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ABSTRACT 
A method is described for the numerical solution of the equations of stellar structure by a technique 

especially designed for the solution of boundary-value problems. The numerical solution incorporates 
the boundary conditions from the start and eliminates the necessity for the trial-and-error calculations 
involved in many previous methods. Model-atmosphere calculations and mixing-length theory can readily 
be incorporated for accurate treatment of convective envelopes, and the method is capable of treating 
more or less exactly the energy generation and opacity laws and the equation of state for partial de- 
generacy. In addition, the method is well suited for the computation of evolutionary sequences of models. 
The method has been successfully used at the University of Toronto for a number of purposes, including 
the computation of evolutionary tracks from the main sequence for the purpose of estimating the ages of 
old star clusters. 

I. INTRODUCTION 

With the advent in recent years of large high-speed computers such as the IBM 7090 
it has been possible to improve considerably on earlier methods for integration of the 
equations of stellar structure. In particular, it is now possible and highly desirable to 
devise computer programs which are fully automatic and can construct complete stellar 
models and even evolutionary sequences of models without requiring human interven- 
tion. In the following article, we shall describe a method for automatic computation of 
stellar models which we have successfully used on the IBM 7090 of the University of 
Toronto. 

In the computation of stellar models we have to deal with a set of four first-order 
differential equations, the solutions of which must satisfy four corresponding boundary 
conditions, two at the center of the star and two at thé surface. The methods most widely 
used in the past for solving this problem, such as those of Schwarzschild (1958), have 
required much cumbersome trial-and-error work and fitting of solutions before a solution 
satisfying all the boundary conditions could be obtained. For this reason they are not 
well suited to automatic computation of stellar models. More direct methods are, how- 
ever, available for the solution of boundary-value problems such as the one we have to 
deal with; these methods, which have been described by Fox (1957), incorporate the 
boundary conditions from the start and eliminate the necessity for any fitting or trial- 
and-error work. In Section II of this paper, we shall outline the principles involved, and 
in the succeeding sections we shall describe how they may be applied to the problem of 
stellar structure. 

A method similar to the one to be outlined was first used for computation of stellar 
models by Henyey, Wilets, Böhm, LeLevier, and Levée (1959), and several important 
features of the present method are patterned after Henyey’s method. 

II. GENERAL METHOD EOR SOLUTION OE BOUNDARY-VALUE 
PROBLEMS WITH ONE INDEPENDENT VARIABLE 

In the method to be outlined the techniques described in the monograph of Fox (1957) 
áre applied to the case of a set of simultaneous first-order differential equations. 
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EQUATIONS OF STELLAR STRUCTURE 525 

Let x be the independent variable, and suppose there are m dependent variables 
y\x) . . . ym(x), each of which satisfies a first-order differential equation of the form 

dyk 

dx 
ym, x). 

Considering the yk’s and the/^s as the components of two m-dimensional vectors y and/, 
we can write the complete set of differential equations in the compact form 

(i) 

We suppose that equation (1) is to be solved over an interval 0 < # < X in the in- 
dependent variable, and that the boundary conditions occur at the two points x — 0 
and x = X. 

The method to be used consists in dividing the interval [0, X] in the independent 
variable into a number n of subintervals by means of w + 1 suitably chosen points Xi . . . 
xn+h with #1 = 0 and xn+i = X. In each of these subintervals the m differential equations 
are replaced by approximating difference equations relating the values of the dependent 
variables at adjacent points. Together with the m boundary conditions necessary to de- 
termine a solution, these difference equations, m for each of the n intervals, provide a 
set oî m (n-j- 1) equations which if they can be solved determine approximate values 
for the m (n+ 1) unknown quantities yk (xí), i = 1 ... n + 1, k — 1 ... m. The ac- 
curacy of these approximate values depends on the accuracy with which the difference 
approximations represent the differential equations. 

The difference approximation which we shall employ is derived from the following 
equation, which holds rigorously for any function y(x) with a bounded third derivative : 

y»+L^y.;=i(/.+i + /.) _^_{xi+l_x.yyn^h (2) 

X{+i X{ 
where 

yi = y(xi), fi = y'(xi), 
and 

Xi < £ < xi+i. 

Provided that the third derivative y"'(x) does not become unduly large anywhere in the 
interval [x¿, Xi+i] (y"f must at least be bounded in magnitude), and that the interval 
[xi, Xi+i] is made small enough, the last term in equation (2) will be small compared to 
the other terms and we obtain a sufficiently good approximation by neglecting it. This 
gives us our difference equations, which we can write, adding superscripts to distinguish 
the m dependent variables, in the form 

yki+i 
X i-\-\ X i 

k = 1 . m (3) 

As shown by Fox, it is possible by using values of yk and/* at more than two adjacent 
points to construct difference equations which are more accurate than equations (3) in 
the sense that the error term contains a higher power of (xi+i — x¡) and therefore de- 
creases more rapidly as the interval size is reduced. However, these higher-order differ- 
ence equations are not convenient for our purposes for two reasons: (1) it is necessary 
to extrapolate values of yk and }k beyond the boundaries in order to apply these equa- 
tions near the boundaries, and (2) their accuracy depends on the existence and bounded- 
ness of derivatives of higher order than the third, a condition which is not always satis- 
fied in our work. Therefore, we prefer to use a simple formula such as equations (3), even 
though more points may be required to give good accuracy. 
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526 R. B. LARSON AND P. R. DEMARQUE Vol. 140 

As may be seen from (2), the errors introduced in neglecting the last term depend on 
the square of the interval size, so one may expect that the error in the numerical solu- 
tions obtained by applying (3) will be approximately proportional to the square of the 
interval size. Thus if the number of points used were doubled, the errors would be re- 
duced approximately by a factor 4. This provides a valuable means of estimating the 
error in the numerical solution of the differential equations. 

a) Solution of the Difference Equations 

If the /fc,s were linear functions of the dependent variables y1 . . . yw the difference 
equations would be linear and could be solved by standard methods of linear algebra. 
However, in problems of stellar structure we have to deal with non-linear equations, 
and in this case the difference equations can be solved only by some iterative process, 
starting from an initial approximation to the solution. 

Such an iterative process may be obtained as a straightforward generalization of New- 
ton’s method for solving one non-linear equation in one unknown. Given an initial ap- 
proximation zo to the solution of the equation g(z) = 0, Newton’s method consists in 
obtaining an improved approximation Zi by adding to zo a correction ôzo determined by 
setting 

gO&i) = gOo + Szo) == g(zo) + g'(zo)ôz0 = 0 . 

Tfie problem at hand can be put into an analogous form by defining 

gk(yi,yi+i)= _ i (/*,+1 + /.*). <4) 

The solution of the difference equations (3) is then the solution of the set of equations 

gk(yi, Vi+i) = o, ¿ = 1... w, k = i.. .M. (5) 

As in Newton’s method for one unknown, given an initial approximation yi(i = 1 . . . 
w + 1) to the solution of equations (5), we obtain an improved approximation by adding 
to the y¿’s corrections 8yi whose components ôyfij = 1 ... m) are determined from the 
set of equations 

gk(yi + hi, yi+i + ôy^) 

or 

+ ¿(fy) . syii+i = - sk(yi, y¿+i), 

= i », k = i m (6) 

Equations (6) give us mn linear equations in the m(n + 1) unknowns 

ôyf6, i = 1 . . . n + 1, k = 1 . . . m . 

When we supplement these with m additional equations derived from the boundary 
conditions, we have altogether m(n + 1) linear equations in m(n + 1) unknowns. This 
set of equations can then be solved by standard methods of linear algebra. We have 
found quite satisfactory the standard method of Gaussian elimination with pivotal 
interchanges, described in most books on numerical analysis (see, e.g., National Physical 
Laboratory 1961). 
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No. 2, 1964 EQUATIONS OF STELLAR STRUCTURE 527 

III. THE EQUATIONS OE STELLAR STRUCTURE 

According to the outline in the previous section, our method requires that the range 
of the independent variable be specified in advance, as well as a set of points in this range 
at which the dependent variables are to be evaluated. Since we choose to construct 
models with a specified mass, the mass variable Mr is the only one whose range of varia- 
tion is known in advance, and we must therefore take Mr as our independent variable. 
This choice is necessary also for purposes of calculating the change in hydrogen content 
X as the star evolves; the points at which X is evaluated must always correspond to the 
same fixed set of values of Mr. 

Accordingly we give below the equations of stellar structure in terms of Mr as inde- 
pendent variable. These equations are derived directly from the equations given by 
Schwarzschild (pp. 96 and 36), and they take account of both nuclear- and gravitational- 
energy sources. The gravitational-energy term in equation (8) holds for non-relativistic 
partial degeneracy independently of the degree of degeneracy. In equation (8) r is the 
time variable; the other symbols all have the same meanings as in SchwarzschikTs book. 

dr 1 —— = , (7) 
dMr 47Tf2p 

dLr _ ,3Pd_, (p^\ 
dMr €+2p¿Tln V P (8) 

v ^ y 

gravitational-energy term 

dP GMr 

dMr 47t r4 ’ 

dT 3 Lr 

dMr 64Tr2ac K T3r4’ 

dT _/ 1\T dP 

dMr \ y) P dMr 

= ^ G ™r 
\ 7/ 4w Pr4 ‘ 

(9) 

(radiative) (ior) 

(convective) doc) 

Of expressions (10R) and (IOC) we are to use whichever gives the smallest value of | dT/ 
dMr\, i.e., the largest (in an algebraic sense) value of dT/dMr. 

The boundary conditions which we shall use are those given by Schwarzschild (p. 97). 
For the present choice of independent variable, these become 

and either 

or 

r = 0, Lr = 0 at Mr = 0 , 

T = 0, P = 0 at Mr — M (radiative), 

T = 0 , —- = K at Mr — M (convective) . 

In the second case, which occurs when the star has a convective envelope, is a function 
iT(Z,, M, R, X, Z) of the luminosity, mass, radius, and composition which must be calcu- 
lated from a model atmosphere. K decreases with decreasing depth of the convective 
envelope, and the limiting case K — 0 corresponds to a star with no convective envelope. 
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528 R. B. LARSON AND P. R. DEMARQUE Vol. 140 

Therefore, if we define K to be zero in the absence of a convective envelope, we can take 
account of both radiative and convective cases with the boundary conditions 

r = 0 , Lr = 0 at Mr = 0 , 

r=0, ~=K at Mr = M. 
(ID 

IV. TRANSFORMATIONS AND CHOICE OE VARIABLES 

If one plots the four dependent variables of equations (7)-(10) as functions of Mr, one 
finds that the resulting curves have singularities which make them unsuitable for the 
application of numerical techniques. For example, the curve of r versus Mr (see Fig. 1) 
has singularities at both ends at which all of the derivatives, including the third, become 
infinite. The difference equation (3), therefore, gives very poor accuracy near the 
boundaries where the neglected term in expression (2) becomes large. 

Fig. 1.—Run of f as a function of Mr in a solar-type star 

This difficulty can be overcome while still maintaining a fixed relation between the 
independent variable and Mr by using as independent variable not Mr itself but a func- 
tion of Mr in terms of which all the dependent variables are smoothly varying functions 
with no singularities. Such a transformed independent variable we shall denote by x, and 
the transformation relating x to Mr we shall write in the form 

w=/(x)- <12) 

Here/(x) is a function which varies from 0 to 1 as we go from the center to the surface 
of the star; the convenience, we can also choose the range of variation of x to be from 
0 to 1. 

The requirements on the transformation (12) will be satisfied if we choose/(æ) such 
that x varies nearly linearly with r; since the other dependent variables are smoothly 
varying functions of r, they will then also be smoothly varying functions of x. In con- 
structing a function/(x) with the required properties it is necessary first of all to insure 
that/(x) has the correct asymptotic form at the boundaries to produce a linear depend- 
ence of r on x near the center and near the surface. 

1. Center.—Close to the center where the density is almost constant we have Mr/M oc 
r3. Since we want r & xm this region, we must have, using equation (12), 

j(x) oc x3 for x <$C 1 . (13) 
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No. 2, 1964 EQUATIONS OF STELLAR STRUCTURE 529 

2. Surface.—The required asymptotic form of/(#) at the surface depends on whether 
the star is convective or radiative at the surface. 

i) Convective at surface.—Putting y = f in equations (7)-(10) and assuming the per- 
fect gas law we can show that near the surface where (1 — r/i?) <3C 1 we have 

r\25 

r) * 

Since r/R and x both approach 1 at the surface and we want a linear relation between r 
and x in this region, we must have 

(!_£)«(!_*) 

Mr * ,4 
— == 1 — const. ( 1 

■( 

near the surface. Hence in the convective case we require 

f{x) == 1 — const. (1 — x)2 5 for (1 — x) <&! (14) 

ii) Radiative at surface.—We assume that near the surface the opacity can be repre- 
sented by a formula of the form 

K = kop'T-P . 

Then it can be shown from equations (7)-(10) (again assuming the perfect gas law) that 
near the surface we have 

§=1-const. (l-0\ 

where 
_4+a+0 

* 1 + a ’ 

Hence in the radiative case we require 

f(x) == 1 — const. (1 — x)* for (1 — #) <3C 1 . (is) 

A simple function f(x) which satisfies the conditions (13)-(15) and serves for both 
convective and radiative cases is the following: 

f(x) = [l-(l-x)2*)m- (l-x)'](3-x) , (16) 

where \ & K, the limiting value of P/T2 5 at the surface. For small x we obtain from 
equation (16) 

/(x) = 2.5V(3-X)*3 , (17) 

as required. For small (1 — x) we obtain in the convective case (K and X both > 0) 

/(x) = 1 — X(1 — x)2 5 (18) 

and in the radiative case (i£ = X = 0) 

/(x) = i — 3(1 — xy, (i9) 

as required. In deriving expression (18) we have made use of the fact that in practical 
cases a > 2.5 (e.g., with Kramers’ opacity formula a = 1, ß = 3.5, a = 4.25). 

The constant of proportionality relating X to K can be chosen to produce a smooth 
transition between models with convective and radiative surfaces; we have done this so 
as to make the value of drf dx at the surface continuous in the transition from convective 
to radiative cases! It should be noted that in constructing main-sequence stars one is free 
to vary the parameters X and <r in equation (16) to suit one’s convenience, but in con- 
structing evolutionary sequences of models X and a must be left fixed after the initial 
model has been constructed, so as to maintain a fixed relation between x and Mr. 
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530 R. B. LARSON AND P. R. DEMARQUE Vol. 140 

a) Other Transformations 

The pressure P varies by many orders of magnitude in a star, and it is preferable 
both for convenience and for better numerical accuracy to use in its place a variable 
which varies less strongly. A possible choice is P/Tn, where the variation of P is counter- 
acted to some extent by a similar variation of Tn. For a star with a convective envelope 
the largest value of n we can use is 2.5, since for any larger value of n, P/Tn would be- 
come infinite at the surface. There are also two simplifications that arise from using 
P/T2 5 as a dependent variable in place of P: (1) The boundary condition P/T2* = K 
becomes simply a specification of the boundary value of the variable P¡T2'h\ (2) in cases 
where partial degeneracy is important, the functions Fi/2(^) and F3/2OA) (Schwarzschild 
[1958], p. 61) depend on P and T only in the combination P/T2 5, and they therefore 
become functions of the single variable P/T2 b. 

Fig. 2.—Runs of s, q, p, and t as functions of x 

Since Lr increases sharply near the center (Lr ^ r3), there will be some loss of accuracy 
in applying the difference equation (3) unless very small steps are taken in the inde- 
pendent variable %. This situation can be improved by using in place of Lr a variable 
which varies linearly with x near the center. Such a variable is 

¿■O+f) 

where a is some small constant of order of magnitude 0.01. 
For convenience we shall now define the following new set of dependent variables, 

which all are near unity in order of magnitude in a typical main-sequence star such as 
the Sun: 

j = —, 2=í¿(1+^)’ t=\0~->T. (20) 

For illustration, we have plotted these four variables as functions of x in a model we 
have obtained for the present Sun (Fig. 2). It is apparent that s, q, p, and t are all 
smooth and well-behaved functions of x, as required for good numerical accuracy. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
64

A
pJ

. 
. .

14
0 

. .
52

4L
 

No. 2, 1964 EQUATIONS OF STELLAR STRUCTURE 531 

V. THE TRANSFORMED EQUATIONS 

Substituting the definitions (20) into the four basic differential equations (7)-(10) 
and using equation (12) to transform from Mr to % as independent variable, we obtain 

ds M f'(x) (21) 

dx 47ri?o3 s2P ’ 

and 

= f>(x)e  
dx Lo\ sV7 ^ 1 x3 + ax 

+ |1016 M_ 

Lq 

pP* d , /p6/3\ 

p ¿TlnV^¿26)’ 

(22) 

dp _ GM> fix) f(x) 0 pd¿ 
dx ZirRo* sH2 5 t dx1 

(23) 

dt _ SMLp f'(x)q 

dx 64tTr2acRo* sH*(l +a/x*)’ 

¿1= GM> f(x)f'(x) 
dx 5 4cttRq4 s4pt's ’ 

(radiative) (24R) 

(convective) (240 

where we have put Y = §. 

VI. THE GAS-CHARACTERISTICS RELATIONS AND THE SURFACE BOUNDARY CONDITION 

Before equations (21)-(24) can be integrated numerically, one must have some means 
of calculating the three quantities p, €, and k from the pressure, temperature, and com- 
position. In addition it is necessary to have some means of calculating the constant K 
required for the surface boundary condition P/T2h = K. 

a) The Equation of State 

In the study of faint stars and in calculations of stellar evolution it is necessary to 
take into account partial degeneracy. For the case of interest in which the electrons may 
be partially degenerate but the nuclei still obey the perfect gas law, the density and 
pressure are related by the parametric equations (Schwarzschild [1958], pp. 58-61) 

P = HeH ^(2mkTyPFl/2(P) , (2S) 

8 ‘Tr Ip 
P = j^(2mkTV/2kTF,/2(P) PT, (26) 

where = mass of material per electron, 

ßn — mass of material per nucleus, 

H = mass in grams of the unit in which pe and are measured (here taken as 

the mass of the H1 atom), 

and the other symbols have the same meaning as in SchwarzschikTs book. 
To calculate the density p from equations (25) and (26) our procedure is as follows: 

substituting equation (25) in equation (26) we obtain 

~(2mkTyPkT [|F3/2(^) +^i'l/2(^)] =p. 
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532 R. B. LARSON AND P. R. DEMARQUE 

In terms of our variable p = 10 P/T'-6 this becomes 

Â3 

Vol. 140 

(27) 

It is possible to represent f FZß{^) quite accurately as a function of F\ß{\p) by a simple 
analytical formula; we have found the following formula to be in error by less than 
äsO.02 per cent for all \f/ less than 30: 

[l + 0.12398Fl/2(tA)] ' 
(28) 

When this is substituted in equation (27) we obtain an equation in the single unknown 
Fillip), which is readily solved by iteration. Once Fi^ip) is known p is calculated from 
equation (25) which becomes, in terms of t = 10~7r, 

p = 288.36 ßj1 5Fii2(P) . (29) 

We shall later need also the derivative f = dFiß(p)/dp, which may be obtained from 
expression (27) by differentiating with respect to p: 

dF^iP) 

dp 
0.13293 I 

dFs/iip) 
dFi/iip) ßn 

Mel-1 

-I 
(30) 

b) The Nuclear-Energy Generation Rate 

The following formulae have been taken from Reeves (1964), with the slight modifica- 
tion that we use t = T/IO7 in place of Reeves’s r6 = T/106. 

1. Proton-proton cycle.—The energy-generation rate epv due to the proton-proton cycle 
is expressed as a sum of the contributions of the three branches of the cycle: 

— €i + en + em , 
where 

€i = ei' ( 1 — 7 ), en 

In these expressions 

€l'= 4.44X 105/ii^nX2p/_2/3 exp( - 15.693//V3) ? 

y — a[ (1 + 2/ a)1/2“ 1], 

a= 1.94x 1018( F/4X)2 exp( - 46.416/¿1/3), 

. /1.4Ó7ie;\ 
em=£i tT+^ry- 

where 

and 

w = 8.31 X 1013/71g7i (j^x) ¿_1/6 exP( - 47.623/f1/3). 

The quantities/n, gibfn, an(i in are correction factors given by Reeves as 

/n= l + 0.0079pV2/-3/2 ? g11== 1 -{- 0.026i1/3-}- 0.036^2/3 + 0.006i, 

/71 = 1 + 0.0316p'/H-W , g7i=l + 0.0087^/3 # 

For the g’s which vary little we have used the following approximations: 

gn = 1.037 + 0.033^, g7i 4a 1 . 
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2. Carbon-nitrogen cycle.—For both branches of the carbon-nitrogen (-oxygen) 
cycle we have 

€CN = 1.711 X 1027/i4,1 g!4, iXX14pr2/3 exp (-70.697/*1'3) , 
where 

/h, i=l + 0.0553 p1/2r3/2, 

gu, i=l + 0.0058¿1/3 - 0.0172/2/3 ~ 0.0007t, 

= 0.995 - 0.008/. 

Xi4 is the abundance by weight of nitrogen 14. At temperatures less than about 16000000° 
K, only carbon and nitrogen participate in the energy-generation cycle, and since the 
reaction which consumes Ni4 is by far the slowest in the cycle, the nitrogen abundance 
becomes practically equal to the total initial abundance of carbon and nitrogen together. 
Using the general abundance table of Aller (1961) we estimate this to be about 0.19 
times the total heavy-element abundance Z. At temperatures greater than about 
16000000° K oxygen participates in the energy-generation cycle of Xi4 rises to about 
0.96 times the total initial abundance of carbon, nitrogen, and oxygen together, which 
we estimate from Aller’s table to be about 0.61 Z. 

We shall later require the partial derivatives of e = €pp + €cn with respect to p and t. 
In calculating these derivatives we can in good approximation neglect the variation with 
p and / of y and w and of the/s and g’s. The partial derivative with respect to p is ob- 
tained by making use of equations (29) and (30) : 

dp=F^)r (31) 

For the derivative with respect to t we again make use of equation (29) for p: 

de _ depp 

'dt~~dt~ 
deçN 
dt 

eppf5 i 5.231\ , €cn/g , 23.566X 
t V6 ^ ¿1/3 / / V6 ^ Z1/3 / 

(32) 

c) The Opacity 

The most complete tabulation of radiative opacities presently available is that of 
Keller and Meyerott (1955). For purposes of formula-fitting or interpolation in these 
tables, it is convenient to separate out the electron-scattering opacity = 0.19 (1 + 
X) ; the logarithm of the remaining part of the opacity Kt due to atomic transitions is then 
a nearly linear function of log p and log T. As a first rough approximation we may repre- 
sent log /Q as a linear function of log p and log T, which leads us to a Kramers-type 
formula of the form 

Kt ~ KopaT~ß . (33) 

For many purposes, however, formula (33) is not adequate and Kt must be calculated 
more accurately either from a more elaborate formula or by interpolation in a table of 
log Kt versus log p and log T. Whatever technique is used, it is assumed that logarithmic 
derivatives 

can be calculated in addition to Kt. It is important to insure that the calculated values of 
Kt, a, and ß are continuous functions of log p and log T; otherwise the convergence of the 
iterative method of Section II may be slowed down considerably. 
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The following partial derivatives which we shall require later are obtained from equa- 
tions (34), using equations (29) and (30): 

fd log Kt\ _ 

KT^-j)rri = a 
p 

r, 

/d log Kt\ 

\ d log t Jp 

6 = ß — 1.5a . 

(35) 

(36) 

The opacity calculations, which form a subroutine of the main computer program, may 
be easily modified to take into account any improvement in opacities on the Keller- 
Meyerott tables. The only requirements of the main program are for the opacity sub- 
routine to provide the quantities a and ß together with the opacity at each point. 

d) The Calculation of K 

Finally we require a means of calculating the surface value of our variable p — 10 
P/T2 5. For this purpose we have adapted a program described elsewhere (Demarque 
and Geisler 1963) for integrating downward through the atmosphere and outer layers of 
a star of specified luminosity, mass, radius, and composition. The integration is stopped 
when a zone of adiabatic convection is reached, and K is calculated at this point from 
K = P/T2 h) if no convection zone is encountered, K is set equal to zero. This calculation 
has been incorporated in the model construction as follows: K is first calculated from 
the radius and luminosity of the initial approximation, and this value of K is used in 
constructing the second approximation to the model; K is calculated again from the 
radius and luminosity of the second approximation and used to construct the third ap- 
proximation, and so on. The process converges rapidly to a model with the correct iT, pro- 
vided that precautions are taken to insure that K does not change by too large a factor 
between models. 

The above procedure is satisfactory for stars on or near the main sequence. Osterbrock 
(1953) has shown that the error introduced by assuming a constant ratio of specific 
heats in the calculation of the radius of red-dwarf models is small. This is due to the 
relatively small thickness of the hydrogen ionization zone. An accurate treatment of the 
superadiabatic transition layer is required mainly for the purpose of obtaining a realistic 
value of K in the adiabatic envelope, rather than for its direct effect on the computed 
radius of the star. However, the preceding remarks do not apply to high-luminosity red 
giants for which accurate surface conditions must be used and the exact effect of the 
hydrogen convection zone must be taken into account. 

VII. THE DIFFERENCE EQUATIONS 

In equations (21) and (22) we substitute p from equation (25), and in equation (23) 
we substitute dt/dx from equations (24R) or (24C) according to whether radiative or 
convective equilibrium prevails. Also in equation (22) we replace the time derivative 
d/dr by the approximating difference operator A/Ar, A denoting differences between the 
present model and the previous one in an evolutionary sequence. We can then write the 
basic differential equations (21)-(24) in the form 

= DS = A 
ax 

1 /'(*) 

Me sH^FM) ’ 
(37) 

^ = DQ = DU — DV + DW&G, 
d oc 
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where 

EQUATIONS OF STELLAR STRUCTURE 

DV = 2aq/ax), 

dx 
= DP = 

DW = ~-(l+-¿) f'(x)r= ^ , 
At jJLe\ x2/ Fl/2W) 

G = In [ fJLe/dFi/2 ( ^ ) b^p~1 ] . 

5 
f(x)f'(x) 

sH2 5 2.5C K 
f'(x)pq 

sHHl + a/x*) ’ 

535 

(38) 

(radiative) (39R) 

(convective) (39C) 

(radiative) (4or) 

(convective) (4oc) 

where 

4 = io-1(i k3Mo 

i6Tr2H(2mk)3m0 

_ b = io-16-6 /üy 
j’WGy'’ 47ri?o4VM0y’ 

and 

(7=10-28 3MqLq / Af \ 
647r2aci20

4 W©/’ L© W©/’ 

WMq/Lq (M_\ 

8xff(2OT/fe)V2 Vdf©/ 

Using If© = 1.991 X 1033 gm, 22© = 6.96 X 1010 cm, and Lo = 3.86 X 1033 erg/sec, 
we obtain 

4 = 0.0016296 (M/M©), 5 = 0.028355 (M/Mo)2, C = 0.00068588 (M/Mo), 

E = 0.51580 (M/Mo), F = 8.4846 X 1013 (M/Mo). 

In terms of the quantities DS, DQ, DP, and DT defined in equations (37)-(40) we can 
now write the four difference equations corresponding to the differential equations (37)- 
(40) in the following form: 

^  S i+1 
X%-)-]. ““ X 

0.2 = ^i+1 Q* 

gi 

Xî-\-\ X 

pi+l ~~~ P 
X -iX % 

èf^+x + u^) = 0, 

^(^•+1 + ^) = o, 

KUFi+x + PP,) = o, 

g .4 ^ Ji±l^L _ 1 ( + ) = 0 , 
^ ¿ "f"! X % 

(41) 

(42) 

(43) 

(44) 
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where i takes values from 1 to ^ being the number of intervals into which the range 
of x is divided. 

To solve equations (41)-(44) we follow the method outlined in Section II. Putting 
yi = s, y2 = g, yz — p9 y* = t, and using the quantities gik defined in equations (41)- 
(44), we can apply equations (6) with m = 4: 

¿+1 
Syi+i= - gik, i = 1 . . . n , 1 ... 4. 

We shall write these equations in the following form: 

#ip5 Si + arfó Qi T" an7,8pi 4- ai^Ôti 

+ s¿+i + 016*5 ^¿+1 + 0i7*5ÿt+i + ai8làti+i — b\%, 

02i*5 Si + 022*5 . . . -h 028l5 ¿¿+i = ¿2* > 

03i*5 Si + dz2%8qi + . . . + 038*5^+1 — 5s*, 

04l'5 Si + 042* 8 Qi + . . . + 048*5^+1 = 8±l , 

where i = 1 . . .n. The coefficients in this set of equations are partial derivatives of the 
gik,s with respect to Si, qi,..., /¿+i, and they are obtained by differentiating the expres- 
sions in equations (41)-(44), using equations (37)-(40) for DS, DQ, DP, and DT. 

VIII. EXPRESSIONS EOR THE COEEEICIENTS 

We give below the coefficients of 8si, 8qi, 8pi, and 8ti in equations (45). The coefficients 
of 8si+i. . . 8ti+i are quite similar in form and need not be written out separately. 

Using equations (41), (37), and (30) we obtain 

0H1 - 1 DSi 

X^+l Xi 
= 0, ffi3i = i 

DSi 

FMi) 
r,-, 

. , DSi i i Si+i — s, , DSi+i-j- DSi 
öi4

, = f-7—, ¿»i* = 1 z . 
¿i Xi~{-i Xi 2à 

In calculating the partial derivative oî DU with respect to /, we set DC/ = DUP + 
DUC where 

DUP = E (1 + a/x2)f(x)epp, DUC = £(1 + a/x2)f(x)ec^ . 

From equations (42), (38), (31), and (32) we then obtain 

021* = 0 

022* 
-1 ^DVi 
 r 2 1 
Xi+\ Xi qi 

+T< 

5 i 
zFMi) 

a 
, DUPj 

k 
/ 5.231N .DUCifs 

\6_r /¿V3 ) 2 ti V6 

23.566^ 
kl/z 

1 DWi .c 2 ^ , 

q i+i q i DQj+i ~f~ DQ. % 
Xi-j-i—“ Xi 2 
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From equations (43), (39), (40), (35), and (36) we obtain: 

a) Radiative case (DR > DC) 

537 

azC = 2 
DPi 

a i — 5 Èi DRi ^32 — x 4.- 

Un i — ñt 

* ti qi ' 

where 

pi+i — pi , DPj+i + DPi 
r” o i 00% 2d 

DPi = ( DC i — DRi ). 

b) Convective case (DR < DC) 

dzi1 — 0 , dz2l — 0 , #334 - 
- 1 

»r oc <¿ 

From equations (44), (40), (35), and (36) we obtain: 

a) Radiative case (DR > DC) 

asT = 0 , ô2* = 
I   Pi+l pi 

0C"í-\-\ 0C't 

041^ — 2 
DR. 

««‘--tO-t), 

a i —  i DR * «42 — 2 ! 
qi 

DRi 

Pi ’ 

«44* }-l Xi ti Y. \ K / i J 

02 = 

¿ 1 <A/ % 

h+i ~ h j DTj+i + DTj 
x¿+i “" Xi 2 

where DTi — DRi, 

b) Convective case (DR < DC) 

DCi 

0441 

041* = 2 

1 

X î -f-1 X i 

Si 

3 DCj 

#42* — 0 , 0431 — 2 
pi ’ 

■» i_ h+\ — k , DTi+\-{- DTi 
04 1“ r* 1 

Xi-f~i Xi 2 

where DTi — DCi. 
The coefficients 015*, 0i6*, etc., of . . . ó/¿+i in equations (45) have the same form 

as the corresponding coefficients of bsi, . . bti, the only differences being that all quanti- 
ties are evaluated at point i -j- 1 instead of point i, and the term l/(xî+i — Xi) occurs 
with the opposite sign (+ instead of — ). 

As indicated above, the choice of coefficients corresponding to adiabatic or radiative 
equilibrium is made by application of the usual Schwarzschild criterion, i.e., 

DR < DC 
for convective instability. 
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538 R. B. LARSON AND P. R. DEMARQUE Vol. 140 

Since in the present method all variables are calculated at the two end points of each 
interval, no difficulty was experienced in the transition from a radiative to a convective 
region. This procedure is identical to that successfully used by Schwarzschild and Härm 
(1963) in their calculations of stellar evolution. 

a) Coefficients at the Boundaries 

1. Center,—Since the quantities DS, DU, etc., all contain either 5 or x in a denomina- 
tor, they cannot be evaluated directly at the center point where s = x = 0; we must 
instead evaluate their limiting values as # —» 0. These limiting values are readily ob- 
tained from the asymptotic solutions of equations (37)-(40) at the center. We make 
use of equation (17) to obtain the asymptotic form for small x; we have 

f'(x)==kx2 for x<3Cl, <46) 

where 
¿ = 3X2.5M3-X) . 

Substituting expressions (46) in equations (37)-(40), we derive 

[h A i V3 
r TTi 5^-7TT » DUi= k aEei , (Me)lh1 5^l/2m)-l 

DW^kaUU) W^7T\’ DV1=i(DZh+DW1AG1), At Vm*/1^1/2(^i) 

DPi = DTi = 0 (radiative or convective) . 

(47) 

Using equations (47) we can now calculate the coefficients of dpi and ôh from the formulae 
given previously. The coefficients of 8si and 8qi are not required since dsi = 8qi = 0 in 
virtue of the boundary conditions. 

2. Surface.—Two cases arise according to whether the star is radiative or convective 
at the surface. 

i) Convective surface.—Since the surface layers are for practical purposes completely 
non-degenerate, we can put \Fzß{p) — Fißiffi) in expression (27) to obtain 

¿5/2W = 0.13293 
Me 

(48) 

where \/p — \/\xe + 1/Mn- From equation (18) we obtain 

/,(x)==2.5X(l-^)15 (49) 

for small (1 — x). Substituting equations (48) and (49) in equations (37)-(40), we derive 
the following limiting values as x —» 1 : 

DSn+i = 

DTn+i — 

<rM?3ii(3Lw'Dr''« 

/ \B yA 
DQn+i == 

DPn+i = 0 , 

(50) 

Z)Fb+1= _2£J±1. 
1 + a 

In calculating DQn+i we have made use of the fact that DU and DW are negligibly small 
near the surface. 

ii) Radiative surface.—We assume that near the surface the opacity can be repre- 
sented by a Kramers-type formula of the form 

k = KopaT~P . 
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539 No. 2, 1964 EQUATIONS OF STELLAR STRUCTURE 

Since degeneracy is negligible near the surface we have p œ ptl-b and we can write 

K = Kopatrd, (51) 

where 0 = ß — 1.5a. We also make use of equations (19) to obtain 

f'(x) = 3<r(l — x)*-1 (52) 

for small (1 — x)> where <r = (4 + a + j3)/(l + a) . 
Substituting expressions (48), (51), and (52) in equations (37)-(40) we derive 

DSn+i = — Q"i32?3"g (“) +iSn+i2DTn+i, DPn+1 = 0 (provided <r > 3.5 ), 

DTn+i = 
( 3B ro-CKo,gM+i-|1/1+“)1A 

DQn+l^ DVn+i = 
2 d Qn+l 

1 G> 

(53) 

Using equations (50) or (53) we can now calculate the coefficients of ôsn+i and ô^w+i. 
The coefficients of dpn+i and ô/n+i are not required because dpn+i = 8tn+i = 0 in virtue 
of the boundary conditions. 

IX. CONSTRUCTION OF STELLAR MODELS 

Taking the four linear equations (45) for each of the n intervals in x, we have alto- 
gether 4w linear equations in the 4 (w + 1) quantities ósí, bqi, bpi, bti, i = l,...,w+l. 
Four of these quantities are however already determined by the boundary conditions, 
which give bsi = bqi = bpn+i = btn+i = 0. We are therefore left with An equations in An 
unknowns which we can solve by elimination. Once the corrections bsi, . . . , bk, i = 
1, . . . , w + 1 have been determined, we obtain an improved approximation to our 
stellar model by adding these corrections to the corresponding variables of the initial 
approximation. The process is repeated until the corrections become negligibly small 
compared with the level of accuracy required. 

Under favorable conditions, when a reasonably good first approximation is available, 
two or three iterations may suffice to produce convergence to an accuracy of better than 
1 per cent in all the variables. Under other conditions, when the initial approximation 
differs appreciably in some respect from the final model, the iterations may converge 
slowly or even diverge. In such cases it may be necessary to bridge the gap between the 
initial approximation and the desired final model by means of intermediate models. 

As for numerical accuracy, we have found that for a typical main-sequence star near 
the Sun an accuracy of better than 1 per cent in all the variables is obtained with a uni- 
form distribution of forty points in the interval from x = 0 to x = 1. For evolved models 
in which energy generation occurs in a thin shell, it is necessary for equivalent accuracy 
to take more points in the region of the shell, but fair accuracy may still be obtained 
even with a coarse distribution of points. 

X. APPLICATION TO STELLAR EVOLUTION 

The method described in the preceding sections can readily be applied to the auto- 
matic computation of stellar evolution in the manner described by Henyey et aL (1959). 
The main feature of the method is that the change of hydrogen content X from one 
model to the next in an evolutionary sequence is calculated using the average rate of 
change of X for the two models. Thus, if we use subscripts 1 and 2 to distinguish the two 
models we have for the formula to be applied at each point 

X2 = Xl+i[(f7)1
+(^7)JAr- (54) 
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540 R. B. LARSON AND P. R. DEMARQUE 

After each iteration the term (àX/àr)^. is recalculated from the improved values of 
temperature and density in the second model, and equation (54) is applied again to ob- 
tain improved values for the hydrogen content X2. 

In calculating the rate of change of X it is necessary to take separate account of the 
four processes of energy generation: the three branches of the proton-proton cycle, and 
the carbon-nitrogen cycle. These processes release differing amounts of energy per He4 

nucleus formed because of the differing energy losses in the form of neutrinos. From 
Reeves (1964) we take the following figures for the non-neutrino energy released per He4 

nucleus formed: for Branches I, II, and III of the proton-proton cycle, 26.21 MeV, 
25.65 MeV, and 19.1 MeV, respectively, and for the carbon-nitrogen cycle 25.04 MeV. 

Finally, the possibility of the presence of a convective core at some stage of the evolu- 
tion of the star is taken into account. Since mixing leads to chemical homogeneity within 
a convective region, the existence of a convective core may considerably influence the 
course of the subsequent evolution of the star. At each evolutionary step, the new run of 
the hydrogen content is calculated neglecting convective mixing. The computer then 
tests for stability against convection at each point. Within the convective core, if it 
exists, the hydrogen content is set equal to a weighted mean of the hydrogen contents at 
all points throughout the convective region. The weighting function is fix) since the 
mass of an infinitesimal shell centered at x is Mf(x)dx. 

XI. CONCLUDING REMARKS 

We have described a method of constructing stellar models which takes full ad- 
vantage of the capabilities of large computers and is entirely automatic, requiring no 
work to be done outside the computer except for providing the initial approximation. 
Programming is more complicated than for the older methods of Schwarzschild, but the 
extra work required in programming is made up for by the ease with which models are 
obtained; with an IBM 7090 an accurate model incorporating all the refinements we 
have described can be obtained in less than a minute of computing time, and a whole 
sequence of models (such as an evolutionary sequence) can be obtained in one run on the 
computer. 

The method has proven to be particularly well suited for the study of main-sequence 
and early evolutionary phases of stars near 1 Mo. We have used the method in a number 
of investigations involving such stars, the results of which will be published separately. 

We wish to thank Professor M. Schwarzschild and Mr. R. Härm for introducing us 
to Henyey’s method and to the details of their own procedure in applying it. Thanks are 
due also to the Institute of Computer Science of the University of Toronto for the 
generous allotment of computer time we have received. One of us (R. B. L.) has been 
supported during this work by a National Research Council of Canada postgraduate 
bursary. 
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