass = 1 Mg
—p\ Initial temp. = 10°K 1o
ol ’0,%\\ Initial density = 10719 g cm-3

\ Free fall time = 2x105yrs

log 7,

Fic. 3. The evolution of the stellar core in an HR diagram. The numbers marked along
the curve are the times in years since the formation of the stellar core. The dashed section
of the curve represents the phase when the luminosity emitted from the core is completely
absorbed in the infalling material, and the beginning of the solid curve represents the point
where about 9o per cent of the luminosity from the core is transmitted outward through
the whole proto-stellar cloud. See text for further explanation of the curve.

(e) Radiative cooling and contraction of the core

When the density outside the shock front drops to about 1078 g cm~3, the
opacity of the infalling material becomes small enough to allow the energy radiated
from the shock front to be transported outward through the infalling material
and eventually escape from the cloud altogether. The luminosity of the proto-
stellar object then increases rapidly from a very small value to a value of about
10 L, as indicated by the beginning of the solid curve in Fig. 3. Because of the
radiative energy loss from the shock front, the specific entropy of the material
entering the core begins to decrease, with the result that the core stops expanding
and begins to contract. Also, a convection zone appears at the surface of the core
and begins to spread inward.

As the temperature and density inside the shock front continue to decrease,
the opacity in the surface layers of the core also decreases, eventually becoming
small enough for radiative energy transfer to become important. The core then
begins to lose a significant amount of energy through the combined effects of
convective energy transport from the interior and radiative energy losses from
the surface layers; as a result the core contracts by a significant factor in radius.
This phase of the evolution, represented in Fig. 3 by the section of the curve
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between approximately 10 and 100 years after the formation of the stellar core, is
quite analogous to the pre-main sequence contraction of a star along the convective
¢ Hayashi track ’. During this phase of the evolution the core mass increases only
slightly to about 1-3x 1072 M. At the end of this phase all traces of the first
core and of the shock front bounding it have disappeared, and there is very little
mass left in the innermost part of the collapsing cloud.

It should be noted that, because of the opacity produced by the dust grains
in the infalling material, the infalling cloud remains optically thick until practically
all of the material has fallen into the core. Thus, although the luminosity emitted
from the cloud is the same as the luminosity of the stellar core, the energy leaves
the cloud as thermal infra-red emission from the dust grains. The spectrum of the
emitted radiation and its variation with time will be considered in a forthcoming

paper.

(f) Main accretion phase

During the later stages of the collapse, the thermal energy of the material
entering the shock front is negligible compared with the kinetic energy. Since the
infalling material has been in free fall from an effectively infinite distance, its
velocity ug just before entering the shock front is given by

1, . _GM
zuz R (8)

where M is the mass and R the radius of the core. Thus as the core contracts,
the kinetic energy inflow to the shock front increases, soon becoming greater
than the energy outflow from the interior of the core. The dominant terms in
the shock front energy equation (A4) then become the kinetic energy inflow and
the radiative energy loss terms, so that equation (A4) reduces to

O'Tg4=%p2|uzl3 (9)

where T, is the effective temperature of the stellar core and pg is the density
just outside the shock front. Equation (9) simply states that the radiative energy
flux leaving the shock front is equal to the kinetic energy flux entering it.

As a result of the increasing surface temperature and the decreasing energy
loss from the interior of the core, the specific entropy of the material entering
the core eventually stops decreasing and begins to increase. Consequently the
core stops contracting and the convection zone in the outer part of the core shrinks
and disappears. During the subsequent evolution the core mass increases by a
large factor, while the radius changes very little, due to the counteracting effects
of increasing specific entropy and increasing mass. Thus the infall velocity ug
and the core surface temperature and luminosity all increase greatly, in accordance
with equations (8) and (9). This is indicated in Fig. 3 by the section of the
curve between approximately 102 and 103 years after the formation of the core.

The radius of the stellar core during the later stages of the collapse is deter-
mined primarily by the specific entropy of the material in the outer part of the
core, i.e. by the recent history of the accretion process; the early history of the
accretion process and the properties of the material in the central part of the
core become less and less important as the collapse proceeds. This is fortunate,
since it means that the effects of any errors or uncertainties arising in the early
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stages of the collapse are damped out as the evolution proceeds and become
unimportant for the final results.

(g) Final stages of the evolution

When approximately half of the total mass has fallen into the core, the rate
of increase of the infall velocity ua becomes insufficient to offset the decrease in
the infall density ps, and the kinetic energy influx $pa|ua|3 begins to decrease.
Consequently the surface temperature and luminosity of the core also begin to
decrease, as indicated in Fig. 3 by the section of the curve between approximately
10% and 106 years. The specific entropy of the material entering the core also begins
to decrease, and a convection zone again appears at the surface of the core and
begins to spread inward. The maximum surface temperature and luminosity,
i.e. about 8300°K and 30 L, respectively, are attained at about 8x 104 years
after the formation of the core, at which time the core mass is 0-56 M.

As the surface temperature and luminosity of the core decrease, the opacity
in the surface layers of the core also decreases, and the energy outflow from the
interior of the core becomes increasingly important. Eventually, after about 106
years, when practically all of the proto-stellar mass has fallen into the core, the
kinetic energy inflow to the shock front becomes negligible compared with the
energy outflow from the interior of the core. The luminosity radiated from the
surface of the core then comes primarily from the interior of the core and no
longer from the kinetic energy inflow. Thus the stellar core becomes essentially
an ordinary star, and its surface layer becomes an ordinary stellar atmosphere.
At this time the outer convection zone covers somewhat more than half of the
mass and radius of the core, so that in its important features the resulting star
is essentially a conventional Hayashi model in the convective phase of pre-main
sequence contraction (Hayashi, Hoshi & Sugimoto 1962). The final section of the
evolutionary path in Fig. 3, between approximately 10% and 3 x 108 years, repre-
sents the ‘ Hayashi track’ as far as the present calculations have been carried,
and it is in good agreement with previous calculations of the Hayashi track (Ezer
& Cameron 1963, 1965; Iben 1965; Bodenheimer 1965, 1966a, 1966b).

When the infall effects become negligible and the star first appears on the
Hayashi track, the radius, effective temperature, and luminosity are about 2:0 R,
4400°K, and 1-3 L, respectively. The time elapsed since the formation of the
stellar core is about 1-1 X 108 years, or about 5 times the initial free-fall time of
the cloud. It is noteworthy that, although the resulting star does eventually appear
on the Hayashi track, it does so with a radius and luminosity which are much
smaller than the very large values of ~60 R and ~ 600 L which have previously
been assumed (Ezer & Cameron 1965). In fact, the star comes onto the Hayashi
track with such a small radius and high internal temperature that a central region
in radiative equilibrium has already appeared and begun to grow outward. Thus
the maximum extent of the outer convection zone, i.e. about 57 per cent of the
mass and 56 per cent of the radius, is achieved just as the star comes onto the
Hayashi track.

Although the resulting star is outwardly like a conventional Hayashi model,
there is actually a small central region of very low specific entropy, i.e. low tem-
perature and high density, as is evident in Fig. 4. The temperature maximum
seen in Fig. 4 occurs at about 5 per cent of the mass and 15 per cent of the radius

18
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outward from the centre. The very low central specific entropy has been preserved
since the time of formation of the stellar core because radiative energy transport
in the central region has remained negligible during the entire evolution of the
core. However, the central region of low entropy disappears because of radiative
heating before the contracting star reaches the main sequence, and its existence
does not appear to have any important consequences for the evolution of the
star.

log 7T

7 -6 -5 -4 -3 -2 -1 0 L +2
log p
Fi1G. 4. The run of log T vs. log p in the resulting star when it first appears on the Hayashi

track. The ticks along the curve divide the star into ten zones of equal mass. The dashed
curves are lines of constant degree of ionization x.

5. RESULTS WITH OTHER ASSUMPTIONS

In view of the many uncertainties in our assumptions and input data, we have
repeated the calculations with different choices for some of the important para-
meters, in order to find their effect on the results. The additional calculations are
designated below as Cases 2—7, Case 1 being counted as the one already described
in detail in Section 4. In most respects the results in Cases 2—7 are similar to those
already described for Case 1, so we shall in the following only indicate the respects
in which they differ importantly from Case 1. The initial and final properties
of the stellar core are summarized in Tables I and II respectively, for all the
cases calculated.

Case 2. In order to find the effect of uncertainty in the assumed initial tem-
perature, a calculation was made with the initial temperature increased by one
order of magnitude to 100°K. The corresponding initial density required to
ensure collapse is then 1-1x 10716 g cm=3. Up to the time of formation of the
stellar core, the collapse proceeds qualitatively much as in Case 1. It is evident in
Table I that the initial properties of the stellar core in Case 2 are remarkably
similar to Case 1; the main difference is that the collapse time is much shorter,
because of the higher initial density. The evolution of the stellar core in an HR
diagram is shown in Fig. 5. During most of the evolution, the core surface tem-
perature is higher than in Case 1 because of the higher density of the infalling
material and the higher kinetic energy influx. This results in a higher specific
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entropy for the material entering the core, and consequently a larger core radius
than in Case 1. The properties of the resulting star when it first appears on the
Hayashi track are as listed in Table II.

TaBLE 1

Initial properties of the stellar core

Case t M R pe T.
No. (yrs) (g (cm) (g/cm?) (°K)
I 3 (+3) 3 (+30) 9 (+10) 2 (—2) 2°2 (+4)
2 9 (+3) 6 (+30) 1'5(+11) 9 (—3) 23 (+4)
3 6 (+3) 4 (+30) 1ro(+11) 1+7(-2) 2-2(+4)
4 3 (+53) 1'5(+30) 4 (+10) 9 (—2) 22 (+4)
5 12(+s5) 6 (+31) 5 (+11) 3 (—3) 6 (+4)
6 1'3(+5) 4 (+30) 1°4(+11) 2 (—3) 1°9 (+4)
7 5 (+4) 5 (+30) 1'4(+11) 9 (-3) 2:3(+4)
TaBLE 11
Final properties of the stellar core

Case t* MM, R/R, T. L/L,

No. (yrs) (°K)

I 1°1 (+6) 1°0 2°0 4400 1°3

2 33(+4) 10 5°1 4300 77

3 2°8(+4) 10 57 4200 92

4 1°1 (4+6) 1°0 2:0 4400 1°'3

5 4°5(+5) 10 2°5 4400 2'0

6 2:0(+5) 20 5-0 4900 13

7 1°1 (+5) 5°0 70 13000 1300

* This is the time after formation of the stellar core.

Case 3. In order to find the effect of increasing the initial density without
changing the initial temperature, a calculation was made with an initial temperature
of 10°K as in Case 1 but an initial density of 1-1x 10716 g cm—3 as in Case 2.
The evolution of the stellar core in Case 3 is shown in Fig. 6. It is evident that,

-3 /\\ -
\/ N Tofol mass =1 My d3
\ Initia! temp. = 100°K
Y B l\ \ Initial density = 1076 g cm-3

AN Free fall time = 6x 103 yrs

o -12
L
| —_—
9 7o
+1
\ 5
+2 /04,
3x104 \0\ 7!
+3 \
3x105 \
+4 | 1 1 1
3-6 34 32

Fic. 5. The evolution of the stellar core in an HR diagram for Case 2.
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although the evolution starts out much the same as in Case 1, the final stages of
the evolution and the properties of the resulting star (Table II) resemble Case 2
more closely than Case 1. This shows that the later stages of the evolution and
the properties of the resulting star are determined primarily by the initial density
of the proto-stellar cloud; the initial temperature is only of secondary importance,
except in so far as it determines the initial density.

. 3
\ Total mass = | Mg
-2+ Initial temp. = 10°K
N Initiat density = 10716 g cm-3
10 L y 9
Free fall time = 6x103yrs
-2
L
log Lo
ol
IO\
] \
34 32

log %2

Total mass =1 My
\ Initial temp. = 10°K

ol \ Initial density = 10719 g em-3
\ Free fall time = 2x105yrs

+3
+4

+5

+6

log 7
F1G. %7. The evolution of the stellar core in an HR diagram for Case 4.

Case 4. In order to find the effect of uncertainty in the assumed dust opacity,
and also to obtain an idea of how star formation might proceed in a region of
greatly reduced dust content, a calculation was made with the assumed dust
opacity reduced by two orders of magnitude to o-oor5 cm? g—1; the other para-
meters were the same as in Case 1. The result is shown in Fig. 7. The core starts
out smaller and denser than in Case 1, but during the later stages of the collapse
the dust opacity has negligible effect on the dynamics of the collapse, and the
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evolution of the core becomes almost indistinguishable from Case 1. This result
demonstrates the unimportance of the assumed dust opacity, and it also verifies
that the later stages of the evolution of the core are very little dependent on the
details of the earlier stages of evolution.

Case 5. To find the importance of the assumption that the hydrogen is initi-
ally all molecular, a calculation was made with the extreme assumption that
hydrogen molecules never exist at any time. The initial density in this case was
6-4 x 10719 g cm —3, which is higher than in Case 1 because of the larger value of
the gas constant #. In Case 5 the details of the collapse are somewhat different
from the other cases. The central part of the first core does not collapse dynamically

Total mass = | Mg (No Hjp)

Initial temp. = 10°K

Initial density = 6x107'9g em™3

Free fall time = 8x10%yrs 2

&S
\/o
-
o

32
log 7,

F1c. 8. The evolution of the stellar core in an HR diagram for Case 5.

as in the other cases, but instead contracts quasi-statically by a large factor due
to radiative energy losses occurring when the dust grains evaporate. Eventually
there is a small dynamical collapse at the centre caused by hydrogen ionization;
this results finally in the formation of a small stellar core, much as in the other
cases. After the disappearance of the outermost shock front the evolution of this
stellar core proceeds much as in Case 1 (see Fig. 8). The main differences are a
somewhat larger core radius and a shorter time scale; these effects are attributable
as in Cases 2 and 3 primarily to the higher initial density of the proto-stellar
cloud.

Case 6. This calculation was made with a total mass of 2 M, and with assump-
tions chosen rather differently from the other cases. The initial temperature and
density were 10°K and 2-5x 10719 gcm—3, respectively, and the boundary
condition was taken as P=const. up to the time of formation of the stellar core,
and u=o (i.e. a fixed boundary) thereafter. The boundary then contracts by
about a factor of 2 in radius during the early stages of the collapse. The evolution
of the stellar core is shown in Fig. 9. In Case 6 the resulting star appears almost
at the bottom of its Hayashi track, and the outer convection zone at its maximum
extent covers only somewhat less than half of the mass and radius of the star.
In this case it was possible to follow the evolution of the star almost to the main
sequence, as shown by the final section of the curve in Fig. 9. This final section
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is not expected to be as accurate as previous pre-main sequence calculations, but
it at least verifies that the final stages of the pre-main sequence contraction are
essentially the same as previously calculated and are not affected by the details
of the dynamical collapse phase.

-3 \ Total mass =2 Mg e
Initial temp. =10°K
4\ . I -19 3
-2 10 Initial density =2:5%10 "g cm
\ Free fall time = -3x10° yrs
-1
”bol mp
o L
log ™
+1
+2 14,
+3
1
4 32

log 7,

F1c. 9. The evolution of the stellar core in an HR diagram for Case 6.

-14
-5 Total mass = 5Me
Initial temp. =100°K
-4 Initial density = 4x107!8 gcm-3
Free fall time = 3xi0% yrs
-~ 4
-3 N\ 3IxI0
-3
Moot
-2 L
log o
-1
-2
[¢]
+1
4];\ L
2 38 36 34

log 7,

Fi1c. 10. The evolution of the stellar core in an HR diagram for Case 7.

Case 7. This case was calculated with a total mass of 5§ M in order to find
the effect of an increase in mass. If an initial temperature of 10°K had been chosen,
the corresponding initial density from equation (2) would have been so low that
the temperature would in reality have been much higher than 10 °K. Consequently,
since it was desired to have some comparison with one of the previous cases, a
temperature of 100°K was chosen, as in Case 2. The corresponding initial density
is then 4-4 x 10718 g cm=3. It is evident in Fig. 10 that the evolution of the stellar
core in Case 7 is initially almost identical to Case 2, but it begins to differ appreci-
ably after about 103 years. This occurs because of radiative energy transport in
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the interior of the core, which becomes important at this point because of the
higher core mass and higher interior temperature. A central region in radiative
equilibrium appears, and the core begins to expand as layers farther and farther
out from the centre are heated up by radiative energy transport and come into
radiative equilibrium. The surface layers of the core come into radiative equilibrium
quite rapidly 2-3 x 104 years after the formation of the core, at which time the core
mass is 3-7 M and the surface temperature is at a minimum value of 69o0°K.
Shortly afterward the radiative energy outflow from the interior of the core becomes
greater than the kinetic energy inflow to the shock front; thereafter, the core
evolves essentially by radiative cooling and contraction toward the main sequence,
although it continues to gain mass. The properties of the resulting star when the
infall effects have become negligible are as listed in Table II.

It is noteworthy that in Case 7 there is no convective Hayashi phase at all;
the core radius never becomes large enough for a convective phase to exist. Since
in Case 6 (M =2M_) the star came in almost at the bottom of its Hayashi track,
it appears that the Hayashi phase does not exist at all for masses much greater
than about 2 M ; when they first appear such stars will already be closer to the
main sequence than the bottom of the Hayashi track.

6. CONCLUSIONS AND COMPARISON WITH OBSERVATIONS

It is evident from the results described in Sections 4 and 5 that, regardless
of the assumptions adopted, the collapse of a proto-star is always exceedingly
non-homologous, in the sense that a very small fraction of the mass at the centre
collapses all the way to stellar densities and reaches hydrostatic equilibrium
before most of the cloud has had time to collapse very far from its initial con-
figuration. The subsequent evolution consists not of the overall contraction of a
single cloud or stellar object but of the growth in mass of a very small central
core or ‘ embryonic star > as the surrounding material falls into it. This hitherto
unexpected outcome of the calculations differs considerably from the results
of previous authors, e.g. Hayashi (1966), who assumed homologous collapse or
polytropic density distributions for a collapsing proto-star.

The results of the present calculations show that, apart from unimportant
differences, the star resulting at the end of the collapse of a proto-star of one
solar mass is essentially a conventional Hayashi pre-main sequence model as
discussed by Hayashi et al. (1962) and subsequent authors. Prior to the present
work, the applicability of these models had never actually been demonstrated on
the basis of any calculations of star formation; they had simply been a result
of the arbitrary assumption that a star begins its pre-main sequence evolution
with a very large radius. The present calculations show, however, that a star
of one solar mass first appears on its Hayashi track with a much smaller radius
and luminosity than the very large values which have commonly been assumed.
This result is not greatly affected even by large changes in the assumed initial
conditions. A star of mass greater than 1 M appears even lower on its Hayashi
track, and for masses much greater than 2 M the radius of the stellar core never
becomes large enough for a convective Hayashi phase to exist at all.

It is of interest to compare the predicted properties of newly formed stars
with the observed properties of T' Tauri stars, which are believed to be very
young newly formed stars. The present calculations predict, when the visual
opacity of the infalling material is taken into account, that the stellar core remains
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completely obscured by dust during most of its evolution and does not begin to
become visible as a star until it has almost reached the Hayashi track. Thus the
properties of a star when it first becomes visible are approximately those listed in
Table II as the final properties of the stellar core.

The properties of T Tauri stars have recently been reviewed by Kuhi (1966)
and Herbig (1967). The distribution of T Tauri stars in the HR diagram, as
shown for example by Herbig (1967), is in good general agreement with the
prediction that newly formed stars of moderate mass should first appear near the
lower end of their Hayashi tracks. It is interesting to note in Herbig’s diagram a
considerable number of T Tauri stars with radii near 2 R, the predicted radius
for a new star of 1 M. Because of the many uncertainties, both theoretical and
observational, this agreement is probably fortuitous, but it may at least be an
indication that our results are not too seriously in error.

The photometric observations of Mendoza (1966, 1968) show that most
T Tauri stars have considerable excess infra-red emission, sometimes to the extent
that a large fraction of the total luminosity is emitted in the infra-red. This is in
fact just what would be expected for a newly formed star which is still partially
obscured by the dust in the infalling material; this dust absorbs some of the
stellar radiation and re-emits it thermally at infra-red wavelengths. The problem
of the expected spectral energy distribution of such an object, along with the
problem of the spectral appearance of a proto-star during the earlier stages when
the infalling material is still completely opaque, will be considered in a forthcoming
paper.

With regard to the spectroscopic properties of T Tauri stars, it is particularly
interesting that in some of the fainter T Tauri-like stars Walker (1961, 1963,
1964) has observed absorption lines redshifted by 150 to 300 km s~1, indicating
infall of material into the star. The observed velocities are of the same order as
the infall velocities found in the calculations, so it may be that the predicted infall
of material is actually observed in some stars. The fact that only relatively few
faint T Tauri stars seem to show the effect may mean that the infall effects are
observable for only a relatively short time while the star is still heavily obscured
by the surrounding material; most of the T Tauri characteristics, on the other
hand, may persist for some time after the infall effects have become negligible.

Another effect which according to Walker appears to be related to the infall
of material is strong continuous emission in the ultra-violet part of the spectrum.
Possibly this effect could, at least partially, be caused by the continuous free—free
emission expected from the very hot (up to 107°K) material just inside the shock
front bounding the stellar core in our model.

The other properties of T Tauri stars, such as the chromospheric-type emission
lines, continuous emission across the spectrum, ejection of material, and irregular
variability may also be related to the infall of material, as was originally thought;
however, it now seems more likely that in most cases they have their origin in
the very violent convective and chromospheric activity which appears to be
indicated for T Tauri stars.
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APPENDIX A
TREATMENT OF THE SHOCK FRONT

In this appendix we outline the approximations which we have adopted in
the shock fitting method used during the later stages of the collapse to treat the
shock front bounding the stellar core. We require a set of equations analogous
to the ordinary adiabatic shock jump equations, which relate the values of the
flow variables at two points just inside and outside the shock front. We shall
denote quantities evaluated at a suitably chosen point inside the shock front by
a subscript 1, and quantities at a point outside the shock front by a subscript 2.
We assume that the flow through the shock front may be treated as a steady
flow, and that the velocity of the shock front may be neglected in comparison
with the velocity of the infalling material. The mass conservation relation for
the shock region can then be written down immediately:

P11 = paua. (AI)
We now derive an energy conservation relation for the shock region by con-
sidering the various energy inflow and outflow rates across the two surfaces
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bounding the shock region. First of all, we have the ordinary mechanical energy
transport rates, consisting of an energy inflow to the shock front of pa|ua|(Ha+ u2?2)
and an energy outflow of p;|u1|(H1+ 3u12), where H denotes the specific enthalpy
(see for example Liepmann & Roshko, 1957). In the present problem it is necessary
also to take into account radiative energy transport into and out of the shock
region. The outward energy flux F; from the interior of the core counts as an
energy input to the shock region, and it is related in a known way to the tempera-
ture gradient in the surface layers of the core. The radiative flux Fy emitted out-
ward from the shock front depends on the temperature distribution inside the
shock front, but for the present purposes we would like to relate Fy to the single
parameter T3, which we take to be the limiting temperature reached inside the
shock front after radiative cooling has become negligible.

During the important later stages of the collapse the temperature immediately
inside the shock jump becomes extremely high due to the high kinetic energy
of the infalling material; radiative cooling then reduces the temperature by a
large factor as the material moves inward from the shock jump. Under these
circumstances it becomes a difficult problem to relate the emitted flux Fs to the
limiting temperature T inside the shock front. We know however that the effective
temperature 7, defined by Fo=o0T,* must be intermediate between the peak
temperature and 77, and closer to the latter. In fact it can be shown (see Appendix
B) that no matter how high the peak temperature is we must always have

T1<Te<1-28 T1. (A2)

Since high accuracy is not a consideration in the present project, we have con-
sidered it an adequate approximation to simply set

Te: T]_. (A3)

The desired energy conservation relation for the shock region can then be written
as follows, collecting the various energy gain and loss terms:

p1|ur|(Hi+3u12)+ oT14= po|ua|(Ha+ $uz?) + F1. (Ag)

We now consider the shock momentum equation, which is important for
determining the pressure P; inside the shock front. During the later stages of
the evolution when the region inside the shock front becomes essentially a stellar
atmosphere, it becomes important that P; refer not to a point immediately inside
the shock jump, but to a point at an optical depth of order unity inside the shock
jump, which can serve as a suitable photospheric boundary point for the core
model. A common procedure in stellar interiors calculations is to choose the
photospheric boundary point to be that point where the actual temperature is
equal to the effective temperature; according to the Eddington approximation,
this occurs at an optical depth of 2/3. If we integrate the hydrostatic equilibrium
equation dP/dr=g[k between r=0 and 7=2/3, assuming xoc P1/2, we find that
the photospheric pressure P; is greater than the pressure immediately inside
the shock jump by approximately an amount g/x;. We have added this term to
the usual adiabatic shock momentum equation to obtain the following approximate
relation applicable to the present problem:

P+ pruy? = Pa+ pzu22+§l- (As)
With equations (A1), (A4), and (A5) we now have the three equations required
to relate the values of all of the variables on the two sides of the shock front.
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APPENDIX B

PROOF OF EQUATION (A2)

This proof will be based on the following equation relating the two radiation
integrals K and H for the grey case (see Aller 1963, p. 223):
dK

S -H (B1)

We shall denote by a subscript s the values of the variables right at the shock
jump and by a subscript 1 the values at a suitable point inside the shock front,
as in Appendix A. Applying equation (B1) in the region inside the shock jump,
we have, since the net radiative flux is always outward, H>o and dK/dr>o;
therefore, we must have K> K, (B2)

We assume that the point 1 is at a sufficiently large optical depth that the radiation
intensity is isotropic and equal to the blackbody intensity B(T1). We then have
K = 1B(T1), and consequently from equation (Bz)

1B(Ty)> K. (B3)

From the definitions of K and H and a consideration of the possible forms
for the angular dependence of the radiation intensity I(6), it can be shown that
the smallest possible ratio of K to Hj is obtained when I3(0)oc(cos )71, in which
case K; = 1H;. Substituting this lower limit for K; into equation (B3), we obtain

$B(T1)> 3 Hs. (B4)

Finally, making use of the definition of 7T, we have
4
Hy = Lo T8 gy, (Bs)

Substituting this into equation (B4), we have
$B(T1) > $B(Te)
T14> 3T, (B6)
Since T, must be greater than 7, we can now write
T14< ToA< 8T

Ti<Te<1-28T1. Q.E.D. (B7)

or

or

The physical reason why T, can never differ much from T is readily under-
stood. We know that the hot material just inside the shock jump emits a radiative
flux of ¢T,* in the outward direction; a similar amount of energy must also be
radiated inward, and, therefore, the mean radiation intensity inside the shock
front must be of the same order as that for a blackbody of temperature T,. Con-
sequently the limiting temperature T inside the shock front cannot be very much
smaller than 7.

The above derivation is valid for the grey case, in which the absorption coefli-
cient is assumed to be independent of wavelength. It appears unlikely, however,
that the result would be altered by the wavelength dependence of the absorption
coefficient expected in the real case.
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APPENDIX C

ASYMPTOTIC SIMILARITY SOLUTION FOR THE
ISOTHERMAL COLLAPSE OF A SPHERE

In this investigation of the collapse of a proto-star, it has been noted that during
the initial isothermal phase of the collapse the density and velocity distributions
in the inner part of the collapsing cloud appear to approach constant limiting
forms, with the time dependence given only by scale factors which vary as a

function of time. This suggests that there may exist an asymptotic ‘ similarity ’

solution for the isothermal collapse of a sphere. In this appendix we show that

this is indeed the case, and we present some numerical results for this asymptotic

solution. We also show that the similarity solution may be generalized to the
case of a polytropic equation of state P = Kp” and we use this to indicate the
effects of deviations from isothermality in the collapse.

In Eulerian form, the equations governing the isothermal collapse may be
written

ou ou Gm dlnp
s 4" 1R =
aluat et g =
M\ gmrpu =o, (C1)
ot
?ﬂ— 771‘2 = 0
ar 4' P )

where T is fixed and m is the mass within a sphere of radius ». Suppose that at
any given time #; the velocity, density and mass distributions are given by u;(7),
p1(r) and my(r). We then seek a solution of equations (C1) in which at a general
time ¢ the velocity, density and mass distributions have the forms

u(r, t) = bt ui(s),

p(r, ) = c(t)pa(s), (C2)
m(r, t) = d(t)my(s),
where
s = rla(t).

Here a(t), b(t), ¢(t), and d(¢) are dimensionless scale factors which depend only
on time, and are equal to unity at time #;. Substitution of equations (C2) into equa-
tions (Cr) shows that such a solution is possible if the following relations hold:

bt) =1, (t) =a@)? dt) = at). (C3)

Since the initial and boundary conditions for the collapsing cloud of course do
not vary in accordance with equations (Cz2), and (C3), it is clear that a solution of the
above form can be valid only as a limiting approximation in the case where the
initial and boundary conditions can be considered as infinitely far removed and
no longer influencing the solution in the region of interest.

Substituting equations (C2), and (C3), into equations (C1), we obtain 3 simul-
taneous ordinary differential equations for the functions u;(s), p1(a) gnd mi(s) After
some straightforward substitutions to eliminate m; in favour of #; and p;, thus
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reducing the number of equations from 3 to 2, we obtain

dlnp1 —

s duy
(;-{-ul) 7s-+471rG/z31(.H-u1~r)-}— 2T 7 o, <o
4
dui (s dln py 2) .
E—‘F(;"‘ul)( s +; = 0,
where 7 = —(da/dt)~1 is a fixed (positive) constant independent of both » and ¢.

For further analysis it is convenient to reduce these equations to non-
dimensional form by means of the following transformations:

E= Ty - 47Gpr72. (Cs)

If we substitute these relations into equations (C4) and solve for d¢/dx and d In y/dx,

we obtain At x— & nu(x—£)—2
dx x  (x—§&)2-1

dlnng _ x—§nx—2(x—¢)
de ~ x (x—§2-1

A unique solution for this set of equations is determined by the following two
conditions: (1) £ = o at x = o, and (2) nx = 2 at x— ¢ = 1, the latter condition
being required to avoid a physically inadmissible singularity at x— ¢ = 1.

Before presenting the numerical solution of equations (C6), we note that the
limiting behaviour of the solution for large and small x is readily found directly
from the equations. The case of most interest is > 1, since this is the limit ap-
proached at any fixed value of r as the collapse progresses and a(t) decreases.
Putting x> 1 in equations (C6) and making use of the facts that x—§—o0 and
n—>0 as x—>00, we find

o=
/(2T .

(Co)

..
nx

as x—>00. (Cy)
dln m,

dlnx

Consequently #(r) approaches a constant and p(r) approaches the form pocr—2
as the collapse proceeds. These properties of the isothermal collapse solutions
were noted by Bodenheimer & Sweigart (1968) and also in the present paper (see
Fig. 1).

We have solved equations (C6) numerically by using a Runge-Kutta scheme
and proceeding outward from the centre (x = o), trying various values of 7(0)
until a solution was found satisfying the condition nx = 2 at x— ¢ = 1. The
resulting solution is illustrated in Fig. C1. The limiting forms of this numerical
solution are as follows:

for x<1, & = 2x, n = 1-607;
for x> 1, & =328, n = 8- 86x2.

(C8)

Numerical calculations of the isothermal collapse of a sphere carried out
using the methods of this paper have verified that the density and velocity dis-
tributions in the collapsing cloud do indeed approach the asymptotic forms

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1969MNRAS.145..271L

FTI6OMNRAS, I45. “Z711 5

204 Richard B. Larson Vol. 145

derived above, at least within the accuracy of the calculations (X 10 per cent).
As was noted by Bodenheimer & Sweigart (1968), the solution has this character
only if the collapse time exceeds the time required for sound to travel inward
from the surface to the centre of the cloud, but this is in fact usually the case
if the initial conditions are approximately in accordance with the virial theorem.
After the central density has risen by 4 or 5 orders of magnitude, the approximate

log &

logm

=1 o] I 2
log x

Fic. C1. The numerically computed similarity solution for isothermal collapse (see equation
(Cs) for the definitions of the variables).

density law pocr—2 is already well established over a significant part of the col-
lapsing cloud (see for example Fig. 1). The infall velocity also becomes roughly
constant over a significant part of the cloud, as predicted by the similarity solution,
but the velocity distribution approaches the similarity solution only slowly and
the collapse must be followed through at least 12 orders of magnitude in density
before the maximum velocity comes within 10 per cent of the value 3-28 4/(27T)
predicted by the similarity solution.

It is noteworthy that, although the collapse proceeds qualitatively like a free
fall, pressure gradient forces are not negligible and in fact are of essential importance
in determining the form of the solution. The ratio of pressure gradient to gravita-
tional forces in the similarity solution may be straightforwardly obtained from
equations (C4), (Cs), and (C6); the result may be written

_|dInnjdx| _ 2(x— €)qx—1
BT Y = )

pressure

gravity

The limiting values of this ratio may be found by substituting the limiting forms
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of ¢ and 7 from equations (C8); this gives

for x<1, PR - 0" 6oo;
, gravity
(C10)
for x> 1, pressure) _ . 226.
gravity

Thus for example at the centre of the collapsing cloud the actual acceleration is
only o-400 times the gravitational acceleration, and the collapse time scale is
longer than the free-fall time by a factor of (0-400)71/2 = 1-58.

We note in passing that the extremely non-homologous character of the col-
lapse and the importance of pressure gradients in the collapse calculations casts
doubt on the validity of analyses of collapse and/or fragmentation which have
neglected pressure effects.

It may be noted that the asymptotic similarity solution which we have derived
depends only on the gas constant # and the temperature T of the collapsing
cloud, and not on any other properties of the cloud. Thus for clouds with the
same # and T, the collapse solution in the inner part of the cloud should eventually
approach the same behaviour in all cases, regardless of such factors as the initial
density or the mass of the cloud. This explains the close similarity found
between Cases 1 and 3 and also between Cases 2 and 7 in the formation and
early evolution of the stellar core in a collapsing proto-star.

It can be shown, by a derivation similar to but somewhat more involved
than that presented here, that the similarity solution can be generalized to the
case of a polytropic equation of state, i.e. P = Kp?. Again the limiting behaviour
of the solution at large x may be obtained directly from the equations. The result
is

dln¢ 1—y
dinx 2—y
as x—>00, (Cr1)
dlnn -2
dlnx 2—y

where x, £ and 7 are defined by equations (Cs) with T replaced by K(47Gr2)1~7.
Equations (C7) are then seen to be a special case of equations (Cir1) fory = 1. Equa-
tions (Cr1) with y# 1 allow us to see the effects of deviations from isothermality
in the collapse. If, for example, the temperature increases with increasing density,
corresponding to y > 1, we have d In n/d In x < — 2, i.e. the density gradient becomes
steeper than in the isothermal case. Conversely the effect of a decreasing temperature
is to make the density gradient less steep than in the isothermal case. These pro-
perties of the solution and the limiting slopes predicted by equations (Ci1) have
again been verified by numerical collapse calculations made assuming several
different values of y.
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