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SUMMARY

It is suggested that the stellar initial mass function (IMF) is closely related to the
geometrical structure of star-forming clouds, and that the power-law form of the
upper IMF results from accretion processes in hierarchical groupings of forming
stars. If the stars in these groupings form from linear cloud structures such as
filaments or strings of clumps, and if the overall structure of star-forming clouds is
sheet-like or two-dimensional, then the mass of the most massive star that can form in
each grouping is predicted to increase as the square root of the group mass; this in
turn implies an IMF with a slope of x =2, in acceptable agreement with observations.
More generally, if star-forming clouds have fractal structures, and if stars form with
masses proportional to the linear dimensions of the basic cloud structures from which
they form, as might be expected if these structures are isothermal filaments, then the
predicted slope x of the IMF is equal to the cloud fractal dimension, which has been
estimated by several studies to be about 2.3. The fragmentation of such filaments is
also predicted to yield a minimum stellar mass of the order of 0.1 M.
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1 INTRODUCTION

A major goal of studies of star formation is to understand the
spectrum of masses with which stars are formed, since the
initial mass spectrum plays a fundamental role in determin-
ing the observed properties of stellar systems and their
evolution with time. The observational evidence concerning
the stellar IMF has been reviewed extensively by Scalo
(1986). While it may show some variability, particularly for
low-mass stars (Larson 1982; Scalo 1986; Myers 1991), the
observed IMF nevertheless seems to have the same basic
form everywhere; its essential features are a characteristic
stellar mass of the order of 1 M and a power-law tail of
apparently universal slope toward higher masses. These
basic features might result from the existence of a charac-
teristic scale for cloud fragmentation and from accretion
processes that build up a high-mass tail on the IMF, as
reviewed by Larson (1986, 1989, 1991). In addition to the
Jeans length, which determines the basic scale of frag-
mentation, the numerically similar ‘Alfvén length’, or mini-
mum scale on which magnetic effects can act, may also play a
role in setting the characteristic stellar mass (Mouschovias
1990). Further reviews discussing these and other possible
ways of accounting for the stellar IMF have been given by
Elmegreen (1985), Zinnecker (1987, 1989), Cayrel (1990),
and Ferrini (1991).

If stars form in relative isolation, it is possible that they will
continue to gain mass almost indefinitely by accretion until
other effects such as stellar winds intervene to stop the accre-

tion (Shu ez al. 1988). However, the extensive data yielded by
recent infrared surveys suggest that most stars do not form in
relative isolation but in dense groups or clusters (Lada &
Lada 1991; Evans 1991). The efficiency of star formation in
these clusters is observed to be fairly high, typically 20 to 40
per cent, and therefore most of the stars in these clusters can-
not grow indefinitely by accretion; only a small fraction of
the stars present can attain much larger masses in this way.
Massive stars have in fact long been known to form in
clusters or associations (Blaauw 1964), and there is even a
possible tendency for the most massive stars to form in the
dense cores of large clusters, suggesting that accretion pro-
cesses in cluster cores may indeed play an important role in
the formation of massive stars (Larson 1982).

The formation of massive stars by accretion can readily
account, at least schematically, for an upper IMF of power-
law form. The simplest possibility is that stars accrete gas
from an infinite uniform medium, as in classical accretion
theory; this predicts an upper IMF of power-law form with
roughly the correct slope (Zinnecker 1982). However, such a
model is clearly oversimplified for stars forming in clusters,
where the gas is clumpy and the total amount available for
accretion is limited; in such a situation the runaway growth
predicted by classical accretion theory cannot occur, and
interactions among the clumps or forming stars may play an
important role (Silk 1978; Larson 1982, 1990). If most of
the gas in a forming cluster is in clumps, an accreting object
may gain mass mainly by accreting these clumps; the total
mass that it can attain will then depend on the number of
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clumps with which it can interact, and this will depend in turn
on the size of the cluster.

It is also possible that the power-law form of the upper
IMF results from a tendency for stars to form in a self-similar
hierarchy of clusters and subclusters (Larson 1978, 1991).
The probable importance of hierarchical clustering for star
formation is suggested by the presence in star-forming clouds
of complex hierarchical and perhaps even fractal structure
(Scalo 1985, 1988, 1990; Falgarone 1989; Dickman,
Horvath & Margulis 1990; Lada, Bally & Stark 1991;
Falgarone & Phillips 1991; Falgarone, Phillips & Walker
1991), and also by the fact that many young star clusters
appear to contain subclusters (Elson 1991). Within each sub-
system, accretion processes may be expected to produce a
spectrum of stellar masses extending up to a maximum mass
that, in general, increases with the size of the system because
of the increasing amount of material available for star forma-
tion. Observationally, a dependence of the maximum stellar
mass on the total mass of a system is suggested by the fact
that in regions of star formation, the mass of the most mas-
sive star present increases systematically with the mass of the
associated molecular cloud (Larson 1982; Stacy et al. 1988).
If the efficiency of star formation is approximately the same
in different regions, as is suggested by the evidence (Evans &
Lada 1991), then a similar correlation is implied between the
maximum stellar mass and the total mass of stars in each
region.

If the mass M|, of the most massive star that can form in
a stellar system increases as some power # < 1 of the mass of
the system, i.e. if

Mmax o< ngstem’ ( 1)

and if all of the stars belong to a clustering hierarchy in which
the mass of the most massive star in each subsystem is
related in the same way to mass of the subsystem, then the
stars making up the hierarchy will have a power-law distribu-
tion of stellar masses m given by

dN[dlogm < m™", (2)
where x =1/n (Larson 1991). This follows because each star
of mass m in such a hierarchy is, by assumption, the most
massive star of a subgroup whose mass is proportional to
m!/"; since the number of such subgroups is inversely propor-
tional to their mass, the number of stars of mass m in the
hierarchy is also inversely proportional to the subgroup
mass, that is, it is proportional to m ~!/7, Each level of the
hierarchy corresponds to a fixed logarithmic interval in mass,
so this proportionality also holds for the number of stars per
unit logarithmic mass interval. Thus, for example, the
observed IMF slope of x=1.7+0.5 (Scalo 1986) could be
reproduced if n were equal to 1/x=0.6%0.2, which within
the uncertainties is consistent with the value n~0.43 sug-
gested by observations of regions of star formation (Larson
1982). In the present paper, this approach to accounting for
the form of the stellar IMF will be pursued further, and a
possible simple origin for power-law relations like (1) and (2)
will be suggested.

2 THE FORMATION OF MASSIVE STARS
AND THE ORIGIN OF THE UPPER IMF

If massive stars are formed by accretion processes in groups
or clusters, and if the accreted material is mainly in the form

of clumps, then the maximum mass that a star can attain will
be limited by the number of clumps with which it can inter-
act. The accretable mass will also be limited by the fact that
many of the clumps are likely to be collapsing into stars, so
that the gas available for accretion is exhausted after only a
few collapse times. Thus, while the accumulation processes
involved in building up massive stars may resemble those
postulated in clump coagulation models for the origin of the
IMF (Nakano 1966; Arny & Weissman 1973; Silk & Taka-
hashi 1979; Pumphrey & Scalo 1983), the existence of a limit
on the total amount of mass that can be accreted introduces
an important modification to such a picture.

The amount of time available for the growth of a massive
star in a forming stellar system may be comparable to the
crossing time of the system, and the maximum mass that the
star can acquire may be of the same order as the amount con-
tained in all of the clumps that it could encounter and accrete
in traversing the system. If the system has a diameter /, and if
it fragments into contiguous subregions or clumps of dia-
meter d, then the maximum number of such clumps that
could be encountered by an object traversing the system is of
the order of //d. If the accumulation of gas occurs not as a
result of the motion of the object but rather as a result of an
overall collapse of the system predominantly in one dimen-
sion (Larson 1985), the maximum number of clumps that
could be accumulated into one object will again be of the
order of //d. A third, perhaps more realistic possibility to be
considered in Section 3 is that the cloud fragments into fila-
mentary strings of clumps which eventually accumulate into
dense cores; again, the largest number of clumps that can be
accumulated into one object will be of the order of [/d,
where [ is here the filament length. Thus, in all of these cases,
it is plausible that the maximum stellar mass varies approxi-
mately as //d, and so increases roughly linearly with the size
of the system.

If the maximum number of clumps that can be accreted by
a forming star in a system of size /is of the order of //d, and if
the average mass of these clumps is approximately the Jeans
mass M, then the mass of the most massive star that can
form in the system is roughly
The total mass of the system is just the total mass of all the
clumps contained in a region of size /, and this depends on
the geometry of the system. For example, if the cloud is basic-
ally sheet-like or two-dimensional, the number of subregions
of diameter d in a region of diameter / is approximately
(1/d)?, and the mass of the system is approximately (//d)*M,.
The mass of the most massive star that can form in the
system is then roughly the geometric mean of the clump mass
and the system mass, i.e.

Mmax~(MJMsyslem)l/2' (4)

As was noted by Larson (1991), this implies a power-law
IMF with a slope x=2, which is in acceptable agreement
with the observations. If the system is basically three-dimen-
sional rather than two-dimensional, the relation between
maximum stellar mass and system mass will still be given by a
relation of the form (1) but with n=1/3 rather than 1/2,
resulting in an IMF with a slope x = 3, which is larger than is
observed. The fact that the value of x predicted in the two-
dimensional case agrees better with observations is con-
sistent with theoretical expectations that fragmenting clouds
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should be more nearly two-dimensional than three-dimen-
sional (Larson 1985). The dependence of the IMF on the
geometry of star-forming clouds suggests that a fractal
description may be useful, and such a description will be
considered further in Section 3.

The above argument relating the maximum stellar mass to
the mass of the system assumes that a growing massive object
will accrete clumps only if they are encountered within a dis-
tance comparable to the clump size d. This is obviously true
for the simple coalescence model, but the validity of this
assumption is less apparent in the case where a star has
already formed and is continuing to accrete matter gravita-
tionally, since the star can in principle accrete gas from a
greater distance. However, if the gas being accreted is
clumpy, accretion is efficient only for a direct collision
between the star and a gas clump. This is because the angular
momentum of the gas passing on one side of the star must
approximately cancel that of the gas passing on the other
side; otherwise, for example in a grazing encounter where the
gas has a strong density gradient, the accretion rate is greatly
reduced (Fryxell & Taam 1988). Thus, there may still be an
effective accretion radius that is comparable to the clump
size, just as in the simple coalescence model.

Another important assumption made above is that gas is
accumulated primarily by motions in one dimension. In addi-
tion to the possibilities mentioned above, this might be the
case if the gas were constrained to move along magnetic field
lines. In general, however, motions in more than one dimen-
sion could also be involved. An extreme case might be that a
central object in each system gains material by a radial col-
lapse of the system as a whole; the most massive star might
then acquire a larger fraction of the total mass, and a smaller
IMF slope might be predicted. In the limit, the most massive
star in each system might always acquire the same fraction of
the total mass, regardless of the size of the system; this would
imply n=1 and x=1. A better understanding of accretion
processes in forming stellar systems will be needed before
the possible importance of such effects can be evaluated
more quantitatively, but meanwhile it seems significant that
the smallest and largest values of x obtained in the limiting
cases considered here are 1 and 3, since nearly all of the
values of x derived from observations do, in fact, lie in this
theoretically most plausible range (Scalo 1986).

3 A FRACTAL DESCRIPTION

Evidently, the initial stellar mass spectrum depends on the
way in which gas accumulation processes are organized in
star-forming clouds, and this depends in turn on the detailed
structure of these clouds. Hierarchical structure, if present,
will clearly play an important role, and the slope of the IMF
will also depend on the basic dimensionality of these clouds.
As reviewed by Scalo (1985, 1988, 1990), there is indeed
considerable evidence that molecular clouds have complex
hierarchical structures, and also that they are typically wispy
or filamentary in shape. Theoretical reasons for expecting
star-forming clouds to have sheet-like structures have been
discussed by Larson (1985), and reasons for expecting such
sheets to fragment into filaments which finally break up into
clumps have been discussed by Miyama, Narita & Hayashi
(1987a,b). Such a picture is supported by numerical simula-
tions of the collapse of rotating clouds, which show that the
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disc formed by the collapse first breaks up into filaments,
and that dense knots then form in these filaments and grow
by accreting matter from them (Miyama, Hayashi & Narita
1984; Monaghan & Lattanzio 1991). Observational evidence
that stars often form in filaments is provided by the fact that
the cloud cores in which stars form are typically elongated,
and often appear to be parts of filaments (Schneider &
Elmegreen 1979; Myers ez al. 1991).

The results of the detailed simulations of Monaghan &
Lattanzio (1991) also resemble the results of simulations of
cosmological large-scale structure which show the formation
of intricate fractal-like networks of filaments (Park & Gott
1991; Kates, Kotok & Klypin 1991; Beacom et al. 1991). In
these cosmological simulations, the material in the filaments
eventually accumulates into dense clumps at the nodes of the
network. If star-forming clouds also contain complex
networks of filaments, the material in these filaments may
accumulate in a similar way into dense cores, and stars may
form in these cores. If such clouds are in fact fractal in struc-
ture (Scalo 1990; Dickman er al. 1990; Falgarone et al.
1991), then the stars will form in a hierarchy of groupings and
subgroupings, and if the filaments fragment into strings of
clumps, then the more massive stars will form by the
accumulation of clumps, in which case this picture becomes
identical to the clump accretion model discussed in Section
2. However, with a fractal description, greater generality is
possible because the structure of the system can be charac-
terized by a dimension that need not be an integer. A fractal
description of star-forming clouds was earlier proposed by
Henriksen (1986), although with somewhat different
assumptions from those adopted here.

A fractal structure is one that is made up of substructures
similar to the whole, and it can be characterized by a fractal
dimension D which is such that the distribution of the linear
sizes / of the substructures is given by

dN|dlog o< [7P (5)

(Mandelbrot 1977, 1982). If a star-forming cloud can be
approximated as a fractal structure, then the relevant sub-
structures are those regions of the cloud that form stellar
groupings and subgroupings. For example, if the cloud con-
tains a fractal network of filaments, the relevant star-forming
regions would be the various branches of this network. The
fractal dimension D of any structure may be regarded as a
measure of how much of space is filled by it; for example, a
network that uniformly covers a two-dimensional sheet will
have a fractal dimension D =2 (an example is shown on page
61 of Mandelbrot 1977), while one that fills up a larger
region of space, such as a convoluted sheet or a sponge, will
generally have a larger fractal dimension.

If each fractal region of size / contains, say, one filament of
length /, then equation (5) also gives the distribution of fila-
ment lengths in the cloud. If the filaments all have the same
mass per unit length, their mass distribution will have the
same form as this length distribution. A constant mass per
unit length is in fact expected for filaments formed by the
fragmentation of an isothermal sheet, since such filaments
are predicted to have line densities comparable to the critical
value,

m/l=2¢%/G, (6)

appropriate for an equilibrium isothermal cylinder with
sound speed ¢ (Miyama et al. 1987a). Filaments of any origin
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should have line densities comparable to this critical value
as long as they are significantly gravitationally bound and are
not highly transient, since filaments with larger or smaller
lines densities would quickly collapse or disperse. If fila-
ments with a constant line density and a length distribution
given by equation (5) condense efficiently into stars, then the
predicted spectrum of stellar masses m will be

dN[dlog m o« m™P, (7)

This result is identical to equation (2) if x =D; thus, under
the above assumptions, the predicted IMF slope is just the
fractal dimension of the star-forming cloud.

This result may also be obtained from the general pro-
perty of fractals that the mass contained in a substructure of
size [ is proportional to /? if all points in the fractal set have
the same mass. This relation will hold, in particular, for the
branches of a fractal filamentary network if all of the fila-
ments have the same mass per unit length. If the mass of the
most massive star that can form in a region of size / is pro-
portional to /, as suggested above and in Section 2, then this
maximum stellar mass will also be proportional to a power
1/D of the total mass in the region, i.e. equation (1) will hold
with n =1/D. Thus, since x =1/n, it follows that x =D.

The projected boundaries of molecular clouds appear to
be fractal curves with dimensions of about 1.2 to 1.4 (Scalo
1990; Dickman ez al. 1990; Falgarone et al. 1991), which
suggests that the surfaces of these clouds may be fractal
surfaces with dimensions of about 2.2 to 2.4. There is not
necessarily any simple relation between the fractal dimension
of the surface of a cloud and that of its internal structure
(Scalo 1988), nor does it even necessarily follow from this
evidence that the internal structure of molecular clouds can
be described in fractal terms. However, if molecular clouds
have very open structures in which most of the matter is con-
centrated into thin dense substructures occupying only a
small fraction of the volume (Stutzki ez al. 1991; Falgarone et
al. 1991), it is possible that much of their internal structure is
directly reflected in surface features. For example, in a cloud
with the structure of a convoluted sheet or an open sponge in
which all parts are close to the surface, each internal struc-
tural feature might correspond to, or be observable as, as
surface feature of the same size; the fractal dimension
measured for the surface might then apply approximately to
the cloud as a whole. If molecular clouds can thus be charac-
terized at least roughly as having fractal structures of dimen-
sion D~ 2.3, and if stars form with masses proportional to
the linear sizes of the basic structural elements as suggested
above, then the predicted IMF slope is x ~2.3.

This value of x is similar to that found by Miller & Scalo
(1979) for massive stars, and it also agrees with the value of x
inferred from the observed relation between maximum
stellar mass and cloud mass (Larson 1982), which since n~
0.43 implies x =1/n~ 2.3. However, most of the values of x
compiled by Scalo (1986) are somewhat smaller than this,
and fall in the range 1.7 £ 0.5. It is not certain that this differ-
ence is significant, but two effects might reduce the predicted
IMF slope. A smaller value of x would be predicted if stars
form only in parts of molecular clouds that constitute a sub-
set having a smaller fractal dimension than the cloud as a
whole. A smaller value of x would also be predicted if stars
form with masses proportional to a power higher than unity
of the linear sizes of the basic cloud structures in which they

form; this might be the case, for example, if the larger struc-
tures tend to have higher temperatures.

4 FURTHER DISCUSSION AND
IMPLICATIONS

4.1 The origin of fractal structure in clouds

The above way of accounting for the form of the upper IMF
depends on the assumed presence of hierarchical structure of
some sort in star-forming clouds, but the origin of this struc-
ture and such detailed properties as whether all of the sub-
units are gravitationally bound have been left unspecified. It
is not crucial for the above picture whether the accumulation
processes that occur in the subsystems are caused by self-
gravity or by other effects. However, the hierarchical struc-
ture itself probably must be created mainly by the dynamical
processes that form and shape molecular clouds and not by
the subsequent action of self-gravity, since gravity can only
amplify existing density fluctuations and cannot create new
ones. This is also suggested by the fact that the hierarchical
structure found in the numerical simulations of cloud frag-
mentation of Larson (1978) apparently originated mostly
from density fluctuations that were present initially, since less
substructure was found when smoother initial conditions
were assumed.

The most obvious possible source of hierarchical density
fluctuations in interstellar clouds is turbulence. Falgarone
(1989) and Falgarone & Phillips (1991) have noted that the
fractal dimension of molecular cloud surfaces is similar to
the fractal dimension of ~2.35+0.05 that characterizes
various interfaces in turbulent flows (Sreenivasan &
Méneveau 1986; Sreenivasan 1991), and they suggest that
this may reflect the presence in molecular clouds of turbu-
lence similar to laboratory and atmospheric turbulence.
Some similarity in structure between the densest parts of
molecular clouds and the regions of strongest energy dissipa-
tion in turbulent flows might be expected if turbulence is
important in compressing the gas in these clouds (Larson
1981). Turbulence is usually generated by instabilities in
shear flows, and this may be the case also in molecular
clouds; several well-studied clouds have strikingly comet-like
structures with irregular filaments whose appearance sug-
gests the presence of turbulence generated by interaction
with energetic external gas flows (Bally ez al. 1991). Numeri-
cal simulations of compressible turbulence often produce
filamentary structures, and in the presence of self-gravity,
these structures are also clumpy (Tajima & Leboeuf 1980;
Passot, Pouquet & Woodward 1988; Léorat, Passot &
Pouquet 1990; Pouquet, Passot & Léorat 1991). Thus it is
possible that turbulence can account for at least some of the
structural properties of molecular clouds. However, the
dynamical processes involved must be very complex, and
much remains to be learned about them. For example, it will
be necessary to understand better whether there is indeed a
relation between the intermittency of turbulence and the
fractal structure of molecular clouds, as has been suggested
by Falgarone & Phillips (1990, 1991).

4.2 The minimum stellar mass

Whatever the origin of the hierarchical structure in mole-
cular clouds, there is presumably a minimum size for any
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cloud structures that can form stars, given by the minimum
length-scale on which self-gravity is important. For example,
filaments that originate from the fragmentation of a sheet will
have a minimum length that is approximately the Jeans
length for sheet fragmentation, or 2¢?/Gu where u is the
surface density. If the filaments have a mass per unit length
comparable to the critical value (6), then the minimum fila-
ment mass is approximately 4¢*/G?u, which is essentially the
Jeans mass for sheet fragmentation (Larson 1985). Smaller
clump masses might result if the filaments become much
thinner before breaking into clumps (Miyama et al. 1987b),
but simulations of the fragmentation of collapsing cylinders
show that the maximum number of clumps that can be
formed is only about 4 times the number predicted from the
initial Jeans length (Bastien er al. 1991); this suggests that
there is a minimum clump mass which is roughly one-quarter
of the Jeans mass, or approximately ¢*/G?u. Since the Jeans
mass in typical dark clouds is of the order of 1 M, (Larson
1986), the minimum clump mass is then predicted to be of
the order of 0.25 M.

If such clumps collapse into stars with reasonably high
efficiency, as is expected theoretically (Larson 1984) and as
is observed to be the case at least in clusters, a minimum
stellar mass of the order of 0.1 My, is predicted. This predic-
tion may be compared with the fact that, at least according to
some determinations, the IMF has a peak at about 0.25 M,
and declines steeply toward lower masses (Scalo 1986). The
lower end of the IMF remains very uncertain, but even if the
IMF does not drop steeply toward lower masses, it appears
unlikely that there can be much mass in stars less massive
than about 0.1 M, (Larson 1991). Thus, the picture of star
formation in fractal filamentary clouds that has been sug-
gested here may be able to account not only for the slope of
the upper IMF but also for the turnover of the IMF at low
masses and for a possible minimum mass of the order of
0.1 M.

This minimum mass is predicted to depend on cloud pro-
perties, especially the temperature (Larson 1985), so that the
lower IMF might be expected to differ in regions where the
clouds have systematically different properties. As reviewed
by Myers (1991), there is indeed evidence for differences in
the typical masses of T Tauri stars observed in different
regions, and these differences appear to correlate with the
properties of the associated molecular clouds; larger clouds,
which tend to be warmer, also appear to form T Tauri stars
with higher typical masses, in qualitative agreement with
theoretical expectations.

5 CONCLUSIONS

In this paper it has been suggested that the stellar IMF
depends on the geometrical structure of star-forming clouds,
and in particular that the power-law form of the upper IMF
results from the presence of hierarchical or fractal structure
in these clouds. An IMF in reasonable agreement with
observations is predicted if star-forming clouds have fractal
structures and if stars form with masses proportional to the
linear dimensions of the basic star-forming cloud structures;
the slope of the IMF is then the same as the cloud fractal
dimension, which is suggested by observations to be about
2.3. If the basic star-forming structures are isothermal fila-
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ments, the fragmentation of these filaments is also predicted
to yield a minimum stellar mass of the order of 0.1 M.

The assumption of hierarchical structure in star-forming
clouds is fundamental to this picture, and there is indeed
considerable evidence for such structure, but its origin is not
yet well understood. The most likely explanation is that it is
generated by turbulence, but the internal motions in mole-
cular clouds are supersonic and probably also hydro-
magnetic, and much further work will be required to clarify
the role of these motions in structuring molecular clouds.

The validity of these ideas must, of course, ultimately be
demonstrated by observations. This should provide motiva-
tion for continuing efforts to study in increasing detail the
structure and dynamics of molecular clouds and the relations
between the properties of these clouds and the properties of
the stellar systems that form in them.
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