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Abstract. The thermodynamic state of star-forming gas determines its fragmentation behavior and thus plays a crucial role in
determining the stellar initial mass function (IMF). We address the issue by studying the effects of a piecewise polytropic equa-
tion of state (EOS) on the formation of stellar clusters in turbulent, self-gravitating molecular clouds using three-dimensional,
smoothed particle hydrodynamics simulations. In these simulations stars form via a process we call gravoturbulent fragmen-
tation, i.e., gravitational fragmentation of turbulent gas. To approximate the results of published predictions of the thermal
behavior of collapsing clouds, we increase the polytropic exponent γ from 0.7 to 1.1 at a critical density nc, which we estimated
to be 2.5× 105 cm−3. The change of thermodynamic state at nc selects a characteristic mass scale for fragmentation Mch, which
we relate to the peak of the observed IMF. A simple scaling argument based on the Jeans mass MJ at the critical density nc

leads to Mch ∝ n−0.95
c . We perform simulations with 4.3 × 104 cm−3 < nc < 4.3 × 107 cm−3 to test this scaling argument. Our

simulations qualitatively support this hypothesis, but we find a weaker density dependence of Mch ∝ n−0.5±0.1
c . We also investi-

gate the influence of additional environmental parameters on the IMF. We consider variations in the turbulent driving scheme,
and consistently find MJ is decreasing with increasing nc. Our investigation generally supports the idea that the distribution
of stellar masses depends mainly on the thermodynamic state of the star-forming gas. The thermodynamic state of interstellar
gas is a result of the balance between heating and cooling processes, which in turn are determined by fundamental atomic and
molecular physics and by chemical abundances. Given the abundances, the derivation of a characteristic stellar mass can thus
be based on universal quantities and constants.
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1. Introduction

One of the fundamental unsolved problems in astronomy is the
origin of the stellar mass spectrum, the so-called initial mass
function (IMF). Observations suggest that there is a charac-
teristic mass for stars in the solar vicinity. The IMF peaks at
this characteristic mass which is typically a few tenths of a
solar mass. The IMF has a nearly power-law form for larger
masses and declines rapidly towards smaller masses (Scalo
1998; Kroupa 2002; Chabrier 2003).

Although the IMF has been derived from vastly different re-
gions, from the solar vicinity to dense clusters of newly formed
stars, the basic features seem to be strikingly universal to all de-
terminations (Kroupa 2001). Initial conditions in star forming
regions can vary considerably. If the IMF depends on the initial
conditions, there would thus be no reason for it to be universal.

� Appendix A is only available in electronic form at
http://www.edpsciences.org

Therefore a derivation of the characteristic stellar mass that is
based on fundamental atomic and molecular physics would be
more consistent.

There have been analytical models (Jeans 1902; Larson
1969; Penston 1969; Low & Lynden-Bell 1976; Shu 1977;
Whitworth & Summers 1985) and numerical investigations
of the effects of various physical processes on collapse and
fragmentation. These processes include, for example, mag-
netic fields (Basu & Mouschovias 1995; Tomisaka 1996; Galli
et al. 2001), feedback from the stars themselves (Silk 1995;
Nakano et al. 1995; Adams & Fatuzzo 1996) and competi-
tive coagulation or accretion (Silk & Takahashi 1979; Lejeune
& Bastien 1986; Price & Podsiadlowski 1995; Murray & Lin
1996; Bonnell et al. 2001a,b; Durisen et al. 2001). In an-
other group of models, initial and environmental conditions,
like the structural properties of molecular clouds determine the
IMF (Elmegreen & Mathieu 1983; Elmegreen 1997a,b, 1999,
2000b,a, 2002). Larson (1973a) and Zinnecker (1984, 1990)
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argued in a more statistical approach that the central-limit the-
orem naturally leads to a log-normal stellar mass spectrum.
Moreover, there are models that connect turbulent motions in
molecular clouds to the IMF (e.g. Larson 1981; Fleck 1982;
Padoan 1995; Padoan et al. 1997; Klessen et al. 1998, 2000;
Klessen 2001; Padoan & Nordlund 2002). The interplay be-
tween turbulent motion and self-gravity of the cloud leads to a
process we call gravoturbulent fragmentation. The supersonic
turbulence ubiquitously observed in molecular gas generates
strong density fluctuations with gravity taking over in the dens-
est and most massive regions. Once gas clumps become grav-
itationally unstable, collapse sets in. The central density in-
creases until a protostellar object forms and grows in mass
via accretion from the infalling envelope. For more detailed re-
views see Larson (2003) and Mac Low & Klessen (2004) .

However, current results are generally based on models that
do not treat thermal physics in detail. Typically, they use a sim-
ple equation of state (EOS) which is isothermal with the poly-
tropic exponent γ = 1. The true nature of the EOS remains a
major theoretical problem in understanding the fragmentation
properties of molecular clouds. Some calculations invoke cool-
ing during the collapse (Monaghan & Lattanzio 1991; Turner
et al. 1995; Whitworth et al. 1995). Others include radiation
transport to account for the heating that occurs once the cloud
reaches densities of n(H2) ≥ 1010 cm−3 (Myhill & Kaula 1992;
Boss 1993), or simply assume an adiabatic equation of state
once that density is exceeded (Bonnell 1994; Bate et al. 1995).
Spaans & Silk (2000) showed that radiatively cooling gas can
be described by a piecewise polytropic EOS, in which the poly-
tropic exponent γ changes with gas density ρ. Considering a
polytropic EOS is still a rather crude approximation. In prac-
tice the behaviour of γ may be more complicated and impor-
tant effects like the temperature of the dust, line-trapping and
feedback from newly-formed stars should be taken into account
(Scalo et al. 1998). Nevertheless a polytropic EOS gives an in-
sight into the differences that a departure from isothermality
evokes.

Recently Li et al. (2003) conducted a systematic study of
the effects of a varying polytropic exponent γ on gravotur-
bulent fragmentation. Their results showed that γ determines
how strongly self-gravitating gas fragments. They found that
the degree of fragmentation decreases with increasing poly-
tropic exponent γ in the range 0.2 < γ < 1.4 although the total
amount of mass in collapsed cores appears to remain roughly
consistent through this range. These findings suggest that the
IMF might be quite sensitive to the thermal physics. Earlier,
one-dimensional simulations by Passot & Vázquez-Semadeni
(1998) showed that the density probability distribution of su-
personic turbulent gas displays a dependence on the polytropic
exponent γ. However, in both computations, γ was left strictly
constant in each case. In this study we extend previous work
by using a piecewise polytropic equation of state changing γ
at some chosen density. We investigate if a change in γ deter-
mines the characteristic mass of the gas clump spectrum and
thus, possibly, the turn-over mass of the IMF.

In Sect. 2 we review what is currently known about the
thermal properties of interstellar gas. In Sect. 3 we approach
the fragmentation problem analytically, while in Sect. 4 we

introduce our computational method. In Sect. 5 we discuss
gravoturbulent fragmentation in non-isothermal gas. In Sect. 6
we analyze the resulting mass distribution. We further investi-
gate the influence of different turbulent driving fields and differ-
ent scale of driving in Sect. 7. Finally, in Sect. 8 we summarize.

2. Thermal properties of star-forming clouds

Gravity in galactic molecular clouds is initially expected to be
opposed mainly by a combination of supersonic turbulence and
magnetic fields (Mac Low & Klessen 2004). The velocity struc-
ture in the clouds is always observed to be dominated by large-
scale modes (Mac Low & Ossenkopf 2000; Ossenkopf et al.
2001; Ossenkopf & Mac Low 2002). In order to maintain tur-
bulence for some global dynamical timescales and to compen-
sate for gravitational contraction of the cloud as a whole, ki-
netic energy input from external sources seems to be required.
Star formation then takes place in molecular cloud regions
which are characterized by local dissipation of turbulence and
loss of magnetic flux, eventually leaving thermal pressure as
the main force resisting gravity in the small dense prestellar
cloud cores that actually build up the stars (Klessen et al. 2005;
Vázquez-Semadeni et al. 2005). In agreement with this expec-
tation, observed prestellar cores typically show a rough bal-
ance between gravity and thermal pressure (Benson & Myers
1989; Myers et al. 1991). Therefore the thermal properties of
the dense star-forming regions of molecular clouds must play
an important role in determining how these clouds collapse and
fragment into stars.

Early studies of the balance between heating and cooling
processes in collapsing clouds predicted temperatures of the
order of 10 K to 20 K, tending to be lower at the higher den-
sities (e.g., Hayashi & Nakano 1965; Hayashi 1966; Larson
1969, 1973b). In their dynamical collapse calculations, these
and other authors approximated this somewhat varying tem-
perature by a simple constant value, usually taken to be 10 K.
Nearly all subsequent studies of cloud collapse and fragmen-
tation have used a similar isothermal approximation. However,
this approximation is actually only a somewhat crude one, valid
only to a factor of 2, since the temperature is predicted to vary
by this much above and below the usually assumed constant
value of 10 K. Given the strong sensitivity of the results of frag-
mentation simulations like those of Li et al. (2003) to the as-
sumed equation of state of the gas, temperature variations of
this magnitude may be important for quantitative predictions
of stellar masses and the IMF.

As can be seen in Fig. 2 of Larson (1985), observational
and theoretical studies of the thermal properties of collapsing
clouds both indicate that at densities below about 10−18 g cm−3,
roughly corresponding to a number density of n = 2.5 ×
105 cm−3, the temperature generally decreases with increas-
ing density. In this low-density regime, clouds are externally
heated by cosmic rays or photoelectric heating, and they are
cooled mainly by the collisional excitation of low-lying lev-
els of C+ ions and O atoms; the strong dependence of the
cooling rate on density then yields an equilibrium temperature
that decreases with increasing density. The work of Koyama
& Inutsuka (2000), which assumes that photoelectric heating
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dominates, rather than cosmic ray heating as had been assumed
in earlier work, predicts a very similar trend of decreasing tem-
perature with increasing density at low densities. The resulting
temperature-density relation can be approximated by a power
law with an exponent of about −0.275, which corresponds to
a polytropic equation of state with γ = 0.725. The observa-
tional results of Myers (1978) shown in Fig. 2 of Larson (1985)
suggest temperatures rising again toward the high end of this
low-density regime, but those measurements refer mainly to
relatively massive and warm cloud cores and not to the small,
dense, cold cores in which low-mass stars form. As reviewed
by Evans (1999), the temperatures of these cores are typi-
cally only about 8.5 K at a density of 10−19 g cm−3, consistent
with a continuation of the decreasing trend noted above and
with the continuing validity of a polytropic approximation with
γ ≈ 0.725 up to a density of at least 10−19 g cm−3.

At densities higher than this, star-forming cloud cores be-
come opaque to the heating and cooling radiation that deter-
mines their temperatures at lower densities, and at densities
above 10−18 g cm−3 the gas becomes thermally coupled to the
dust grains, which then control the temperature by their far-
infrared thermal emission. In this high-density regime, dom-
inated thermally by the dust, there are few direct tempera-
ture measurements because the molecules normally observed
freeze out onto the dust grains, but most of the available theo-
retical predictions are in good agreement concerning the ex-
pected thermal behavior of the gas (Larson 1973b; Low &
Lynden-Bell 1976; Masunaga & Inutsuka 2000). The balance
between compressional heating and thermal cooling by dust
results in a temperature that increases slowly with increasing
density, and the resulting temperature-density relation can be
approximated by a power law with an exponent of about 0.075,
which corresponds to γ = 1.075. Taking these values, the tem-
perature is predicted to reach a minimum of 5 K at the tran-
sition between the low-density and the high-density regime at
about 2 × 10−18 g cm−3, at which point the Jeans mass is about
0.3 M� (see also, Larson 2005). The actual minimum tempera-
ture reached is somewhat uncertain because observations have
not yet confirmed the predicted very low values, but such cold
gas would be very difficult to observe; various efforts to model
the observations have suggested central temperatures between
6 K and 10 K for the densest observed prestellar cores, whose
peak densities may approach 10−17 g cm−3 (e.g., Zucconi et al.
2001; Evans et al. 2001; Tafalla et al. 2004). A power-law ap-
proximation to the equation of state with γ ≈ 1.075 is expected
to remain valid up to a density of about 10−13 g cm−3, above
which increasing opacity to the thermal emission from the dust
causes the temperature to begin rising much more rapidly, re-
sulting in an “opacity limit” on fragmentation that is some-
what below 0.01 M� (Low & Lynden-Bell 1976; Masunaga &
Inutsuka 2000).

3. Analytical approach

Following the above considerations, we use a polytropic equa-
tion of state to describe the thermal state of the gas in our

models with a polytropic exponent that changes at a certain
critical density ρc from γ1 to γ2:

P = K1 ρ
γ1 ρ ≤ ρc

P = K2 ρ
γ2 ρ > ρc (1)

where K1 and K2 are constants, and P, and ρ are thermal pres-
sure and gas density. For an ideal gas, the equation of state is:

P =
kB

µmp
ρT (ρ) (2)

where T is the temperature, and kB, µ, and mp are Boltzmann
constant, molecular weight, and proton mass. So the constant
K can be written as:

K =
kB

µmp
ρ1−γT (ρ). (3)

Since K is defined as a constant in ρ, it follows for T :

T1 = a1 ρ
γ1−1 ρ ≤ ρc

T2 = a2 ρ
γ2−1 ρ > ρc (4)

where a1 and a2 are constants. The initial conditions define a1:

a1 = T0ρ
1−γ1

0 . (5)

At ρc it holds that:

T1(ρc) = T2(ρc). (6)

Thus, a2 can be written in terms of a1:

a2 = a1ρ
γ1−γ2
c . (7)

According to the analytical work by Jeans (1902) on the sta-
bility of a self-gravitating, isothermal medium the oscillation
frequency ω and the wavenumber k of small perturbations sat-
isfy the dispersion relation

ω2 − c2
s k2 + 4πGρ0 = 0, (8)

where cs is the sound speed, G the gravitational constant, and ρ0

the gas density. The perturbation is unstable if the wavelength λ
exceeds the Jeans length λJ = 2π/kJ or, equivalently, if the mass
exceeds the Jeans mass

MJ =
4π
3
ρ0

(
λJ

2

)3

=
π5/2

6
G−3/2ρ0

−1/2c3
s . (9)

Note that we define the Jeans mass MJ as the mass originally
contained within a sphere of diameter λJ.

In a system with a polytropic EOS, i.e., P = Kργ, the sound
speed is

cs =

(
dP
dρ

)1/2

= (Kγ)1/2ρ(γ−1)/2. (10)

Thus, the Jeans mass can be written as

MJ =
π5/2

6

(K
G

)3/2

γ3/2ρ(3/2)γ−2. (11)
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Fig. 1. Local Jeans mass as a function of density for four runs with
different critical densities nc. For comparison the dependence is also
shown for the isothermal case (dotted line). The Jeans mass changes at
the critical density. The initial mean density and the density at which
sink particles form are represented by the vertical dashed lines. The
dashed-dotted lines show the minimal resolvable mass for the runs
with the highest resolution.

Using Eqs. (3)–(5), (7) and (11) one finds:

MJ1 =
π5/2

6


kBT0ρ

1−γ1

0

Gµmp


3/2

γ3/2
1 ρ

(3/2)γ1−2 ρ ≤ ρc

MJ2 =
π5/2

6


kBT0ρ

1−γ1

0

Gµmp


3/2

γ3/2
2 ρ

(3/2)(γ1−γ2)
c ρ(3/2)γ2−2 ρ > ρc.

The sound speed changes when the polytropic index changes at
ρc, so MJ also varies (see Fig. 1), such that:

MJ1

MJ2
=

(
γ1

γ2

) 3
2

· (12)

If we use γ1 = 0.7 and γ2 = 1.1 as justified in Sect. 2 then
MJ1 ∝ ρ−0.95.

During the initial phase of collapse, the turbulent flow pro-
duces strong ram pressure gradients that form density enhance-
ments. Higher density leads to smaller local Jeans masses, so
these regions begin to collapse and fragment. Simulations with
an SPH code different from the one used in the present work
show that fragmentation occurs more efficiently for smaller val-
ues of γ, and less efficiently for γ > 1, cutting off entirely at
γ > 1.4 (Li et al. 2003; Arcoragi et al. 1991). For filamentary
systems, fragmentation already stops for γ > 1 (Kawachi &
Hanawa 1998). This point is discussed in more detail in Sect. 5.

What happens when γ increases above unity at the critical
density ρc? One suggestion is that the increase in γ is sufficient
to strongly reduce fragmentation at higher densities, introduc-
ing a characteristic scale into the mass spectrum at the value

of the Jeans mass at ρc. Then the behavior of the Jeans mass
with increasing critical density would immediately allow us to
derive the scaling law

Mch ∝ ρ−0.95
c . (13)

This simple analytical consideration would then predict a char-
acteristic mass scale which corresponds to a peak of the IMF
at 0.35 M� for a critical density of ρc = 10−18 g cm−3 or equiv-
alently a number density of nc = 2.5 × 105 cm−3 when using a
mean molecular weight µ = 2.36 appropriate for solar metal-
licity molecular clouds in the Milky Way. Note, however, that
this simple scaling law does not take any further dynamical
processes into account.

4. Numerical method

In order to test the scaling of the characteristic mass Mch given
by Eq. (13), we carry out simulations of regions in turbulent
molecular clouds in which we vary the critical density ρc and
determine the resulting mass spectra of protostellar objects, and
thus Mch. During gravoturbulent fragmentation it is necessary
to follow the gas over several orders of magnitude in density.
The method of choice therefore is smoothed particle hydrody-
namics (SPH). Excellent overviews of the method, its numeri-
cal implementation, and some of its applications are given in
reviews by Benz (1990) and Monaghan (1992). We use the
parallel code GADGET, designed by Springel et al. (2001).
SPH is a Lagrangian method, where the fluid is represented
by an ensemble of particles, and flow quantities are obtained
by averaging over an appropriate subset of SPH particles. We
use a spherically symmetric cubic spline function to define the
smoothing kernel (Monaghan 1992). The smoothing length can
vary in space and time, such that the number of considered
neighbors is always approximately 40. The method is able to
resolve large density contrasts as particles are free to move,
and so naturally the particle concentration increases in high-
density regions. We use the Bate & Burkert (1997) criterion to
determine the resolution limit of our calculations. It is adequate
for the problem considered here, where we follow the evolution
of highly nonlinear density fluctuations created by supersonic
turbulence. We have performed a resolution study with up to
107 SPH particles to confirm this result.

4.1. Sink particles

SPH simulations of collapsing regions become slower as more
particles move to higher density regions and hence have small
timesteps. Replacing dense cores by one single particle leads
to considerable increase of the overall computational perfor-
mance. Introducing sink particles allows us to follow the dy-
namical evolution of the system over many free-fall times.
Once the density contrast in the center of a collapsing cloud
core exceeds a value of 5000, corresponding to a threshold den-
sity of about nth = 4 × 108 cm−3 (see Fig. 1), the entire central
region is replaced by a “sink particle” (Bate et al. 1995). It
is a single, non-gaseous, massive particle that only interacts
with normal SPH particles via gravity. Gas particles that come
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within a certain radius of the sink particle, the accretion ra-
dius racc, are accreted if they are bound to the sink particle.
This allows us to keep track of the total mass, the linear and
angular momentum of the collapsing gas.

Each sink particle defines a control volume with a fixed
radius of 310 AU. This radius is chosen such that we always
resolve the Jeans scale below the threshold density nth, fol-
lowing Bate & Burkert (1997). We cannot resolve the subse-
quent evolution in its interior. Combination with a detailed one-
dimensional implicit radiation hydrodynamic method shows
that a protostar forms in the very center about 103 yr after sink
creation (Wuchterl & Klessen 2001). We subsequently call the
sink protostellar object or simply protostar. Altogether, the
sink particle represents only the innermost, highest-density part
of a larger collapsing region. The technical details on the imple-
mentation of sink particles in the parallel SPH code GADGET
can be found in Appendix A.

Protostellar collapse is accompanied by a substantial loss
of specific angular momentum, even in the absence of magnetic
fields (Jappsen & Klessen 2004). Still, most of the matter that
falls in will assemble in a protostellar disk. It is then transported
inward by viscous and possibly gravitational torques (e.g.,
Bodenheimer 1995; Papaloizou & Lin 1995; Lin & Papaloizou
1996). With typical disk sizes of order of several hundred AU,
the control volume fully encloses both star and disk. If low an-
gular momentum material is accreted, the disk is stable and
most of the material ends up in the central star. In this case,
the disk simply acts as a buffer and smooths eventual accretion
spikes. It will not delay or prevent the mass growth of the cen-
tral star by much. However, if material that falls into the control
volume carries large specific angular momentum, then the mass
load onto the disk is likely to be faster than inward transport.
The disk grows large and may become gravitationally unsta-
ble and fragment. This may lead to the formation of a binary or
higher-order multiple (Bodenheimer et al. 2000; Fromang et al.
2002).

4.2. Model parameters

We include turbulence in our version of the code that is driven
uniformly with the method described by Mac Low et al. (1998)
and Mac Low (1999). The observed turbulent velocity field
in molecular clouds will decay in a crossing time if not con-
tinuously replenished (Mac Low & Klessen 2004; Scalo &
Elmegreen 2004; Elmegreen & Scalo 2004). If the turbulence
decays, then only thermal pressure prevents global collapse. In
our case, we examine regions globally supported by the tur-
bulence at the initial time. We choose to model continuously
driven turbulence leading to inefficient star formation rather
than a globally collapsing region producing efficient star for-
mation (Mac Low & Klessen 2004). This is achieved here
by applying a nonlocal driving scheme that inserts energy in
a limited range of wave numbers k. Mac Low (1999) shows
that hydrodynamical turbulence decays with a constant energy-
dissipation coefficient. Thus a constant kinetic energy input
rate Ėin is able to maintain the observed turbulence and to sta-
bilize the system against gravitational contraction on global

Fig. 2. Temperature as a function of density for four runs with different
critical densities nc. The dotted lines show the initial conditions. The
curve has a discontinuous derivative at the critical density.

scales. The driving strength is adjusted to yield a constant tur-
bulent rms Mach numberMrms = 3.2. Furthermore, it is known
that the velocity structure in molecular clouds is always dom-
inated by the largest-scale mode (e.g., Mac Low & Ossenkopf
2000; Ossenkopf et al. 2001; Ossenkopf & Mac Low 2002;
Brunt et al. 2004), consequently we insert energy on scales of
the order of the size of our computational domain, i.e. with
wave numbers k = 1..2. In the adopted integration scheme, we
add the turbulent energy ∆Ein = Ėin∆t to the system at each
timestep ∆t whenever more than 40% of the SPH particles are
advanced.

In all our models we adopt an initial temperature of 11.4 K
corresponding to a sound speed cs = 0.2 km s−1, a molecu-
lar weight µ of 2.36 and an initial number density of n =
8.4 × 104 cm−3, which is typical for star-forming molecular
cloud regions (e.g., ρ-Ophiuchi, see Motte et al. 1998; or the
central region of the Orion Nebula Cluster, see Hillenbrand
1997; Hillenbrand & Hartmann 1998). Our simulation cube
holds a mass of 120 M� and has a size of L = 0.29 pc. The
cube is subject to periodic boundary conditions in every direc-
tion. The mean initial Jeans mass is 〈MJ〉i = 0.7 M�.

We use the EOS described in Sect. 3, and compute models
with 4.3×104 cm−3 ≤ nc ≤ 4.3×107 cm−3. Note, that the lowest
and the highest of these critical densities represent rather ex-
treme cases. From Fig. 2, where we show the temperature as a
function of number density, it is evident that they result in tem-
peratures that are too high or too low compared to observations
and theoretical predictions. Nevertheless, including these cases
clarifies the existence of a real trend in the dependence of the
characteristic mass scale on the critical density. Each simula-
tion starts with a uniform density. Driving begins immediately,
while self-gravity is turned on at t = 2.0 tff, after turbulence is
fully established. The global free-fall timescale is tff ≈ 105 yr.
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Our models are named mnemonically. R5 up to R8 stand for
the critical density nc (4.3 × 104 cm−3 ≤ nc ≤ 4.3 × 107 cm−3)
in the equation of state, k2 or k8 stand for the wave numbers
(k = 1..2 or k = 7..8) at which the driving energy is injected
into the system and b flags the runs with 1 million gas particles.
The letter L marks the high resolution runs for critical densities
nc = 4.3×106 cm−3 and nc = 4.3×107 cm−3 with 2 million and
5.2 million particles, respectively. Different realizations of the
turbulent velocity field are denoted by r1, r2, r3. For compari-
son we also run isothermal simulations marked with the letter I
that have particle numbers of approximately 200 000, 1 million
and 10 million gas particles.

The number of particles determines the minimal resolv-
able Jeans mass in our models. Figure 1 shows the dependence
of the local Jeans mass on the density for the adopted poly-
tropic equation of state. At the critical density the dependency
of the Jeans mass on density changes its behavior. The mini-
mum Jeans mass Mres that needs to be resolved occurs at the
density at which sink particles are formed. A local Jeans mass
is considered resolved if it contains at least 2×Nneigh = 80 SPH
particles (Bate & Burkert 1997). As can be seen in Fig. 1 we
are able to resolve Mres with 1 million particles for critical den-
sities up to nc = 4.3 × 105 cm−3. Since this is not the case for
nc = 4.3 × 106 cm−3 and nc = 4.3 × 107 cm−3, we repeat these
simulations with 2 million and 5.2 million particles, respec-
tively. Due to long calculation times we follow the latter only to
the point in time where about 30% of the gas has been accreted.

At the density where γ changes from below unity to above
unity, the temperature reaches a minimum. This is reflected
in the “V”-shape shown in Fig. 2. All our simulations start
with the same initial conditions in temperature and density as
marked by the dotted lines.

In a further set of simulations we analyze the influence of
changing the turbulent driving scheme on fragmentation while
using a polytropic equation of state. These models contain 2 ×
105 particles each.

Following Bate & Burkert (1997), these runs are not con-
sidered fully resolved for nc ≥ 4.3 × 105 at the density of
sink particle creation, since Mres falls below the critical mass
of 80 SPH particles. We note, however, that the global accre-
tion history is not strongly affected. First, we study the effect
of different realizations of the turbulent driving fields on typ-
ical masses of protostellar objects. We simply select different
random numbers to generate the field while keeping the over-
all statistical properties the same. This allows us to assess the
statistical reliability of our results. These models are labeled
from R5..8k2r1 to R5..8k2r3. Second, driving in two different
wavenumber ranges is considered. Most models are driven on
large scales (1 ≤ k ≤ 2) but we have run a set of models driven
on small scales (7 ≤ k ≤ 8) for comparison.

The main model parameters are summarized in Table 1.

5. Gravoturbulent fragmentation in polytropic gas

Turbulence establishes a complex network of interacting
shocks, where converging flows and shear generate filaments of
high density. The interplay between gravity and thermal pres-
sure determines the further dynamics of the gas. Adopting a

Table 1. Sample parameters, name of the environment used in the text,
driving scale k, critical density nc, number of SPH particles, number
N of protostellar objects (i.e., “sink particles” in the centers of pro-
tostellar cores) at final stage of the simulation, percentage of accreted
mass at final stage Macc/Mtot.

Name k log10 nc particle N Macc
Mtot[

cm−3
]

number [%]

Ik2 1..2 – 205 379 59 56
Ik2b 1..2 – 1 000 000 73 78
Ik2L 1..2 – 9 938 375 6 4
R5k2 1..2 4.63 205 379 22 73
R5k2b 1..2 4.63 1 000 000 22 70
R6k2 1..2 5.63 205 379 64 93
R6k2b 1..2 5.63 1 000 000 54 61
R7k2 1..2 6.63 205 379 122 84
R7k2b 1..2 6.63 1 000 000 131 72
R7k2L 1..2 6.63 1 953 125 143 46
R8k2 1..2 7.63 205 379 194 78
R8k2b 1..2 7.63 1 000 000 234 53
R8k2L 1..2 7.63 5 177 717 309 29
R5k8 7..8 4.63 205 379 1 64
R6k8 7..8 5.63 205 379 38 68
R7k8 7..8 6.63 205 379 99 60
R8k8 7..8 7.63 205 379 118 72
R5k2r1 1..2 4.63 205 379 16 62
R6k2r1 1..2 5.63 205 379 34 72
R7k2r1 1..2 6.63 205 379 111 68
R8k2r1 1..2 7.63 205 379 149 64
R5k2r2 1..2 4.63 205 379 21 72
R6k2r2 1..2 5.63 205 379 51 74
R7k2r2 1..2 6.63 205 379 119 70
R8k2r2 1..2 7.63 205 379 184 70
R5k2r3 1..2 4.63 205 379 18 90
R6k2r3 1..2 5.63 205 379 52 85
R7k2r3 1..2 6.63 205 379 123 76
R8k2r3 1..2 7.63 205 379 196 71

polytropic EOS (Eq. (1)), the choice of the polytropic expo-
nent plays an important role determining the fragmentation be-
havior. From Eq. (11) it is evident that γ = 4/3 constitutes
a critical value. A Jeans mass analysis shows that for three-
dimensional structures MJ increases with increasing density
if γ is above 4/3. Thus, γ > 4/3 results in the termination of
any gravitational collapse.

Also, collapse and fragmentation in filaments depend on
the equation of state. The equilibrium and stability of filamen-
tary structures has been studied extensively, beginning with
Chandrasekhar & Fermi (1953), and this work has been re-
viewed by Larson (1985, 2003). For many types of collapse
problems, insight into the qualitative behavior of a collapsing
configuration can be gained from similarity solutions (Larson
2003). For the collapse of cylinders with an assumed polytropic
equation of state solutions have been derived by Kawachi &
Hanawa (1998), and these authors found that the existence of
such solutions depends on the assumed value of γ: similarity
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Fig. 3. Column density distribution of the gas and location of identified protostellar objects (black circles) using the high-resolution models
R6..8k2b at the stage where approximately 50% of the gas is accreted. Projections in the xy-, xz-, and yz-plane are shown for three different
critical densities.

solutions exist for γ < 1 but not for γ > 1. These authors also
found that for γ < 1, the collapse becomes slower and slower as
γ approaches unity from below, asymptotically coming to a halt
when γ = 1. This result shows in a particularly clear way that
γ = 1 is a critical case for the collapse of filaments. Kawachi
& Hanawa (1998) suggested that the slow collapse that is pre-
dicted to occur for γ approaching unity will in reality cause
a filament to fragment into clumps, because the timescale for
fragmentation then becomes shorter than the timescale for col-
lapse toward the axis of an ideal filament. If the effective value
of γ increases with increasing density as the collapse proceeds,
as is expected from the predicted thermal behavior discussed

in Sect. 2, fragmentation may then be particularly favored to
occur at the density where γ approaches unity. In their numer-
ical study Li et al. (2003) found, for a range of assumed poly-
tropic equations of state, that the amount of fragmentation that
occurs is indeed very sensitive to the value of the polytropic
exponent γ, especially for values of γ near unity (see also,
Arcoragi et al. 1991).

The fact that filamentary structure is so prominent in our
results and other simulations of star formation, together with
the fact that most of the stars in these simulations form in
filaments, suggests that the formation and fragmentation of
filaments may be an important mode of star formation quite
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generally. This is also supported by the fact that many observed
star-forming clouds have filamentary structure, and by the evi-
dence that much of the star formation in these clouds occurs in
filaments (Schneider & Elmegreen 1979; Larson 1985; Curry
2002; Hartmann 2002). As we note in Sects. 2 and 3 and fol-
lowing Larson (1973b, 2005), the Jeans mass at the density
where the temperature reaches a minimum (see Fig. 2), and
hence, γ approaches unity, is predicted to be about 0.3 M�, co-
incidentally close to the mass at which the stellar IMF peaks.
This similarity is an additional hint that filament fragmentation
with a varying polytropic exponent may play an important role
in the origin of the stellar IMF and the characteristic stellar
mass.

The filamentary structure that occurs in our simulations is
visualized in Fig. 3. Here we show the column density distribu-
tion of the gas and the distribution of protostellar objects. We
display the results for three different critical densities in xy-,
xz- and yz-projection. The volume density is computed from
the SPH kernel in 3D and then projected along the three prin-
cipal axes. Figure 3 shows for all three cases a remarkably fil-
amentary structure. These filaments define the loci where most
protostellar objects form.

Clearly, the change of the polytropic exponent γ at a certain
critical density influences the number of protostellar objects.
If the critical density increases then more protostellar objects
form but the mean mass decreases.

We show this quantitatively in Fig. 4. In (a) we compare
the number of protostellar objects for different critical densi-
ties nc for the models R5...8k2b. The rate at which new proto-
stars form changes with different nc. Models that switch from
low γ to high γ at low densities built up protostellar objects
more rarely than models that change γ at higher densities.

Figure 4b shows the accretion histories (the time evolution
of the combined mass fraction of all protostellar objects) for the
models R5..8k2b. Accretion starts for all but one case approxi-
mately at the same time. In model R5k2b, γ = 1.1 already at the
mean initial density, thus γ does not change during collapse. In
this case accretion starts at a later time. This confirms the find-
ing by Li et al. (2003) that accretion is delayed for large γ. In
the other four cases the accretion history is very similar and the
slope is approximately the same for all models.

In both plots we also show the results from our high resolu-
tion runs R7k2L and R8k2L. These simulations with 2 million
and 5.2 million particles, respectively, have an accretion his-
tory similar to the time evolution of the accreted mass fraction
in the runs with 1 million particles. The number of protostellar
objects, however, is larger for the runs with increased particle
numbers. Combining our results in these two figures we find
that an environment where γ changes at higher densities pro-
duces more, but less massive objects. Thus, the mean mass of
protostellar objects does indeed depend on the critical density
where γ changes from 0.7 to 1.1.

6. Dependence of the characteristic mass
on the equation of state

Further insight into how the characteristic stellar mass may
depend on the critical density can be gained from the mass

Fig. 4. Temporal evolution of the number of protostellar objects (upper
plot) and of the ratio of accreted gas mass to total gas mass (lower
plot) for models R5..8k2b. The legend shows the logarithms of the
respective number densities in cm−3. The times are given in units of
a free-fall time τff . We also show the models R7k2L and R8k2L with
2 × 106 and 5 × 106 particles, respectively, which are denoted by the
letter “L”. For comparison the dotted lines indicate the values for the
isothermal model Ik2b.

spectra of the protostellar objects, which we show in Fig. 5.
We plot the mass spectra of models R5...6k2b, model R7k2L
and model R8k2L at different times, when the fraction of mass
accumulated in protostellar objects has reached approximately
10%, 30% and 50%. In the top row we also display the results
of an isothermal run for comparison. We used the same initial
conditions and parameters in all models shown. Dashed lines
indicate the specific mass resolution limits.

We find closest correspondence with the observed IMF
(see, Scalo 1998; Kroupa 2002; Chabrier 2003) for a critical
density of 4.3 × 106 cm−3 and for stages of accretion around
30% and above. At high masses, our distribution follows
a Salpeter-like power law. For comparison we indicate the
Salpeter slope x ≈ 1.3 (Salpeter 1955) where the IMF is de-
fined by dN/d log m ∝ m−x. For masses about the median mass
the distribution exhibits a small plateau and then falls off to-
wards smaller masses.
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Fig. 5. Mass spectra of protostellar objects for models R5..6k2b, model R7k2L and model R8k2L at 10%, 30% and 50% of total mass accreted
on these protostellar objects. For comparison we also show in the first row the mass spectra of the isothermal run Ik2b. Critical density nc, ratio
of accreted gas mass to total gas mass Macc/Mtot and number of protostellar objects are given in the plots. The vertical solid line shows the
position of the median mass. The dotted line has a slope of −1.3 and serves as a reference to the Salpeter value (Salpeter 1955). The dashed
line indicates the mass resolution limit.

The model R5k2b where the change in γ occurs below
the initial mean density, shows a flat distribution with only
few, but massive protostellar objects. They reach masses up to
10 M� and the minimal mass is about 0.3 M�. All other mod-
els build up a power-law tail towards high masses. This is due
to protostellar accretion processes, as more and more gas gets
turned into stars (see also, Bonnell et al. 2001b; Klessen 2001;

Schmeja & Klessen 2004). The distribution becomes more
peaked for higher nc and there is a shift to lower masses. This is
already visible in the mass spectra when the protostellar objects
have only accreted 10% of the total mass. Model R8k2L has
minimal and maximal masses of 0.013 M� and 1.0 M�, respec-
tively. There is a gradual shift in the median mass (as indicated
by the vertical line) from Model R5k2b, with Mmed = 2.5 M� at
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Fig. 6. The plot shows the median mass of the protostellar objects over
critical density for models R5..6k2b, model R7k2L and model R8k2L.
We display results for different ratios of accreted gas mass to total gas
mass Macc/Mtot. We fit our data with straight lines for different stages
of accretion. The slopes have the following values: −0.43±0.05 (solid
line), −0.52 ± 0.06 (dashed-dotted line), −0.60 ± 0.07 (dashed line).

50%, to Model R8k2L, with Mmed = 0.05 M� at 50%. A similar
trend is noticeable during all phases of the model evolution.

This change of median mass with critical density nc is
depicted in Fig. 6. Again, we consider models R5...6k2b,
model R7k2L and model R8k2L. The median mass decreases
clearly with increasing critical density as expected. As we re-
solve higher density contrasts the median collapse mass de-
creases. We fit our data with a straight line. The slope takes
values between −0.4 and −0.6. These values are larger than
the slope −0.95 derived from the simple scaling law (Eq. (13))
based on calculating the Jeans mass MJ at the critical density nc.

One possible reason for this deviation is the fact that most
of the protostellar objects are members of tight groups. Hence,
they are subject to mutual interactions and competitive accre-
tion that may change the environmental context for individual
protostars. This in turn influences the mass distribution and its
characteristics (see, e.g., Bonnell et al. 2001a,b). Another pos-
sible reason is that the mass that goes into filaments and then
into collapse may depend on further environmental parameters,
some of which we discuss in Sect. 7.

7. Dependence of the characteristic mass
on environmental parameters

7.1. Dependence on realization of the turbulent
velocity field

We compare models with different realizations of the turbulent
driving field in Fig. 7. We fit our data with straight lines for
each stage of accretion. Figure 7a shows the results of mod-
els R5..8k2 which were calculated with the same parameters
but lower resolution than the models used for Fig. 6. As dis-
cussed in Sect. 5, although the number of protostellar objects
changes with the number of particles in the simulation, the
time evolution of the total mass accreted on all protostellar

Fig. 7. Median mass of protostellar objects over critical density at
different evolutionary phases (ratio of accreted gas mass over total
gas mass Macc/Mtot:10% (circle), 30% (star), 50% (triangle), 70%
(square)). In a)–d) we show identical models but with different tur-
bulent velocity fields (same root-mean-square velocity). The model
in e) is driven on a smaller scale k = 7..8 than in the other cases.
All relevant parameters are summarized in Table 1. We fit the median
values with straight lines for different stages of accretion. The slopes
are given in the plot and denoted as follows: 10% – solid line, 30% –
dashed-dotted line, 50% – dashed line, 70% – dashed-double-dotted
line.
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objects remains similar. Thus, lower resolution models exhibit
the same general trend as their high-resolution counterparts and
show the same global dependencies. We notice, however, that
the slope of the Mmedian−nc relation typically is shallower in
the low-resolution models. This can be seen when comparing
Figs. 6 and 7a, where we used identical turbulent driving fields.

For all four different realizations of the turbulent driving
field shown in Figs. 7a–d we see a clear trend of decreasing me-
dian mass Mmedian with increasing nc. We conclude that, qual-
itatively, the Mmedian−nc relation is independent of the details
of the turbulent driving field but, quantitatively, there are sig-
nificant variations. This is not surprising given the stochastic
nature of turbulent flows. A further discussion on this issue can
be found in Klessen et al. (2000) and Heitsch et al. (2001).

7.2. Dependence on the scale of turbulent driving

Figure 7e shows the results for models where the driving scale
has been changed to a lower value (k = 7..8). The overall de-
pendency of Mmedian on nc is very similar to the cases of large-
scale turbulence. However, we note considerably larger uncer-
tainties in the exact value of the slope. This holds especially
for the phases where 30% and 50% of the total gas mass has
been converted into stars. One of the reasons is lower statistics,
i.e., for the smallest critical density only one protostellar object
forms. Moreover, it has already been noted by Li et al. (2003)
that driving on small wavelength results in less fragmentation.
The forming small-scale density structure is not so strongly fil-
amentary, compared to the case of small-scale driven turbu-
lence. Local differences have a larger influence on the results
for driving on small wavelengths. Nevertheless, for most of
the models the mean mass decreases with increasing critical
density. Observational evidence suggests that real molecular
clouds are driven from large scales (e.g. Ossenkopf & Mac Low
2002; Brunt et al. 2004).

8. Summary

Using SPH simulations we investigate the influence of a piece-
wise polytropic EOS on fragmentation of molecular clouds. We
study the case where the polytropic index γ changes from a
value below unity to one above at a critical density nc. We con-
sider a broad range of values of nc around the realistic value to
determine the dependence of the mass spectrum on nc.

Observational evidence predicts that dense prestellar cloud
cores show a rough balance between gravity and thermal pres-
sure (Benson & Myers 1989; Myers et al. 1991). Thus, the ther-
modynamical properties of the gas play an important role in de-
termining how dense star-forming regions in molecular clouds
collapse and fragment. Observational and theoretical studies of
the thermal properties of collapsing clouds both indicate that at
densities below 10−18 g cm−3, roughly corresponding to a num-
ber density of nc = 2.5 × 105 cm−3, the temperature decreases
with increasing density. This is due to the strong dependence
of molecular cooling rates on density (Koyama & Inutsuka
2000). Therefore, the polytropic exponent γ is below unity in

this density regime. At densities above 10−18 g cm−3, the gas
becomes thermally coupled to the dust grains, which then con-
trol the temperature by far-infrared thermal emission. The bal-
ance between compressional heating and thermal cooling by
dust causes the temperature to increase again slowly with in-
creasing density. Thus the temperature-density relation can be
approximated with γ above unity (Larson 1985) in this regime.
Changing γ from a value below unity to a value above unity
results in a minimum temperature at the critical density. Li et al.
(2003) showed that gas fragments efficiently for γ < 1.0 and
less efficiently for higher γ. Thus, the Jeans mass at the critical
density defines a characteristic mass for fragmentation, which
may be related to the peak of the IMF.

We investigate this relation numerically by changing γ
from 0.7 to 1.1 at different critical densities nc varying from
4.3 × 104 cm−3 to 4.3 × 107 cm−3. A simple scaling argument
based on the Jeans mass MJ at the critical density nc leads to
Mch ∝ n−0.95

c . If there is a close relation between the average
Jeans mass and the characteristic mass of a fragment, a similar
relation should hold for the expected peak of the mass spec-
trum. Our simulations qualitatively support this hypothesis,
however, with the weaker density dependency Mch ∝ n−0.5±0.1

c .
The density at which γ changes from below unity to above
unity selects a characteristic mass scale. Consequently, the
peak of the resulting mass spectrum decreases with increasing
critical density. This spectrum not only shows a pronounced
peak but also a powerlaw tail towards higher masses. Its be-
havior is thus similar to the observed IMF.

Altogether, supersonic turbulence in self-gravitating
molecular gas generates a complex network of interacting
filaments. The overall density distribution is highly inho-
mogeneous. Turbulent compression sweeps up gas in some
parts of the cloud, but other regions become rarefied. The
fragmentation behavior of the cloud and its ability to form stars
depend strongly on the EOS. If collapse sets in, the final mass
of a fragment depends not only on the local Jeans criterion, but
also on additional processes. For example, protostars grow in
mass by accretion from their surrounding material. In turbulent
clouds the properties of the gas reservoir are continuously
changing. In a dense cluster environment, furthermore, proto-
stars may interact with each other, leading to ejection or mass
exchange. These dynamical factors modify the resulting mass
spectrum, and may explain why the characteristic stellar mass
depends on the EOS more weakly than expected.

We also studied the effects of different turbulent driving
fields and of a smaller driving scale. For different realizations
of statistically identical large-scale turbulent velocity fields we
consistently find that the characteristic mass decreases with in-
creasing critical mass. However, there are considerable varia-
tions. The influence of the natural stochastic fluctuations in the
turbulent flow on the resulting median mass is almost as pro-
nounced as the changes of the thermal properties of the gas.
Also when inserting turbulent energy at small wavelengths we
see the peak of the mass spectrum decrease with increasing crit-
ical density.

Our investigation supports the idea that the distribution of
stellar masses depends, at least in part, on the thermodynamic
state of the star-forming gas. If there is a low-density regime
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in molecular clouds where temperature T sinks with increas-
ing density ρ, followed by a higher-density phase where T
increases with ρ, fragmentation seems likely to be favored at
the transition density where the temperature reaches a mini-
mum. This defines a characteristic mass scale. The thermody-
namic state of interstellar gas is a result of the balance between
heating and cooling processes, which in turn are determined
by fundamental atomic and molecular physics and by chemical
abundances. The derivation of a characteristic stellar mass can
thus be based on quantities and constants that depend solely
on the chemical abundances in a molecular cloud. The current
study using a piecewise polytropic EOS can only serve as a
first step. Future work will need to consider a realistic chemi-
cal network and radiation transfer processes in gas of varying
abundances.
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Appendix A: Implementation of sink particles

The parallel version of GADGET distributes the SPH parti-
cles onto the individual processors, using a spatial domain
decomposition. Thus, each processor hosts a rectangular piece
of computational volume. If the position of a sink particle
is near the boundary of this volume, the accretion radius
overlaps with domains on other processors. We therefore
communicate the data of the sink to all processors. Each
processor searches for gas particles within the accretion radius
of the sink. Three criteria determine whether the particle
gets accreted or not. First, the particle must be bound to the
sink particle, i.e., the kinetic energy must be less than the
magnitude of the gravitational energy. Second, the specific
angular momentum of the particle must be less than what is
required to move on a circular orbit with radius racc around the
sink particle. Finally, the particle must be more tightly bound
to the candidate sink particle than to other sink particles. Once
the central region of a collapsing gas clump exceeds a density
contrast ∆ρ/ρ ∼ 5000, we introduce a new sink particle.
The procedure for dynamically creating a sink particle is as
follows. We search all processors for the gas particle with
the highest density. When this density is above the threshold
and when its smoothing length is less than half the accretion
radius, then the gas particle is considered to become a sink
particle. If the accretion radius around the candidate particle
overlaps with another domain, its position is sent to the other
processors. Every processor searches for the particles that exist
in its domain and, simultaneously, within the accretion radius
of the candidate particle. These particles and the candidate
particle undergo a series of tests to decide if they should form
a sink particle. First, the new sink particle must be the only
one within two accretion radii. Second, the ratio of thermal
energy to the magnitude of the gravitational energy must be
less than 0.5. Third, we require that the total energy is less
than zero. Finally, the divergence of the accelerations on the
particles must be less than zero. If all these tests are passed,
the particle with the highest density turns into a sink particle
with position, velocity and acceleration derived from the center

of mass values of the original gas particles. If these original par-
ticles are distributed over several processors the center of mass
values have to be communicated correctly to the processor that
hosts the new sink particle.

Ideally, the creation of sink particles in an SPH simulation
should not affect the evolution of the gas outside its accretion
radius. In practice there is the discontinuity in the SPH particle
distribution due to the hole produced by the sink particles. This
affects the pressure and viscous forces on particles outside. We
have implemented adequate boundary conditions at the “sur-
face” of the sink particles as described in detail in Bate et al.
(1995) to correct for these effects.

Following Bate et al. (1995) we use the Boss &
Bodenheimer (1979) standard isothermal test case for the col-
lapse and fragmentation of an interstellar cloud core to check
our implementation. Initially, the cloud core is spherically sym-
metric with a small m = 2 perturbation and uniformly rotat-
ing. As gravitational collapse proceeds a rotationally supported
high-density bar builds up in the center embedded in a disk-like
structure. The two ends of the bar become gravitationally un-
stable, resulting in the formation of a binary system. We see
no further subfragmentation (see also, Truelove et al. 1997).
These tests show that the precise creation time and the mass of
the sink particle at the time of its formation can vary somewhat
with the number of used processors. We also find that simula-
tions with different processor numbers show small deviations
in the exact positions and velocities of the gas particles. These
variations are due to the differences in the extent of the do-
main on each processor. When the force on a particular particle
is computed, the force exerted by distant groups is approxi-
mated by their lowest multipole moments. Since each proces-
sor constructs its own Barnes and Hut tree differences in the
tree walk result in differences in the computed force. Hence,
the formation mass and time of sink particles depend on the
computational setup. Nevertheless, these differences are only
at the 0.1% level and the total number of collapsing objects is
not influenced by a change in the number of processors.
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