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A method for simulating three-dimensional gas dynamics by following the motions of 
representative fluid particles is described. The gas pressure is represented by repulsive forces 
between neighboring pairs of particles, and the effect of shock dissipation is represented 
by an artificial-viscosity force between neighboring particles. Tests show that the scheme 
represents the static pressure and the oscillation period of an enclosed gas sphere with an 
accuracy of =5 y0 for 100 particles, and it reproduces the Jeans criterion for spherical 
gravitational collapse with an accuracy of -20 %. It also simulates the formation of 
accretion discs as thin as ~10 percent of the diameter, with an effective Reynolds number 
due to artificial viscosity of W = 50. 

1. INTR~DUC~~N 

Many problems in astrophysical gas dynamics are inherently three-dimensional in 
nature, involving systems with no special symmetries. One such problem is the 
gravitational collapse of interstellar clouds and the formation of stars. Previous 
calculations assuming spherical or axial symmetry have shown that collapsing clouds 
always tend to develop highly condensed cores or “condensation nuclei” of stellar 
density, which subsequently grow in mass by the accretion of remnant cloud material 
[I]. In the more realistic case where no symmetries are present, a collapsing cloud 
probably develops many condensation centers orbiting around each other and 
continuing to accrete from the surrounding cloud. A question of vital interest 
concerns the number and the mass distribution of the protostellar condensations that 
form in a collapsing cloud. 

At present, three-dimensional calculations with standard Eulerian or Lagrangian 
methods are feasible only with fairly coarse grids containing, perhaps, 323 cells. For 
an Eulerian scheme with a fixed grid, this spatial resolution is not adequate to follow 
very far the development of small dense condensations in a collapsing cloud. Nor is 
the Eulerian method well suited to following accurately the motions of such condensa- 
tions, since numerical inaccuracies in the conservation of mass and momentum can 
lead to spurious numerical diffusion and viscosity effects. On the other hand, 
Lagrangian schemes which follow the fluid motion have the disadvantage that the 
cells quickly become highly distorted, necessitating frequent rezoning which is time 
consuming and itself introduces errors or disturbances into the calculation. 

These limitations can be avoided and the development of arbitrarily small condensa- 
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tions can be followed if the use of a grid is abandoned altogether and one follows 
individually the motions of many representative fluid elements or particles, as in the 
many-body techniques used in molecular dynamics and in stellar dynamics. Such an 
approach is well suited to studying the formation and growth of small dense condensa- 
tions, which are represented by close gravitationally bound clusterings of particles. 
This paper describes a finite-particle scheme which has been developed and used 
especially to study the gravitational fragmentation of collapsing gas clouds; some 
preliminary results of this work have already been reported [l], and more detailed 
results will be published elsewhere [ 141. 

2. THE FINITE-PARTICLE METHOD 

(a) The Representation of Pressure 

There are two ways in which the temperature and pressure of a gas can be represen- 
ted in a finite-particle scheme. One approach is to treat the particles as giant molecules 
which interact only via collisions, but otherwise follow free particle orbits. The 
pressure then arises almost entirely from the random or “thermal” motions of the 
particles, and any radiative heating or cooling of the gas is represented by inelastic 
collisions. A scheme of this type in which the particles are inelastically colliding 
spheres has been described by Brahic [2, 31, who has used it to study the evolution of 
systems of solid particles such as Saturn’s rings. A disadvantage of this approach for 
the present purposes is that it is necessary to give the particles an unphysical finite 
size which must be fairly large, or else inelastic collisions will be too infrequent to 
dissipate energy during a free-fall time as required in a collapsing cloud. 

A second possibility is to regard the particles as extended but amorphous and 
deformable gas elements which are in continual contact with neighboring gas elements 
and interact with them via pressure forces at the boundaries. The pressure force 
between two neighboring gas elements then depends on the assumed temperature and 
on the separation between their centers. Consider for example two neighboring 
elements with separation r, mass m, radius-r, and density p N m/r3 (Fig. 1). If the 
isothermal sound speed is c, the pressure within each element is P = pc2 and the total 
repulsive force between them is PA, where A N rz is the area of the interface; the 
repulsive acceleration is then 

a -PA pc2r2 c2 
v- m -7=-’ r (1) 

Although this derivation is only approximate, any more exact result must have the 
same form as (1) which also gives the pressure acceleration between neighboring 
points in a Lagrangian grid. Therefore we have adopted a law of this form for the 
repulsive acceleration between neighboring particles: 
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where C is a parameter, proportional to the isothermal sound speed, whose exact 
relation to the total pressure is to be determined (see below). In the applications that 
have been made of this method the gas has been assumed to remain isothermal, so that 
C is a constant throughout the calculation. 

Similar schemes, with a more artificial form for the pressure force, have been 
described by Dormand and Woolfson [4] and by Aust [5]. 

A-r2 

m m EEI r 

p-m/r3 

FIG. 1. Schematic representation of two adjacent gas elements, as visualized in estimating the 
pressure force between them. 

(b) The Representation of Viscosity 

The viscosity of a gas plays a somewhat analogous role to the pressure in that, 
while pressure tends to smooth out density fluctuations, viscosity tends to smooth out 
velocity fluctuations and dissipate their energy. The presence of viscous dissipation is 
crucial for the formation of stars in a collapsing cloud, since it is needed to dissipate 
the kinetic energy of collapse. The fact that molecular viscosity is small does not mean 
that its effects are unimportant, but rather that they are confined to thin regions of 
almost discontinuous velocity change, i.e. to shock fronts. For example, in the existing 
spherical collapse models, nearly all of the dissipation takes place in an accretion 
shock at the surface of a stellar core. If the collapse motions are more irregular, shock 
fronts may also play an important role in transferring momentum from one part of the 
cloud to another, thus providing an effective large-scale viscosity and contributing to 
the redistribution of angular momentum which is also essential for the formation of 
stars [I]. For these reasons it is important to include the effect of shock fronts in 
providing dissipation and an effective large-scale viscosity. 

The average rate of momentum transfer between adjacent fluid elements due to the 
propagation of shock fronts may be estimated as follows. Consider two representative 
fluid particles with separation r that are approaching each other with relative velocity 
u (Fig. 2). If u is comparable with or greater than the sound speed, then a shock front 
must appear somewhere between the particles and propagate toward one of them, 
overtaking it in a time -r/u and imparting to it a velocity increment NU away from the 
other particle. Although the detailed properties of such shocks cannot be determined, 

FIG. 2. Sketch illustrating the possible configuration of two approaching particles and a shock 
front propagating between them. 
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the average acceleration of the particles away from each other is approximately 

Since a shock occurs only if the particles are approaching each other, i.e. if u, = r: < 0, 
whereas no shock is generated if u, > 0, the average repulsive acceleration due to the 
propagation of shocks between neighboring particles is 

UT < 0, 
u, > 0. 

This result is identical in form to the standard artificial-viscosity term used to represent 
shocks in finite-difference methods [6], and it has a similar effect of spreading out the 
dissipation associated with shock fronts over a region with dimensions cornarable to 
the particle separation. The use of an artificial viscosity of the form (3) corresponds 
to assuming a characteristic distance for momentum transfer which is comparable to 
the particle separation, so that it would also be appropriate for other sources of 
viscosity such as turbulent viscosity if the turbulent mixing length were of this order. 

Combining Eq. (2) for the pressure and Eq. (3) for the viscosity acting between 
neighboring particles, the total repulsive acceleration is 

where Q is a constant of order unity. The value of Q cannot be too small, since then 
there is not enough viscosity to dissipate the collapse energy within a free-fall time, 
and formation of bound condensations does not occur; instead the system behaves 
more like a classical n-body system. Reasonable results are obtained with 0.25 5 Q 5 
1.0, and most of the calculations have been made with Q = 0.5. 

(c) The Choice of Interacting Neighbors 

An important aspect of the finite-particle method is that it is necessary at each step 
to locate the nearest neighbors of each particle and decide which ones to include in 
calculating the total force on the particle. The simplest possibility, and the one that 
has been used in most of the calculations, is to include only the nearest neighbor of 
each particle, together with any other particles of which it is the nearest neigbor. The 
average number of neighbors with which a particle interacts at any instant is then 
typically about 1.5 to 1.6. The forces on the particles vary discontinuously whenever 
they change nearest neighbors, and therefore the particles are jostled around and 
acquire random velocities that contribute to the total pressure and viscosity of the 
system. However, the dissipation term in Eq. (4) acts to damp the random velocities 
and keep them generally smaller than the sound speed, so that the random-motion 
component of the pressure is usually smaller than that due to the repulsive forces. 

Since there is no direct control over the random-motion contribution to the pressure 
and viscosity, it is desirable to reduce the random velocities as much as possible if the 
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method is to simulate accurately a gas with specified properties. The random velocities 
can be reduced by including more interacting neighbors per particle, thereby reducing 
the fluctuations in the force per particle. The use of more interacting neighbors may 
also in some circumstances increase the accuracy with which pressure gradients are 
represented. A scheme has therefore been tried in which neighbors are successively 
added such that the (n + I)th interacting neighbor is the nearest particle whose 
direction is not within 60” of the direction to any of the previous n neighbors, until a 
maximum distance equal to twice that of the nearest neighbor is reached. This results 
in an average of about 4.5 to 5.0 interacting neighbors distributed roughly uniformly 
about each particle. 

Increasing the number of interacting neighbors in this way is found to make no 
large difference to any of the results, once the value of C in Eq. (4) is reduced to give 
the same total pressure as before. The random velocities are reduced, as expected, 
and the balance between pressure and gravity is somewhat more accurately calculated 
for small numbers of particles. However, there are also some disadvantages, including 
a greater tendency for the particles to concentrate near any boundary that may be 
placed around the system; also, the ratio of pressure to gravity forces between neigh- 
boring particles is smaller, so that spurious two-body gravitational effects may be more 
important. 

(d) Gravitational Forces 

Gravitational forces have been calculated individually for all pairs of particles, as 
in standard n-body techniques. Computational economies have been achieved by 
recalculating different force components with different time steps, as described in 
Section 3(b). In order to alleviate possible numerical problems associated with very 
close encounters, and to allow for a finite size of the particles, a softened force law of 
the form 

has been assumed in most of the calculations. However, the use of a finite E (typically 
= 1 % of the radius of the system) makes no essential difference to the results, serving 
mainly to slow down the rate of gravitational processes in the close vicinity of accreting 
condensations. 

3. NUMERICAL FEATURES OF THE METHOD 

(a) Integration of the Particle Orbits 

Because of the discontinuously varying particle accelerations, the relatively sophisti- 
cated high-order integration schemes normally used in n-body calculations are not 
advantageous, and a simpler integration scheme with shorter time steps is more 
appropriate. We have used the “modified Euler method” which involves calculating 
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the forces on the particles at the beginning of each time step, extrapolating the posi- 
tions and velocities to the end of the step, recalculating the forces, and then advancing 
all quantities using the average of the initial and final forces. The error of integration 
after a fixed time interval is theoretically proportional to the square of the time step, 
and tests have verified that this is the case with this method, despite the discontinuities 
in the accelerations. 

From previous work on the n-body problem in stellar dynamics (eg. Miller [7], 
Standish [S]), it is known that it is meaningless to attempt to calculate exact particle 
orbits, since the slightest numerical error is rapidly amplified to the extent that all of 
the orbits become completely different. However, it appears that the overall properties 
of n-body systems can still be predicted with some reliability, so in calculations made 
with the present method it has been attempted to ensure that general features, such 
as the balance between pressure and gravity that determines whether a cloud collapses, 
are calculated with reasonable accuracy. Such features are not very sensitive to errors 
of integration, and it appears that the main effect of such errors is to increase the 
random velocities of the particles and raise the effective temperature of the system. 

(b) Force Calculation and Time Steps 

Essentially all of the computing time is taken up by the force calculation, which 
involves calculating the distances and gravitational forces between all pairs of particles, 
determining the nearest neighbors of all particles, and calculating the pressure and 
viscosity forces between the nearest neighbors. Thus it is advantageous to avoid 
repeating these calculations any more than necessary, and to use different time steps 
for different parts of the calculation. A hierarchy of time steps given by At/2” with 
0 < n < 5 has been used, and each particle has been assigned a value of n such that 
the corresponding time step is approximately proportional to the distance of its 
nearest neighbor, but is reduced if the relative velocity is particularly large. Thus 
particles experiencing close encounters with neighbors are advanced with short time 
steps, while those that are far from other particles are advanced with longer time 
steps. (A similar hierarchy of time steps was used by Hayli [9].) In addition, each pair 
of particles is assigned a value of n in the same way, and the distances and forces 
between particles are recalculated with time steps that are short for close pairs and 
long for distant pairs, even if the individual particles are being advanced on shorter 
time steps. With these economies, it is possible to follow the evolution of systems of 
~100 to 200 particles with moderate amounts of computing time; for example, a 
system of 150 particles can be followed for a time 50 At or ~4 free-fall times in about 
15 min on an IBM 370/158. 

4. TESTS OF THE METHOD 

(a) Pressure of a Static System 

The total pressure of a system of particles interacting according to the force law (4) 
can be determined experimentally by enclosing the system within a reflecting boundary 
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and measuring the pressure on the boundary. The measured pressure can then be 
compared with the predicted pressure to obtain an idea of the accuracy with which the 
method is capable of simulating a given temperature and pressure. In the Appendix, 
the predicted pressure is shown to be 

$ = c2 = 7 c2 + (1 + $ Q) (u,2), 

where (n) is the average number of interacting neighbors per particle and U, is the 
random velocity in one coordinate direction. 

When the system is enclosed in a reflecting boundary, the particles tend to con- 
centrate near the boundary because of their mutual repulsion. This effect becomes 
more pronounced for smaller random velocities, but can be partially alleviated by 
introducing a repulsive force between the boundary and the particles closest to it. In 
either case, the total pressure exerted on the boundary is found to agree well with 
Eq. (6) if the mean density p and the empirical mean values of(n) and (uz2) are used; 
the agreement is typically within 5 % for a system of 100 particles. If Q = 1 in Eq. (4), 
the fraction of the total pressure due to random motions is about 0.30 for (n) = 1.6 
and 0.15 for (n> = 5.0; if Q = 0, these numbers are larger by about a factor of 2. The 
agreement between theoretical and measured pressures is hardly altered if different 
time steps are used, but numerical noise causes the relative importance of random 
motions to increase as the time step is increased. 

(b) Radial Oscillations of a Bounded Sphere 

The ability of the finite-particle scheme to simulate acoustic oscillations can be 
tested by studying the radial oscillations of a system of particles enclosed in a reflecting 
sphere, and comparing the observed period with that predicted by the classical 
theory of oscillating gas spheres. Such oscillations are set up naturally because the 
mutual repulsion of the particles causes the system to begin expanding initially, until 
the particles start colliding with the boundary. The oscillations are strongly damped 
by the dissipation term in Eq. (4), so for this test Q has been set equal to zero. (Setting 
Q = 0 also increases the random velocities and reduces the tendency for particles to 
concentrate near the boundary.) 

Some results are illustrated in Fig. 3, which shows the mean radius (r) of the 
particles as a function of time for several runs with different numbers of particles. For 
N = 50 the oscillation is fortuitously nearly a pure fundamental mode, while for 
N = 75 and N = 100, higher harmonics are also evident; in all cases, however, the 
fundamental is sufficiently dominant that its period can be determined with reasonable 
accuracy, and these periods are indicated in Fig. 3. Also indicated for comparison is 
the theoretical period [IO] 

T = 1.398 R/c, 

where R is the radius of the sphere and c is the isothermal sound speed as given by 
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theoretical T; 0.76 

0 0.5 1.0 1.5 
t- 

FIG. 3. Radial oscillations of systems of N = 50, 75, and 100 particles enclosed in reflecting 
spheres of radius R = 0.4. The mean radius <r> of all particles is plotted vs time for each case; 
also indicated are the observed period T of the fundamental mode in each case, and the theoretical 
period T = 1.398 R/c. 

Eq. (6). The agreement between measured and theoretical periods improves with 
increasing N, and approaches -5 % for N = 100. Thus the scheme appears to 
simulate correctly not only the static pressure but also the radial oscillations of an 
enclosed gas sphere. 

(c) Spherical Isothermal Collapse 

We consider next some calculations including gravitational forces, which have so 
far been omitted. A convenient test problem is the isothermal collapse of a sphere with 
a fixed boundary; this problem has been studied by several authors (eg. Bodenheimer 
and Sweigart [ 1 I], Larson [ 12]), and well-determined solutions obtained with standard 
Eulerian and Lagrangian methods are available. Both the density distribution resulting 
from the collapse and the critical temperature required to prevent collapse can be 
compared with the previous results to obtain an idea of how accurately the present 
scheme can simulate the balance between pressure and gravity and the dynamics of 
gravitational collapse. 

The results of many such calculations show qualitatively the same behavior as found 
in previous studies: for temperatures above a critical value the system does not 
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collapse but rebounds and oscillates, while for lower temperatures the cloud continues 
to collapse indefinitely and develops a centrally condensed structure with a density 
distribution approximating p cc +. Some density distributions obtained for collap- 
sing systems with temperatures slightly less than the critical value are shown in Fig. 4. 
The radius r is measured from the point of maximum density, which may not coincide 
exactly with the center of the system, and the average densities of particles are plotted 
for a series of concentric shells centered at this point. Also shown for comparison 
(solid curves) are the density distributions obtained from previous isothermal collapse 
calculations made with Lagrangian and Eulerian grid methods [12]. The agreement is 

I , I I 
-2.0 -1.5 -I 0 -0.5° 

log r 

FIG. 4. A comparison of density distributions obtained with the finite-particle scheme (various 
symbols) and with an accurate Lagrangian grid method (solid curves) for the spherical isothermal 
collapse problem. Results are shown after 1.6 freefall times (t,,), just before the formation of a dense 
core, and at t = 1.9 tIf when 40 percent of the mass has fallen into the core; the latter case is shifted 
downward by 1 unit in log p for clarity. The analytic approximations p a r-I and p a rslr are 
also shown for comparison. 

evidently quite close, even with only 50 particles. Although the density distribution 
becomes difficult to define, qualitatively similar results are obtained with as few as 
10 particles; the formation of a dense central core is still quite evident, even though it 
contains only a few particles. This suggests that the method is capable of following the 

5W27/3-g 
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formation of small condensations in at least a qualitatively correct fashion even if they 
contain only a small number of particles. 

A quantitative check on the accuracy of the method can be made by comparing the 
minimum value of c2 required to prevent collapse with the critical value c2 = 0.46 
GM/R determined previously [12] using an accurate Lagrangian grid method. A 
precise comparison is difficult because of the complicating boundary effects, but the 
results of many calculations with different detailed assumptions can be summarized 
by saying that the minimum value of c2 required to prevent collapse is smaller than the 
“theoretical” critical value by a factor which is about 0.6 for N = 25,0.7 for N = 50, 
and 0.8 for N = 100; an analytic approximation for this error factor is 
“(1 + 5N-‘9l. It is plausible that the fractional error should vary as N-2:3 since 
N-2/3 is proportional to the square of the ratio of particle separation to system size, 
and the error of a conventional Lagrangian scheme is also proportional to this 
quantity. For N 2 50 the error does not appear to depend much on (n), but for 
smaller numbers of particles there is a tendency for the error to be smaller for 
larger (n). 

(d) Accretion Disks 

A final test problem against which results calculated with the present method can 
be compared is the case of a massless isothermal accretion disk orbiting around a 
central point mass. The vertical density distribution in such a disk has the simple 
analytic form 

p(z) = p(O) exp(-GMz2/2c23), 

and the mean height (z) of matter at radius r is 

(z) = (2/nGM)l12 cr3i2, (7) 

where M is the central mass. The formation of an accretion disk has been simulated 
by calculating the collapse of a spherical, rotating system of 100 massless particles 
surrounding a central point mass which absorbs any particles that come closer to it 
than 5 % of the initial radius. Nearly half of the particles are then accreted by the 
central mass during the initial collapse, and the rest form a flattened disk orbiting 
around it whose thickness depends on the assumed value of C2 in Eq. (4). The mean 
height (z) of particles from the central plane of the disk increases with radius in 
approximate agreement with Eq. (7); an example is shown in Fig. 5. 

Since most of the pressure is in this case due to random motions rather than repul- 
sive forces, the comparison between observed and predicted values of (z) is not a 
strong test of the ability of the force law (2) to simulate the pressure of a gas; instead, 
the thickness of the disc is mainly a measure of the ability of the dissipation term in 
(4) to dissipate enough energy during the collapse to allow the formation of a thin 
disk with small random motions. With N N 50 particles in the disk, the smallest 
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disk height (z) obtained even with C2 set equal to zero is approximately 0. lr, indicating 
that there is a minimum attainable random velocity which is of the order of 10 % of 
the circular velocity. This is similar to the result found by Brahic [3] using a colliding 
particle scheme. The disk thickness depends somewhat on the value of Q in Eq. (4), 
being smallest for 0.5 5 Q 5 1.0 and larger for other values. 

Because of the finite viscosity, angular momentum is transferred outward in the 
disk, causing the inner part to spiral inward and accrete onto the central object while 
the outer part expands, as in the viscous disk models of Lynden-Bell and Pringle [13]. 
The timescale for evolution of a viscous disk with kinematic viscosity v is given by 
7 N S&&, where w is the angular velocity of rotation and 22 = cd/v is the Reynolds 
number or ratio of inertial to viscous forces. The effective Reynolds number of the 
disks simulated with the present scheme can therefore be estimated from the rate at 

O.*- 
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FIG. 5. The mean height (z) of particles above the plane of an accretion disc containing 40 
particles is plotted vs radius (triangles) and compared with the theoretical relation for an isothermal 
disk (curve). 

which disk matter spirals inward and is accreted by the central object. For disks 
containing -50 particles the effective Reynolds number estimated in this way is 
W m 30 - 50, and the corresponding timescale for spiraling in and accretion of the 
inner parts of the disk is of the order of 5 to 8 orbital periods. This empirical Reynolds 
number is in approximate agreement with that predicted by the classical formula for 
molecular viscosity, i.e. v = Q(u) A, if (u) is taken as the average random velocity 
of the particles and h is taken as the mean interparticle distance. The approximate 
correspondence between the classical mean free path and the interparticle spacing 
exists because of the dissipation term in Eq. (4), which implies a path length for 
momentum transfer which is comparable to the particle spacing. If Q is set equal to 
zero, the viscosity of the disk becomes unmeasurably small. 

5. CONCLUDING REMARKS 

The method which has been described appears to simulate three-dimensional 
isothermal gas dynamics well when subjected to a number of tests. Both the static 
pressure and the period of radial oscillation of an enclosed gas sphere are reproduced 
quite closely, with an error of the order of 5 % for 100 particles, if accurate empirical 
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values of (n) and (uZ2) are used in Eq. (6) to obtain the predicted pressure. In this 
situation at least two-thirds of the total pressure is due to repulsive forces and less 
than one-third to the random motions. In gravitationally collapsing systems the 
random motions become more important, providing perhaps about one-half of the 
total pressure, and the accuracy of comparisons with standard test problems is 
somewhat less, i.e. of the order of 20 % for 100 particles. This is in part because only 
a fraction of the particles are in the dense collapsing core of the cloud, but also because 
the values of(n) and (uS2) are altered during the collapse and therefore are not as well 
determined as in the static case. Nevertheless this level of accuracy is still very useful 
for many problems for which three-dimensional calculations have not previously been 
possible. 

The major uncertainty affecting results obtained with this method arises from the 
assumed viscosity and the question of whether it is physically realistic. The presence 
of dissipation with a scale length smaller than the size of the system is essential if the 
method is to simulate collapse and star formation processes at all, and in the present 
scheme the dissipation length has been assumed to be comparable with the mean 
interparticle spacing. This results in a Reynolds number, or ratio of inertial to viscous 
forces, which is of the order of 50 for systems of 100 particles. This is about 20 times 
smaller than the value 94’ sz lo3 suggested by Lynden-Bell and Pringle [13] for tur- 
bulent accretion disks, but it is likely that in collapsing clouds the various additional 
sources of viscosity [1] make the Reynolds number much smaller than 9 = 103, in 
which case results obtained with the present method may not be grossly in error. 

APPENDIX: CALCULATION OF THE PRESSURE 

We assume that particles of mass m are uniformly distributed in space with density 
N particles per unit volume, and that a repulsive force mC2/r acts between each 
particle and its nearest neighbor. Let f(r) denote the normalized distribution of 
nearest-neighbor separations, so thatf(r) dr is the probability that the nearest neighbor 
lies in the distance interval dr. Consider first the total x-component of the forces acting 
per unit area across the plane x = 0 between particles with x < 0 and nearest neigbors 
with x > 0. If the nearest neighbor of a particle with x = x1 < 0 lies at distance r and 
direction 0 measured from the +x direction, the pair straddles the plane x = 0 only 
if 0 < 8 < 7~12 and r > / x1 j set 8; the x-component of the force is then mC2 cos e/r. 
The number of particles per unit area with x1 in the interval dx is Ndx, and for each 
such particle the probability that its nearest neighbor lies in the distance interval dr 
and the direction interval d6’ is 4 sin 0 dOf(r) dr. Hence the total x-component of force 
acting per unit area across the plane x = 0 is 

P, = lo 
--co 

N dx 1:” i sin 0 de ~,~,,,,, f(r) dr mC2 zos ’ , 

which yields 

P, = $NmC2 = $pC2 
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independent of the form of f(r). This derivation has so far assumed only a single 
interacting neighbor per particle, but since the result does not depend on f(r), each 
interacting neighbor provides the same contribution to the total pressure. Therefore 
the total pressure P, due to the repulsive forces is obtained by multiplying by the 
average number (n) of interacting neighbors per particle: 

f’c = (<M$ PC’. 

An additional contribution to the pressure comes from the second term Qu,.“/r in 
Eq. (4), representing viscosity. If the velocities of the interacting particles were 
uncorrelated we would have (ur2) = 2(uZ2), where u, is the x-component of random 
velocity of a single particle; however, the interaction tends to reduce (u,~) for ap- 
proaching particles to approximately (uZ2). Multiplying by another factor of $ because 
the viscous force is zero when U, > 0, the resulting contribution PO to the pressure is 

PO = (W/W PQ&“>. 

Finally, there is a contribution to the pressure of p(uz2> due to momentum transfer by 
the random motions, just as in classical kinetic theory. Hence the total pressure is 

P - = 9 C2 + (1 + g Q) (uz2). 
P 
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