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SUMMARY 

We describe a method for computing the evolution of a spherical stellar system, 
using a fluid-dynamical approach based on the numerical solution of moment 
equations derived from the Boltzmann equation. Moments of the velocity 
distribution up to the fourth order are included in this treatment. In order to 
represent relaxation effects, ‘ collision terms ’ are included and are evaluated 
using the Fokker-Planck equation. The principal assumption of the method 
is that the velocity distribution deviates by only a small amount from a 
Maxwellian distribution ; however, it has been attempted to allow for a large 
anisotropy of the velocity distribution in the outer part of the system. To illus- 
trate the application of the method, we apply it to the problem of the ‘gravo- 
thermal catastrophe ’ of an isothermal sphere, as recently discussed by 
Lynden-Bell & Wood (1968). The results confirm the predictions of Lynden- 
Bell & Wood concerning the instability and thermal runaway of an enclosed 
isothermal sphere when the central condensation becomes too high; however, 
the time scale for the ensuing ‘ gravo thermal catastrophe ’ is found to be much 
longer than the relaxation time. A discussion of the results shows that the 
rate of evolution is intimately related to the overall structure of the system; 
the more closely it approaches an isothermal structure with a Maxwellian 
velocity distribution, the slower is the evolution. 

I. INTRODUCTION 

The dynamical evolution of a large system of stars (i.e., one containing > 100 
stars) is a long-standing problem in stellar dynamics, which has not been completely 
solved except with the help of certain fairly strong simplifying assumptions. 
Hénon (1961, 1965) obtained solutions for the structure and evolution of a globular 
cluster by assuming that the evolution is homologous and that the velocity distribu- 
tion always remains isotropic. Michie (1961) studied the evolution of a cluster 
model having an anisotropic velocity distribution, but specified by a distribution 
function containing only three parameters; the change with time of these three 
parameters was computed using the Fokker-Planck equation, but only one time 
step was obtained. Von Hoerner (1963, 1968) has proposed a theory for the evolution 
of a stellar system which is based on a number of simplifying assumptions, including 
the assumption of ‘ local virial equilibrium ’, and he has obtained some predictions 
in agreement with the results of rc-body calculations for small clusters (n — 25). 
However, the degree of validity of the various simplifying assumptions which 

have been made by different authors is still not entirely clear; for example, it is 
still not clear whether anisotropy of the velocity distribution is an important 
effect which must be taken into account. 

In the present paper we shall consider a fluid-dynamical approach to stellar 
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dynamics, based on the numerical solution of moment equations derived from the 
Boltzmann equation. Such a method has been used, for example, by Larson (1969) 

to study the initial collapse and formation of a spherical galaxy. Since the fluid- 
dynamical approach is capable in principle of dealing with a system of arbitrary 
structure, it is of interest to see whether relaxation effects can be incorporated in 
this method; this would allow the computation in detail of such expected evolution- 
ary effects as the increasing central condensation of a stellar system, the loss of 
stars from the system, and the tendency toward an increasing degree of anisotropy 
of the velocity distribution in the outer parts of the system. 

It is clear from the work of Hénon (1961) and Lynden-Bell & Wood (1968) 
that the evolution of a stellar system may be understood as being caused primarily 
by an outward flow of energy from the centre of the system to the outer regions, 
analogous to the flow of heat in a gas. In terms of the velocity distribution, this 
corresponds to a tendency for the most energetic stars to be moving preferentially 
outwards relative to the bulk of the stars, and this corresponds in turn to a non-zero 
third moment of the velocity distribution. Thus it is clear that the third moments 
of the velocity distribution will play an essential role in the fluid-dynamical 
calculations, and that the moment equations must be carried to at least third order. 

In fact, it turns out on examination of the equations (see Section 2 and the discussion 
in Section 5) that in order to be able to calculate the third moments properly, it is 
necessary to know also the fourth moments and to carry the moment equations to at 
least fourth order; the system of equations may then be closed by assuming a 
relation between the fifth moments and the lower order moments. 

It then remains to incorporate the effects of encounters between the stars, 
which are responsible for producing the energetic stars which escape from the 
central part of the cluster. The effect of encounters on the velocity distribution is 
usually described by means of the Fokker-Planck equation, which is approximately 
valid for systems with a sufficiently large number of stars (Cohen, Spitzer & 
Routly 1950). The Fokker-Planck equation provides an expression for the ‘ encoun- 
ter term ’ in the Boltzman equation, which may be integrated over the velocity 
distribution to yield the rates of change of the various moments of the velocity 
distribution as caused by encounters. 

In Section 2 we shall give the derivation of the moment equations, and in Section 
3 we present the calculation of the relaxation effects using the Fokker-Planck 
equation. In Section 4 we describe the application of this method to the problem 
of the ‘ gravothermal catastrophe ’ for an isothermal sphere, as recently studied 
by Lynden-Bell & Wood (1968). The application of the method to some more 
realistic models of stellar systems will be described in a later paper. 

2. DERIVATION OF THE MOMENT EQUATIONS 

We consider a system with spherical symmetry described by the spherical 
polar coordinates r, 0, and </>, and we denote by w, ü, and w the corresponding 
velocity components. We denote by p(r) the mass density of stars as a function of r, 
and by (r) the mean velocity in the radial direction. For a system with spherical 
symmetry, the mean tangential velocity components (v) and (zv) must vanish, 
as must all other moments of odd order in v or w. Also, since the two tangential 
coordinate directions are equivalent, the value of any moment is unaffected by 
interchanging v and w. 
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No. 4, 1970 Computing the evolution of star clusters 325 

In addition to the density of stars p and the mean radial velocity <(w>, we define 
the following higher moments of the velocity distribution, which we adopt as the 
fundamental parameters characterizing the velocity distribution : 

*^({u-<u>yy \ 

ß = (v2y = <>2> I (j) 

ï^<(u-<uy)*y. J 

Instead of using the fourth moment £ itself, it will be convenient to write the moment 
equations in terms of a variable £, defined as the difference between £ and the value 
which £ would have for a Maxwellian velocity distribution, viz. 3a2: 

£ = £~3a2. (2) 

In equation (1), oc and ß are just the mean squared random velocities in the radial 
and transverse directions, and the third moment e represents an energy transport 
or ‘ heat flow * in the radial direction, as was discussed in Section 1. The quantity 
I defined in equation (2) may be thought of as representing an excess or deficiency 
of high velocity stars relative to a Maxwellian velocity distribution; a positive value 
of I corresponds to an excess of high velocity stars, while a negative £ corresponds 
to a deficiency. As will be seen later (Section 5), the existence of a finite ¿ is of 
fundamental importance, and the tendency of £ to relax toward zero is what 
provides the ‘ driving force ’ for the evolution of the system. 

The moment equations for p, <w>, a, ß, e, and £ may be derived by the usual 
procedure of multiplying the Boltzmann equation by successively higher powers 
of the velocity components u, v, w, and integrating over the velocity distribution. 
In the resulting set of equations, the following moments are found to occur in 
addition to those already defined: <(tt —<V>)z;2>, <(& —<V>)2^2), <(w —<w»5>, 
<(z/ —<m»3z;2>, and the corresponding moments with w2 in place of v2. In order to 
close the system of equations, some approximate way must be found of relating 
these moments to the ones already defined. In order to do this, we introduce the 
following approximate representation of the velocity distribution, which will also 
be used in Section 3 in evaluating relaxation effects from the Fokker-Planck 
equation. 

2. i The assumed form of the velocity distribution 

Let V denote the magnitude of the random velocity vector, and pu the cosine 
of the angle between this vector and the r-direction. We then have 

(w —<w>) = Vpi, v2 + w2 — V2(i — p,2). 

Let f(Vy /x) be the normalized distribution of random velocities; the normalization 
condition is 

2n j” VW = 1. (3) 

Since by definition we have <(w—<w»> = o,/(L,/x) must satisfy the further 
condition that 

(V^y = 27T V3dV J^1 ndrf(V, n) = o. (4) 
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326 Richard B. Larson Vol. 147 

In statistical equilibrium the velocity distribution approaches a Maxwellian 
distribution, which in normalized form may be written 

g(V) = (27rè)-3/2 e-v*m% (S) 

Since the actual velocity distribution^ F, /x) is expected to be roughly approximated 

by a Maxwellian distribution, at least in the central part of a cluster where the 
relaxation effects are most important, we shall adopt the Maxwellian distribution 
(5) as a zero-order approximation to /(F, /x). We choose the value of b such that 
g(V) has the same kinetic energy of random motions as the actual velocity distribution 
/(F,/x); this gives 

¿ = (6) 
3 

We assume for the moment that the deviation of /(F, /x) from a Maxwellian 
distribution is small and may be adequately represented by an expansion in 
Legendre polynomials, retaining only the first three terms in the series. We then 
write 

f{v, g{V)+ i an{V)Pn{p-), (7) 

where the Pn{iL) are Lengendre polynomials and the coefficients an{V) are imagined 
to be small ‘ corrections * to the Maxwellian distribution ^(F). Equation (7) may 
be thought of as providing a first-order approximation to the velocity distribution, 
valid in the limit of small deviations from a Maxwellian distribution. As will be seen 
(equations (9) and (10)), «o(F) is related to the quantity £ defined in equation (2), 

ai(V) is related to the energy flux parameter €, and 02(F) is related to the anisotropy 
parameter (oc — ß); thus three terms in the Legendre expansion is the minimum 
number required to adequately represent the essential features of the velocity 
distribution. 

We now assume that the functions an(V) may be approximated as the product 
of g (F) by a power series in F, where only the first few terms in the power series 
are retained. Since the velocity distribution must be of the form 

f(V, /x) = f(u - O), ^ + W2) = /'(P^X, F2(i - /x2)), (8) 

i.e. must be a function of F2 and F/x only, it is clear that ao(V) and 02(F) must 
contain only even powers of F, whereas tfi(F) must contain only odd powers of 

F. The simplest functions of this form which give non-zero values for £, c, and 
(oc — ß) and still satisfy conditions (3), (4), (6), and (8) are as follows: 

MV)-ca(r-^+^g(V) ' 

a2(V) = c2Çg(V). 

(9) 

If we now evaluate the moments a, ß, e, and | for the velocity distribution defined 
by equations (7) and (9), we obtain the following relations giving the constants 
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No. 4, 1970 Computing the evolution of star clusters 

co, ci, and C2 in terms of the moments of the velocity distribution 

Si + iioc-ßf 

327 

co = 
8 62 

ci = 5 JL 
1 6 ¿3/2 

a— ß 
C2 = 

3b ' 

(10) 

Using equations (7), (9), and (10), we can now evaluate the unknown moments 
required to close the system of moment equations. We obtain 

<(w-<w»z>2> = e/3 , 

<(m - <m»2w2> = £/3 - b(oc - ß) 

<(w—<w»5> = lobe 

((u — (uy)sv2y = 2Ô€. 

(II) 

Equations (n) are expected to be valid in the limit of a nearly Maxwellian velocity 
distribution; in particular, they are expected to be valid if e and (oc — ß) are small. 
It is found in practice, however, that the velocity distribution always tends to 
become strongly anisotropic in the outer parts of a cluster, in the sense that ß 
becomes <^o: (e remains small). In an attempt to provide a better approximation 
for such circumstances, we assume that the effect of a large anisotropy of the velocity 

distribution may be represented as a scale change by a factor (ß/a)1/2 in the v and 
w directions. The moments containing v2 in equations (n) then become equal to 
ß/a times the values which they would have for a = ß. Thus we finally adopt 

<(M-<M»
2> = ^ 

«3 

«3 

<(« —<w»5> = lOae 

<(m-<m»3©2> = 2jße. ¡ 

(12) 

2.2 The moment equations 

For a system with spherical symmetry and a distribution function of the form 
/(r, w, z), w, t)y the Boltzmann equation may be written (cf. Larson 1969) 

where 

df df . 

it+ui+u 

ù = 

v — 

2/^ . ¿T . df 
ou cv ow 

d<í> v2 + zv2 

3r 

uv W‘ 

r r tan 0 

uw _ vw 

r r tan 0* 

(13) 
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328 Richard B. Larson Vol. 147 

In equation (13) the term (dfldi)c represents the rate of change of / due to the 
effects of encounters between the stars. 

The required moment equations may be derived by multiplying equation (13) 
successively by 1, w, (w —<w»2, v2, (u — (u))2 and — and integrating over 
the velocity distribution, making use of the definitions (1) and (2) and the assumed 
relations (12). After some reductions, the following equations are obtained: 

i+r4r2',<”> (15) 

0<tt> , , . d<M> i d 2 , 0\ , 
^ + <«>4-Z + - ^ROi + -(oi-ß) + ~ = O 

ot or p or r or 

doc , K Kuy id , 2e 
 {- (u) — + 2oc —^—- H pe + — 
dt K 7 dr dr p drP r 

de , K de 

Jt+<U>Jr+3e dr 

R") = (5)« 

4R= (W) 
3 a r \dtj c 

dß . . dß ß (ü) i d ß 
-£+<u^^+z^,+7-^-pe+ 
dt or r 3p ör oc 

di \ d£ u d(u) ¿doc de l 

Í+<M>í+^-V+6e¥+4a¥= (l)c- 

(16) 

i1?) 

(18) 

(!9) 

(20) 

The terms (docldt)c> etc., representing the effects of encounters, will be evaluated 
in the following section. 

3. EVALUATION OF RELAXATION EFFECTS 

In treating the effects of encounters between the stars, the masses of the stars 
play an important role, and it seems clear (Wielen 1968) that in order to obtain 
realistic results it is necessary to include a realistic mass spectrum. This could be 
incorporated in the present method by considering several ‘ populations ’ of stars 
with different masses, each described by its own set of moment equations. While 
this refinement would pose no difficulty in principle, the computational require- 
ments would be increased considerably; therefore, in the present exploratory 
investigation we shall consider only the case of equal masses. 

In computing the effect of encounters on the velocity distribution, we return to 
the representation of the velocity distribution given in equation (7), and we again 
assume that the velocity distribution is nearly Maxwellian. It is hoped that this 
will provide an adequate approximation for computing the relaxation effects, 
since it is expected that large deviations from a Maxwellian velocity distribution 
will occur only in the outer parts of a cluster where relaxation effects are unimportant 
anyway. 

The form of the Fokker-Planck equation has been worked out in detail by 
Rosenbluth, MacDonald & Judd (1957) for the case of an axially symmetric velocity 
distribution which is given as an expansion in Legendre polynomials. In order to 
make use of their result, it will be convenient to rewrite equation (7) slightly as 
follows: 

f(V, ^ ¿ An(V)Pn(f¿), (21) 
n=0 
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No. 4, 1970 Computing the evolution of star clusters 329 

where Ao(V) = g(V) + ao(V), Ai(V) = ai(V), and A2(V) = a2(V). If equation 

(21) is substituted into the equations of Rosenbluth et al.y the resulting expression 
for the encounter term (dfldt)c in the Boltzmann equation also takes the form of an 

expansion in Legendre polynomials: 

Here the coefficients (dAnldt)c are given by formulas involving integration and 
differentiation with respect to V only. In general these formulas are exceedingly 
complicated and unwieldy, even with only 3 terms in the Legendre expansion, 
and in order to make the calculations more tractable it is necessary to introduce 

some simplifications. 
The Fokker-Planck equation specifies the rate at which the distribution function 

/ of a population of ‘ test particles ’ changes as they encounter a background 
population of ‘ target particles \ In the present case the target particles are identical 
with the test particles, and they have the same velocity distribution, as given by 
equation (21). To simplify the calculations, however, we shall assume that the 
target particles have an isotropic velocity distribution equal to Ao(V), the isotropic 
term in the Legendre expansion (21). This simplification should still allow a 

reasonably accurate determination of the most important relaxation effect, which 
involves ao(V) and £. With this assumption, the equations simplify considerably 
and we obtain, using equations (31), (41), and (46) of Rosenbluth et al. (1957), 

where 

(3V*h-./o + 2V*K0)A (23) 

^(V) = jV v2Ao(v) dv 

J0(V) = Jr^A0(v)dv 

K0(V) = J” vA0(v) dv. 

(24) 

In the present situation, where we have gravitational interactions between stars 
of mass m, the constant C is given by 

(25) 

where Dmax is the maximum impact parameter for an encounter. Cohen et al. 
(1950) showed that Z)max should be taken not as the mean interparticle distance, 
as was originally assumed by Chandrasekhar (1942), but as the largest distance 
over which the particles can interact; in the case of a stellar system, Dmax should 
therefore be set equal to the size of the system, or perhaps more accurately to the 
size of the central core which contains most of the stars. Fortunately, the logarithmic 
factor in equation (25) is quite insensitive to its argument, and to sufficient accuracy 
it may be set equal to a constant value for the whole cluster. 
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We can now evaluate the relaxation terms (dcxldt)Cf etc., by forming the moments 
a, ß, e, and £ of the velocity distribution (21) and differentiating with respect to 
time, using equations (22), (23), and (24). In performing these calculations we 
assume that ao(V), ai(V), and a2(V) are all small compared with g(V), and we 
neglect all terms of second order in aQ(V)y ai(V), and a2(V). After some rather 
lengthy manipulation of integrals, we obtain the following results: 

47tC 1^5vi-^ MV) dv 

(~) = [dt/c 

(1)«= IS 

a = 

(26) 

(27) 

(28) 

where 

ifinrC* C00 

~ { 7[3 F3/ - 7 VJ -7V*K+3 V\2b* + b V*) g{ V)] a0( V) 
ïoS lo 

+ [2iVH-iiVJ-i^ViK}a2{V)} dV (29) 

7(F) = jrv2g(v)dv 

J(V) = JF v*g(v) dv 

K(V) = j\(v) dv. 

(30) 

Finally, if we substitute the assumed forms of the functions ao(V), ai(V), 
and a2(V) as given by equations (9) and (10) into equations (26)-(29), we obtain, 
after considerable reduction, 

Í-) = \dt/c 

^ = \8t/c 

4C(«-ß) 

"4S(^)8/2 

. 20(0-1) 

45H>)3/2 

29Ce 

“ 480(77^)3/2 

_C[7J-IJa(a-ß)] 
105(776)8/2 ' 

(31) 

(32) 

(33) 

(34) 

where a term containing (a — j8)2 has been neglected in equation (34). 
We note that, by combining equations (31) and (32), we may write 

\ ^ /C 

Also, if (oL — ß) = o, equation (34) becomes 

(iq = 
\dtfc 

2C(a-ß) 

X5(776)3/2* 

C$ 

15(776)3/2' 

(35) 

(36) 
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No. 4, 1970 Computing the evolution of star clusters 331 

From equations (33), (35), and (36) it is evident that, in the absence of other effects, 
the effect of encounters between the stars is to make the three quantities {a — ß), e, 
and I decay exponentially with different time constants. These time constants are 
related to the relaxation time T defined by Chandrasekhar (1942, equation 2.379) 

and often used as a reference time in stellar dynamics: 

1 /3V/2 (V2)3/2 

16 W G2mp In (Z)max<F'2>/2Gm)’ 

From equations (25) and (37) we have, putting <F2> = 36, 

__ 9("*)3/2 

C ‘ 
(38) 

Using equation (38), we can now write equations (35), (33) and (36) as follows: 

Equations (39)-(4i) allow a more precise interpretation of the relaxation time T 
in terms of the time constants for decay of the quantities (oc-ß), €, and f, which 
represent different types of deviations from a Maxwellian velocity distribution. 
We note that, as expected, the decay times are of the same order as the relaxation 
time T, but there appears to be a tendency for the higher moments of the velocity 
distribution to relax more slowly than the lower ones. This may be attributable 
to the fact that the higher moments give more weight to the stars with high velocities, 
for which the relaxation effects are weaker than for low velocity stars. 

Substitution of equations (3i)-(34) into equations (i5)-(2o) now completes 
the system of equations required to compute the time evolution of a spherical 
stellar system, given appropriate initial conditions and boundary conditions. The 
equations have been solved using numerical techniques similar in concept to 
methods which have often been used for hydrodynamical problems with spherical 
symmetry. An Eulerian grid structure is chosen, and the grid points are spaced 
at equal intervals of o-i in log r. The odd-order moments (u) and e and the mass 
m inside radius r are considered to be defined at the grid points, and the even- 
order moments p, oc, /?, and £ are considered to be defined at a second set of points 
halfway between the grid points. To ensure stability, the difference equations are 
written in implicit form with backward time differences, and they are solved 
iteratively by the Newton-Raphson technique. The method of constructing 
difference expressions is quite similar to that which was used by Larson (1969) 
in studying the formation of a spherical galaxy. The space and time steps have been 
chosen such that numerical accuracies are generally of the order of 10-20 per cent, 
which is probably better than the intrinsic accuracy of the theory. 
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4. APPLICATION TO THE ‘ GRAVOTHERMAL CATASTROPHE’ 

FOR AN ISOTHERMAL SPHERE 

In order to obtain some insight into the evolutionary behaviour of stellar 
systems, Lynden-Bell & Wood (1968) considered an idealized example consisting 
of a system of self-gravitating particles enclosed in a rigid spherical container with 
perfectly reflecting walls. In the presence of relaxation effects which tend to 
produce a Maxwellian velocity distribution, such a system can be in equilibrium 
only if its structure is that of an isothermal sphere, for which there is a one- 
parameter family of possibilities depending on the central concentration pc/pb 

(pc = central density, pb = boundary density). The stability of a bounded isother- 
mal sphere in the presence of a mechanism capable of producing heat flow effects 
was investigated by Lynden-Bell & Wood (LW), and they showed that there is a 
critical central concentration pc/pb = 709 such that for pdpb<7og the isothermal 
sphere is in stable equilibrium, whereas for /><*//>& >709 the equilibrium becomes 
unstable in the sense that if the system is perturbed it will evolve away from an 
isothermal sphere and will continue evolving indefinitely with ever increasing 
central concentration. This phenomenon was referred to by LW as the ‘ gravo- 
thermal catastrophe ’ of an isothermal sphere. 

It happens that the idealized problem studied by LW (i.e., a system enclosed 
by rigid reflecting walls) is also the easiest problem to compute by the technique 
developed in this paper; because of this, and because of its current interest, we 
shall use it as an example of the application of the present method. 

As boundary conditions for the numerical calculations, it is necessary to specify 
the values of the moments <w) and € at the outer boundary r = 1?. In the present 
case the existence of a perfectly reflecting wall at the outer boundary requires that 
all odd moments of the velocity distribution must vanish at this point; thus the 
required boundary conditions are (u) = o and € = o at r = R. These boundary 
conditions imply that the total mass M and the total energy E of the system remain 
constant as it evolves. 

In the calculations to be described, we have adopted a total mass of io6M0 

and a radius of 100 pc, roughly the values appropriate for a globular cluster. 
The logarithmic factor in equation (25) has been set equal to a constant value of 10 
throughout the calculations. We have computed the evolution of a number of 
examples starting from artificially constructed non-isothermal initial configurations 
with central concentrations pdpb smaller than that for an isothermal sphere of the 
same energy. As expected, the evolution always proceeds in the direction of increas- 
ing central concentration, and the structure approaches that of an isothermal sphere. 
The results confirm the prediction of LW that for a system whose energy E is 
greater than the minimum energy for an isothermal sphere of mass M and radius 

R(Emin= —0-335 GM2IR), the system evolves into an isothermal sphere and 
remains thereafter in a stable isothermal equilibrium configuration. However, 
if the total energy is less than 2?min> a strictly isothermal state is never attained, and 
the central concentration continues to increase indefinitely at an ever accelerating 
rate. From such calculations the limit of stability for an isothermal sphere may be 
determined empirically; for the limiting stable configuration we obtain a central 
density of about 47M0/pc3 and a value for a of about 22*5 (pc/io6yr)2. The 
central concentration pdpb is about 730, in good agreement with the theoretical 
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No. 4, 1970 Computing the evolution of star clusters 333 

value of 709 (the difference is attributable to numerical inaccuracies in the present 
calculations). 

To illustrate the density runaway or ‘ gravothermal catastrophe ’ qualitatively 
described by LW, we have taken as a starting model the limiting stable isothermal 
sphere described above, and we have perturbed it slightly by decreasing a by 
about 0*2 per cent, thereby decreasing E below .Emin and making the system 
unstable. The evolution has been followed through an increase of about nine orders 
of magnitude in the central density, corresponding to a time interval of about 
4X io13yr. Because the time scale becomes greatly compressed as the evolution 
proceeds, it will be convenient to measure time from the instant % when the central 
density becomes infinite; this instant is readily determined by extrapolation. We 
then define r = tQ — t, and we hereafter use r as the time variable in place of t. 

Fig. i. The evolution of the density distribution during the ‘gravothermal catastrophe \ 
The curves are labelled with the corresponding values of r( = io — i) in units of 106 yr. 

The evolution of the density distribution is illustrated in Fig. 1, which shows 
the density distribution for several values of r. It is evident first of all that the 
density distribution never deviates very greatly from that of an isothermal sphere ; 
it evolves mainly by an increase in central density, while maintaining nearly the same 
shape in a logarithmic plot. Throughout the evolution the density distribution 
over the major part of the system is approximately represented by the law 

p{r) oc r-2,4. (42) 

The rapid acceleration of the evolution with increasing central density is evi- 
dent from the values of r marked on the curves in Fig. 1. However, it is also 
to be noted that the evolution remains quite slow in comparison with other 
time scales of interest; even at the latest time shown in Fig. 1 (r = 6*7 x 106 yr, 
pc = 1-2 x io9M0/pc3), the time scale for the evolution is still three orders of 
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magnitude longer than the relaxation time at the centre (7*5 x io3yr) and four- 
and-a-half orders of magnitude longer than the free-fall time (2-3 x 102 yr). Thus 
the evolution is perhaps less ‘ catastrophic ’ than was imagined by Lynden-Bell & 
Wood. 

Log^(pc) 

Fig. 2. The variation with radius of a, ß, e, and £ at r = 6*7 x 106 yr. The unit of velocity 
is i pcjio* yr = 0*978 km s"1. 

Fig. 2 shows the variation with radius of a, j8, e, and £ at the latest time shown 
in Fig. i (r = 6*7 x io6 yr). We note first that a decreases outward, as expected, 
but its variation is quite small compared with the variation in the density—only 
about a factor of 4* 5, compared with a factor of about 2x 1010 in the density. 
We note also that the velocity distribution has developed a significant anisotropy 
in the outer part of the cluster; the ratio ß/oc reaches a minimum value of about 
o*22 at 15 pc. The third moment € is positive throughout the cluster, as expected, 
indicating an outward flux of energy. The quantity $ is negative in the inner part 
of the system, indicating a deficiency of high velocity stars relative to a Maxwellian 
distribution, and is positive in the outermost part of the system, indicating an excess 

of high velocity stars. The deficiency of high velocity stars in the inner part of the 
system is expected from classical theories of stellar dynamics, which predict that the 
high velocity ‘ tail ’ of a hypothetical Maxwellian velocity distribution should be 
depleted due to the escape of the most energetic stars from the central part of the 
system. In the present case the 4 escaping stars ’ accumulate in the outermost part 
of the system, where they contribute to producing an excess of high velocity stars. 

The time development of the central density and temperature is illustrated in 
Fig. 3, which shows log pc and log occ plotted vs. log r. The curves start out with a 
small slope, since the system is initially very close to an equilibrium isothermal 
structure and therefore evolving quite slowly. As the system becomes less nearly 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

O
M

N
RA

S.
14

7.
 .

32
3L

 

No. 4, 1970 335 Computing the evolution of star clusters 

Fig. 3. The time variation of the central density pc and the central ‘ temperature ’ ac. 

isothermal the evolution speeds up, and for T<io10yr the slopes ¿log pcjd\og r 
and ¿log occ/dlog r approach constant values of — 1-34 and —0*225 respectively; 
thus for the later stages of the evolution we have 

pc oc r“1*34 

olc QC r-0*225. 
(43) 

It is also of interest to note the relation between r and the central relaxation time 

Tc. At the initial instant, rc is 3*6 x io9yr and the ratio t¡Tc is about i*2x 104; 
as the evolution proceeds this ratio decreases, and for t<io10 yr it levels off at a 
constant value of 

Tc 

= 8*9 x 102. (44) 

The constancy of ¿log pc/¿log r, ¿log ac/¿log r, and rjTc for T<io10 yr is 
related to the fact that during the later stages of the evolution the central part of 
the system appears to settle into a state of 4 homologous evolution ’ in which the 
structure of the central region remains invariant except for scale factors which vary 
with time. 

5. DISCUSSION 

Since the evolution of the system is caused primarily by a flow of energy outward 

from the centre, it is clear that the rate of evolution depends on the magnitude of 
the energy flux parameter e. One might think that the magnitude of € would be 
determined primarily by equation (19), but this is not the case, since it turns out 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

O
M

N
RA

S.
14

7.
 .

32
3L

 

336 Richard B. Larson Vol. 147 

on examination of the results that e is so small that the terms containing e in equation 
(19) are always negligibly small in comparison with the other terms. Thus equation 
(19) serves primarily as a relation between a, /?, p. As a simple example of the 
implications of equation (19) when € is negligibly small, we note that if £ is also 
negligibly small we must have docjdr = o; this is just the well-known result that a 
Maxwellian velocity distribution implies an isothermal temperature distribution. 
As a second example, if oc-ß = o and £ = - [3/(w + 2)]a2, then it can be shown 
from equations (16) and (19) that in hydrostatic equilibrium the system must be a 
polytropic sphere of index n. Thus it is clear that the magnitude of £ and its 
variation with r are closely related to the overall structure of the system, as deter- 
mined by the functions p(r) and a(r). 

Coming back to the question of what determines €, it appears from the results 
that e is primarily determined by equation (20). Near the centre of the system all 
of the terms in equation (20) turn out to be negligibly small except the terms 
4oí(d€¡dr) and (d£ldt)c. Since oc —ß = o near the centre, (dÇldt)c is given by equation 
(36); equation (20) then becomes 

de _ C£ , , 

^ dr I5(7rè)3/2* 

From equation (45) we see that the values of de/dr and hence e near the centre of 
the system are proportional to the value of £ at the centre; thus, as might be 
expected, the rate of evolution of the system depends on the extent of the deviation 
from a Maxwellian velocity distribution, as indicated by the magnitude of the 

parameter £. The magnitude of £, in turn, is tied up with the overall structure of 
the system, as we have seen in the preceding paragraph; thus the rate of evolution 
ultimately depends on the structure of the whole system, or at least on the structure 
of an extended central region. The slow rate of evolution indicated by equation 
(44) may then be understood as being related to the fact that in the ‘ homologous 
evolution’ attained after T~io10yr, the central region is nearly isothermal (see 

Fig. 2) and the velocity distribution is very nearly Maxwellian (^/a2 = - 2*1 x io-3 

at the centre). 
The size of the central isothermal region is presumably limited by the tendency 

of an isothermal sphere to become unstable and evolve away from an isothermal 
sphere if the central concentration becomes too large, as was discussed by Lynden- 
Bell & Wood (1968) for the case of a bounded isothermal sphere. Thus the structure 
and evolution of the system may be thought of as resulting from a balance between 
two counteracting effects—the tendency to relax toward an isothermal structure, 
and the fundamental instability of an isothermal sphere when the density contrast 
becomes too large. 

It is interesting to note that the results given in equation (43) are nearly the same 
as the corresponding relations predicted by the theory of Von Hoerner (1968): 

pC OC T—4/3 

OCc OC T“2/9. 

However, the ratio t/Tc as given in equation (44) is much larger than the value 20 
adopted by Von Hoerner on the basis of some w-body calculations. This may be 
because Von Hoerner’s w-body calculations have not reached the nearly isothermal, 
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slowly evolving state obtained in the present results. Also, the relaxation time T 
is shortest at the centre of the system and becomes progressively longer as we go 
outward; thus a representative relaxation time for the central core of the system 
would be somewhat longer than Tc, and this would lead to a smaller value of 
r/T than that given in equation (44), perhaps by as much as an order of magnitude. 
However, it is difficult to define uniquely either the size of the central core or a 
representative relaxation time for it, so this will not be attempted here. 
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