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ABSTRACT
To constrain the nature of the very Ðrst stars, we investigate the collapse and fragmentation of primor-

dial, metal-free gas clouds. We explore the physics of primordial star formation by means of three-
dimensional simulations of the dark matter and gas components, using smoothed particle
hydrodynamics, under a wide range of initial conditions, including the initial spin, the total mass of the
halo, the redshift of virialization, the power spectrum of the DM Ñuctuations, the presence of HD
cooling, and the number of particles employed in the simulation. We Ðnd characteristic values for the
temperature, T D a few 100 K, and the density, n D 103È104 cm~3, characterizing the gas at the end of
the initial free-fall phase. These values are rather insensitive to the initial conditions. The corresponding
Jeans mass is The existence of these characteristic values has a robust explanation in theMJ D 103 M

_
.

microphysics of cooling, connected to the minimum temperature that can be reached with theH2 H2coolant, and to the critical density at which the transition takes place between levels being populated
according to non-LTE (NLTE), and according to LTE. In all cases, the gas dissipatively settles into an
irregular, central conÐguration that has a Ðlamentary and knotty appearance. The Ñuid regions with the
highest densities are the Ðrst to undergo runaway collapse due to gravitational instability, and to form
clumps with initial masses D103 close to the characteristic Jeans scale. These results suggest thatM

_
,

the Ðrst stars might have been quite massive, possibly even very massive with After a gasM
*

Z 100 M
_

.
element has undergone runaway collapse, and has reached densities in excess of 108 cm~3, a sink parti-
cle is created. This procedure allows us to follow the evolution of the overall system beyond the point
where the Ðrst nonlinear region would otherwise force the calculation to a halt. These later evolutionary
stages, during which the clumps grow in mass due to accretion and merging with other clumps, are quite
sensitive to the initial conditions. The key process in building up very massive clumps, with masses up to
a few times 104 is merging between clumps. Since the merging rate sensitively depends on theM

_
,

density of the gas, halos with the highest degree of central concentration are able to assemble the most
massive clumps. Among these are halos with a low spin (j^ 0.01), and with DM Ñuctuations imprinted
according to a white-noise spectrum.
Subject headings : cosmology : theory È early universe È galaxies : formation È hydrodynamics È

stars : formation

1. INTRODUCTION

This paper is concerned with the initial stages in the for-
mation of cosmic structure. How did the universe evolve
from the extreme uniformity of the big bang Ðreball into its
highly organized and clustered present state? An increasing
wealth of observational data has become available to guide
theoretical thinking. The study of anisotropies in the cosmic
microwave background (CMB) provides a window into the
earliest phases of structure formation, when the primordial
density Ñuctuations were still linear, and therefore amen-
able to an exact physical description (e.g., White, Scott, &
Silk 1994 ; Lawrence, Scott, & White 1999). Thus, we have a
powerful probe of the last scattering surface at z^ 1000,
which corresponds to D106 yr after the big bang. Comple-
mentary to the CMB studies are observations of high-
redshift quasars and galaxies (e.g., Hu, Cowie, & McMahon
1998 ; Chen, Lanzetta, & Pascarelle 1999 ; Fan et al. 2000).
The light from these objects originated at z^ 5, when the
universe was D109 yr old. Very little is known about the
crucial era in between, at z\ 1000È5, which has been
termed the ““ dark ages ÏÏ (e.g., Loeb 1999 ; Rees 1999). This
serene epoch ended when the Ðrst luminous objects lit up

1 Present address : Institute of Astronomy, University of Cambridge,
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the universe again. In the context of hierarchical scenarios
of structure formation, as speciÐed by a variant of the cold
dark matter (CDM) model, the collapse of the Ðrst baryonic
objects is expected at redshifts z^ 50È10, involving dark
matter halos of mass (Tegmark et al. 1997).D106 M

_The importance of the Ðrst stars and quasars derives from
the crucial feedback they exert on the intergalactic medium
(IGM). A generation of stars which formed out of primor-
dial, pure H/He gas (the so-called Population III) must have
existed, since heavy elements can only be synthesized in the
interior of stars. Population III stars, then, were responsible
for the initial enrichment of the IGM with heavy elements.
From the absence of Gunn-Peterson absorption in the
spectra of high-redshift quasars, we know that the universe
has undergone a reionization event at z[ 5 (Gunn & Peter-
son 1965). UV photons from the Ðrst stars, perhaps together
with an early population of quasars, are expected to have
contributed to the reionization of the IGM (Haiman &
Loeb 1997 ; Ferrara 1998 ; Haehnelt, &Miralda-Escude� ,
Rees 2000). The energy input from the Ðrst stars might have
left a measurable imprint on the CMB on very small scales
(Vishniac 1987 ; Dodelson & Jubas 1995).

Despite an intense observational e†ort, the discovery of a
true Population III star remains elusive. Surveys of the
metal-poor population in the halo of our Galaxy have
resulted in stars with metallicities (BeersZZ 10h4 Z

_
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2000). Spectroscopic studies of high-redshift Lyman a
clouds, the supposedly most pristine objects in the universe,
Ðnd a minimum metallicity (Cowie &ZminD 10h3 Z

_Songaila 1998). Therefore, wherever we look, we Ðnd con-
taminated material. To probe the time when star formation
Ðrst started, consequently entails observing at even higher
redshift. This is the main purpose of the Next Generation
Space Telescope (NGST ), which is designed to reach DnJy
sensitivity at near-infrared wavelengths (Loeb 1998). In
preparation for this upcoming observational revolution, the
study of the Ðrst stars is very timely, providing a theoretical
framework for the interpretation of what NGST might dis-
cover, less than a decade from now.

The question arises how one can make any progress in
understanding primordial star formation, given the lack of
direct observational constraints. The physics of the Ðrst
stars, however, is characterized by some important simpliÐ-
cations, as compared to the extreme complexity of present-
day star formation (Larson 1998 ; Loeb 1998). The absence
of metals, and consequently of dust, leaves atomic and
molecular hydrogen as the main agent of radiative cooling
and the source of opacity. Magnetic Ðelds were likely to be
dynamically insigniÐcant, prior to the onset of efficient
(stellar) dynamo ampliÐcation (Kulsrud 1997). The chem-
istry and heating of the primordial gas was not yet compli-
cated by the presence of a UV radiation background. The
IGM must have been a rather quiescent place, with no
source to sustain turbulent motion, as long as the density
perturbations remain in their linear stage. Only after the
explosion of the Ðrst supernovae, and the associated input
of mechanical and thermal energy, is this state of primordial
tranquility bound to change (Loeb & Haiman 1997 ;

& Rees 1997). Therefore, the physics ofMiralda-Escude�
primordial star formation is mainly governed by gravity,
thermal pressure, and angular momentum. This situation
renders the problem theoretically more straightforward and
tractable than the highly complex present-day case, which
continues to defy attempts to formulate a fundamental
theory of star formation. Finally, the initial conditions for
the collapse of a primordial star-forming cloud are given by
the adopted model of cosmological structure formation.
The initial abundances of the chemical species are predicted
by standard big bang nucleosynthesis (e.g., Copi, Schramm,
& Turner 1995).

In this paper, we investigate the question : How do the
Ðrst primordial star-forming clouds evolve in the context of a
hierarchical model of structure formation? The collapse of
the clouds, having masses close to the cosmological Jeans
mass (D106 results in the formation of high-densityM

_
),

clumps. These clumps are the immediate progenitor of pri-
mordial protostars. This second stage in the primordial star
formation process will be discussed in a subsequent paper
(henceforth Paper II).

The subject of the formation of the Ðrst stars has a long
and venerable history (e.g., Yoneyama 1972 ; Hutchins
1976 ; Silk 1977, 1983 ; Carlberg 1981 ; Kashlinsky & Rees
1983 ; Palla, Salpeter, & Stahler 1983 ; Carr, Bond, & Arnett
1984 ; Couchman & Rees 1986 ; Haiman, Thoul, & Loeb
1996 ; Uehara et al. 1996 ; Tegmark et al. 1997 ; Omukai &
Nishi 1998 ; Nakamura & Umemura 1999). Recently, it has
become possible to address this problem in the context of
full cosmological simulations, owing to dramatic improve-
ments in numerical resolution, and in the modeling of the
relevant gas physics (Anninos & Norman 1996 ; Ostriker &

Gnedin 1996 ; Abel et al. 1998 ; Abel, Bryan, & Norman
2000, hereafter ABN2000 ; Fuller & Couchman 2000).

Our approach is complementary to these last studies in
that we focus on the collapse of an isolated overdensity.
This choice has its advantages and shortcomings. Para-
mount among the latter, we ignore the tidal e†ects of the
large-scale matter distribution, which are responsible for
generating the angular momentum in the collapsing struc-
tures. The amount and distribution of angular momentum
therefore are free parameters in our simulations. In pre-
scribing them, however, we can draw on the insight from
cosmological numerical simulations. These result in a sta-
tistical description of the angular momentum (spin) that a
given dark matter halo is expected to acquire (e.g., Barnes &
Efstathiou 1987). The primary advantage of our method, on
the other hand, is that it allows us to comprehensively
explore the behavior of the primordial gas under a variety
of initial conditions. In doing so, we hope to single out the
essential physics and to test its robustness. In a previous
publication, we have already presented Ðrst results (Bromm,
Coppi, & Larson 1999).

The organization of this paper is as follows. In ° 2 we
discuss the relevant physical ingredients, both for the dark
matter and baryonic components. A description of our
numerical method is given in ° 3, whereas ° 4 presents the
results of our exploratory survey. Finally, ° 5 contains our
conclusions and debates avenues for further progress.

2. THE PHYSICAL INGREDIENTS

2.1. Dark Matter
Current scenarios of cosmological structure formation

assume the dark matter (DM) to be ““ cold,ÏÏ in the sense of
having negligible velocity dispersion. Candidates include
the lightest supersymmetric particle, the photino, of esti-
mated mass D100 GeV, and the invisible axion (e.g.,
Peacock 1999). Primordial density Ñuctuations in the cold
dark matter have consequently survived on all scales
because of the absence of free-streaming. Provided these
Ñuctuations obey Gaussian statistics, as predicted by inÑa-
tion, they are fully described by the power spectrum P(k),
with k denoting the wavenumber. The standard CDM
model (e.g., Blumenthal et al. 1984) predicts that the Ñuctua-
tions decrease with mass, leading to a hierarchical (bottom-
up) picture of structure formation. Variants of CDM agree
qualitatively with each other, and we take the standard
CDM model as a convenient template for our discussion. In
the critical EinsteinÈde Sitter model, the rms density con-
trast on a mass scale M grows in time according to p(M)\

as long as the Ñuctuation remains in thep0(M)/(1 ] z),
linear stage. is the linear extrapolation to the presentp0(M)
epoch. In a model with a cosmological constant, growth is
suppressed at recent epochs (z\ 10), but at earlier times,
the simple EinsteinÈde Sitter behavior still applies. For a
DM halo of given mass M, corresponding to a lp peak in
the Gaussian random Ðeld, the redshift of collapse can be
estimated as

1 ] zvir \
lp0(M)

d
c

. (1)

The threshold overdensity for collapse is often taken to be
(Peacock 1999). We discuss in ° 2.3 that the Ðrstd

c
\ 1.69

stars are expected to form in DM halos of mass D106 M
_

,
corresponding to 3È4 p peaks. At these small scales, halos of
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increasing mass collapse in rapid succession. This (““ cross-
talk ÏÏ) behavior is characteristic of the CDM model (Rees
2000). The CDM power spectrum approaches P(k)P k~3
asymptotically on small scales. This is characteristic for the
DM Ñuctuations within a Population III star-forming
region. Since the baryonic mass is smaller than the initial
Jeans mass, all perturbations in the gas have been wiped out
by pressure forces. The presence of the small-scale DM Ñuc-
tuations, therefore, might play an important role in shaping
the fate of the collapsing gas.

A collapsing DM halo is expected to acquire angular
momentum via tidal interactions with neighboring over-
densities. The outcome of this process can be conveniently
described by the dimensionless spin parameter

j \ L oE o1@2
GM5@2 , (2)

where L , E, and M are the total angular momentum, energy,
and mass, respectively, with G being NewtonÏs constant.
Numerical simulations result in an average spin parameter
of j ^ 0.05 (e.g., Barnes & Efstathiou 1987).

Once a perturbation on a given mass scale reaches over-
densities of close to unity, with beingd \ (ohalo[ o

b
)/o

b
o
bthe density of the unperturbed background universe, the

linear description breaks down, and the halo is undergoing
nonlinear collapse. A convenient analytical model for the
nonlinear evolution of DM halos is given by the spherical
top-hat model (e.g., Padmanabhan 1993). At redshifts close
to the DM particles reach a state of virial equilibrium.zvir,The approach to virial equilibrium occurs through the
process often called violent relaxation in the literature
(Lynden-Bell 1967). This process operates on a dynamical
timescale, as opposed to the slow two-body relaxation. The
halo density after virialization is estimated to be

ovir^ 18n2o
b
\ 18n2o0(1] zvir)3 , (3)

where g cm~3 h2 is the density of theo0\ 1.88] 10~29 )
mpresent-day universe. The baryons partake in the DM col-

lapse, and acquire, through shocks and adiabatic compres-
sion, the virial temperature

Tvir ^
GMmH
2Rvir kB

^ 100 K h2@3
A M
106 M

_

B2@3
(1] zvir) . (4)

Here, denotes the virial radius, is BoltzmannÏs con-Rvir k Bstant, and is the mass of a hydrogen atom. AlthoughmHrealistic DM halos are much more complicated than this
simple model, the top-hat results give an intuitive way to
understand the physics of complex situations to within
factors of a few. It also allows us to specify the initial condi-
tions for our numerical simulations (see ° 4).

In Figure 1 we show the density evolution of a top-hat
perturbation, and compare the analytical prediction with
the result of one of our numerical simulations. It can be seen
that the prediction of in equation (3) is nicely repro-ovirduced in the simulation, after an epoch of settling down to
the equilibrium state.

2.2. Baryons
The fate of the baryons is determined by the strife

between gravity and opposing pressure, and it is, therefore,
essential to understand the thermal history of the gas, a
topic that we address in the following subsection.

FIG. 1.ÈTop-hat model for an overdensity collapsing at zvir ^ 30.
Shown is the number density of hydrogen atoms vs. redshift. Solid line :
Density evolution according to top-hat solution. L ong-dashed line : Density
evolution in the expanding background (EinsteinÈde Sitter) universe. ovirdenotes the ““ virial plateau,ÏÏ the estimated density after violent relaxation
has established virial equilibrium. Diamonds : Evolution of the average gas
density in adiabatic test case. The simulation is initialized at z\ 100 to
reproduce the top-hat collapse. As can be seen, the agreement with the
analytical solution is good. Notice also that the average gas density settles
eventually to a value close to ovir.

2.2.1. Cooling and Heating

The thermal evolution of the gas is governed by the equa-
tion :

Du
Dt

\ P
o2

Do
Dt

] ![ "
o

. (5)

Here, P and o are the gas pressure and density, u is the
speciÐc internal energy (in ergs g~1), and ! and " are the
contributions from radiative heating and cooling, respec-
tively. The Ðrst term on the right-hand side describes adia-
batic cooling due to expansion or heating due to
compression. We now discuss the relevant processes of radi-
ative cooling.

In the absence of metals, is the main coolant belowH2
D104 K, which is the temperature range typically encoun-
tered in collapsing Population III objects. Being homo-
nuclear, possesses no permanent dipole moment.H2Rotational transitions, therefore, can only occur via electric
quadrupole radiation with the corresponding very small
transition probabilities (A D 10~11 s~1 for the lowest-lying
transition). The cooling function has been investigatedH2by a number of authors whose results, however, di†ered by
up to a factor of 100 (Hollenbach & McKee 1979 ; Lepp &
Shull 1983). A crucial uncertainty concerned the low tem-
perature (a few 100 K) regime, where quantum-mechanical
e†ects were not yet taken into proper account. Recently, the
cooling rates have been thoroughly recomputed. We have
implemented cooling using the new parameterization ofH2Galli & Palla (1998). These authors have included improved
collisional rates for T [ 600 K (Martin, Schwarz, & Mandy
1996), as well as for T \ 600 K (Forrey et al. 1997), and
have assumed ortho- and to be present in theirpara-H2equilibrium ratio of 3 :1. In general, the cooling rate (in ergs
s~1 cm~3) can be written as

"\ ;
u?l

n
u
A

ul
*E

ul
, (6)
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where the sum extends over all possible transitions u ] l.
is the Einstein coefficient for spontaneous emission,A

ul the respective energy di†erence, and the density of*E
ul

n
uin the (upper) level u. In the low-density regime (n ] 0),H2each collisional excitation is almost instantaneously fol-

lowed by spontaneous emission. The level populations are
then determined by the rate of collisions :H-H2

n
u
(n?0)P nH2

nH c
lu

P nH2 , (7)

with being the coefficient of collisional excitation. Atc
luhigh density, the levels are populated according to LTE:

n
u
(LTE)P nH exp ([*E

ul
/kB T )P nH . (8)

Summarizing the limiting behavior, one has :

"]
4
5
6
0
0
"(n?0)P nH2 for n > ncrit ,
"(LTE) P nH for n ? ncrit .

(9)

The critical density above which deexcitation due toncrit,collisions dominates over the competing radiative decay, is
a function of temperature only, and is deÐned as

ncrit4
"(LTE)
"(n?0) nH . (10)

The cooling function can Ðnally be expressed in the form

"\ "(LTE)
1 ] ncrit/nH

, (11)

smoothly joining the low-density with the high-density case.
In Figure 2 we show this cooling function for various den-
sities. At a given temperature, the cooling per molecule

Ðrst increases with density, but then approaches (for("/nH2
)

the LTE value that constitutes the maximum pos-n [ ncrit)sible cooling rate. Since has a comparatively smallH2moment of inertia, the rotational energy,I^ mH a02, Erot\L2/2I, is correspondingly large for a given amount of
angular momentum L \ +[J(J ] 1)]1@2. Estimating the
internuclear separation to be of order the Bohr radius,

one then Ðnds for the lowest-lying (2 ] 0) rota-a0^ 0.5 A� ,

cooling function (Galli & Palla 1998). Solid lines : CoolingFIG. 2.ÈH2rates per molecule for various densities. From bottom to top :H2n \ 10~1, 101, 103, 105 cm~3. Diamonds : Cooling rate in LTE. This latter
rate gives the maximum possible cooling per molecule at a given tem-
perature. Notice the saturation in the cooling rate due to the transition
from NLTE to LTE level populations.

tional transition the equivalent minimum temperature

Tmin\ *E20
kB

\ 6+2
2mH a02 k

B
, (12)

resulting in K. The high-energy tail of the Max-TminD 500
wellian velocity distribution will allow the gas to attain
somewhat lower temperatures, but it is one of the crucial
aspects of the primordial gas physics that cooling down to
temperatures below T D 100 K is not possible in the
absence of coolants other than molecular hydrogen. The
corresponding critical density for T D 100È300 K is then

cm~3. These characteristic values of tem-ncrit^ 103È104
perature and density, based on the microphysics of H2cooling, leave their imprint on the thermal evolution of the
primordial gas, as will be discussed below.

Another possible coolant in the primordial gas is HD,
deuterium hydride. The low abundance, isnD ^ 10h5nH,
partially o†set by the fact that HD does possess a per-
manent electric dipole moment with the correspondingly
larger radiative transition probabilities (AD 10h8 s~1 for
the lowest-lying rotational level, a factor D1000 enhance-
ment over In addition, since the rotational transitionH2).1 ] 0 is allowed, HD cooling can reach lower temperatures
than K. Consequently, coolingH2 : Tmin^ *E10/kB^ 160
due to HD might become important at temperatures
D100È200 K. Our treatment of HD cooling relies on recent
work of Flower et al. (2000), who have carefully computed
the relevant collisional rates, and provide an analytical Ðt to
their results.

Since radiative cooling to temperatures below that of the
CMB

TCMB\ 2.7K(1] z) (13)

is thermodynamically not possible, we write for the cooling
due to and HD:H2

"\ "(T )[ "(TCMB) . (14)

This approximate treatment ensures that unlessT ºTCMB,
cooling proceeds via adiabatic expansion.

Finally, we have included two cooling mechanisms of
lesser importance. First, for temperatures approaching
D104 K, cooling due to collisionally excited lines of atomic
hydrogen becomes e†ective (Cen 1992) :

"H \ 7.5] 10~19(1] T 51@2)~1 exp ([118,348/T )n
e
n[H] .

(15)

Only a small fraction of the gas in a Population III DM
halo, however, reaches that high a temperature, and atomic
hydrogen could not have facilitated the collapse and frag-
mentation of the primordial gas. Second, as long as there
remains a residual degree of ionization, energy is exchanged
between the photons of the CMB and the electrons of the
gas by (normal and inverse) Compton scattering :

"Comp\ 5.4] 10~36(1] z)4n
e
(T [ TCMB) . (16)

At redshifts below zD 200, this coupling becomes increas-
ingly weak, and does not signiÐcantly contribute to the
cooling of the gas.

In Figure 3 we show the relative importance of the
various heating and cooling processes for a Ñuid element,
whose time evolution is representative of what we Ðnd in
our simulations. At early times, while the cloud is still
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FIG. 3.ÈImportance of cooling and heating terms during collapse.
Solid lines : Cooling (in ergs s~1 g~1) vs. time. Dotted lines : Heating (in erg
s~1 g~1) vs. time. Time is measured in units of the initial free-fall time,
D2 ] 107 yr. Adiabatic cooling changes into adiabatic heating after turn-
around. Compton heating (for on the other hand, turns intoT \TCMB),Compton cooling (for is the dominant coolant, but canT [ TCMB). H2compete with the heating due to adiabatic compression only close to the
moment of virialization.

expanding, cooling due to adiabatic expansion dominates.
After turnaround, the gas heats up by adiabatic compres-
sion. Only close to the moment of virialization does H2cooling exceed the adiabatic heating, allowing the gas to
cool upon further contraction. In these early stages, cooling
due to HD is never important. After virialization, when the
gas has settled into a cold (a few 100 K) central conÐgu-
ration, HD cooling becomes somewhat more important,
without ever changing the thermal evolution dramatically.

The treatment of radiative cooling, therefore, necessitates
knowing the abundances of and HD. This is the subjectH2we take up next.

2.2.2. Chemistry

As shown in the previous section, radiative cooling is
mainly due to Cooling due to HD is less important, butH2.we have included it for the sake of completeness. It is conse-
quently essential to predict the respective abundances of
these molecules. The appropriate primordial chemistry has
the following simplifying features. Helium is assumed to be
always completely neutral, and we neglect all reactions

involving He, He`, and He``. This assumption is justiÐed
since the temperature is typically low enough (T \ 104 K)
to render the He chemistry inert. In addition, we also ignore
all processes of photoionization and photodestruction.
Although photoreactions due to the CMB are very impor-
tant at redshifts z[ 100, they can be safely neglected in our
simulations. Finally, there does not yet exist a UV back-
ground, prior to the onset of Population III star formation.
Since and HD are formed in nonequilibrium, it is neces-H2sary to consider the respective reaction networks. First, we
discuss the chemistry of formation and destruction.H2Our network is based on the compilation of HaimanH2et al. (1996), and is presented in Table 1. In the absence of
dust grains, the main route for the production of is givenH2by the H~ channel (McDowell 1961) :

H ] e~] H~ ] hl ,

H~] H ] H2] e~ .

An alternative formation channel relies on the intermediary
Since the H~ channel always dominates in our simula-H2`.

tions, we ignore reactions involving The validity of thisH2`.
assumption has been tested by comparison calculations
with the full network. At redshifts z[ 100, on the other
hand, the channel becomes important because of theH2`ready destruction of H~, which has a binding energy of only
0.75 eV, by energetic CMB photons. Thus, hydrogen mol-
ecules are produced as long as there is a sufficient abun-
dance of free electrons which act as catalysts in the H~
channel. For the low temperatures and weak shocks in the
typical collapse of a primordial cloud, there is no efficient
way to ionize the gas. The residual abundance of free elec-
trons recombines on a timescalex \ n

e
/n D 10h4 trec ^

yr. The recombination coefficient(krec xn)~1^ 106È107
cm3 s~1 is evaluated for typical temperatures,krec D 10h12

T D 5000 K, and densities, n D 102 cm~3, as found in our
simulations. One can then estimate the maximal abundance
of hydrogen molecules, according tof\ nH2

/n,

f
trec

D
df
dt

^ nk3 x .

The rate for the radiative attachment of H~ and e~ (see
reaction (3) in Table 1) is approximately cm3k3D 10h15
s~1. The asymptotic abundance of produced throughH2,the H~ channel, is then This predic-f^ k3 xntrec ^ 10~3.

TABLE 1

REACTION RATES FOR HYDROGEN SPECIES

Rate CoefÐcient
Reaction (cm3s~1) Reference

(1) H ] e~] H` ] 2e~ . . . . . . . . 5.85] 10~11T 1@2 exp ([157,809.1/T)(1] T51@2)~1 1
(2) H` ] e~ ] H ] hl . . . . . . . . . . 8.40] 10~11T ~1@2T 3~0.2(1] T 60.7)~1 1
(3) H ] e~] H~ ] hl . . . . . . . . . . See expression in reference 2
(4) H ] H~ ] H2] e~ . . . . . . . . . 1.30] 10~9 1
(5) H ] H` ] 2H . . . . . . . . . . . . . . . . 7.00] 10~7T ~1@2 1
(6) H2] e~] H ] H~ . . . . . . . . . 2.70] 10~8T ~3@2 exp ([43,000/T) 1
(7) H2] H ] 3H . . . . . . . . . . . . . . . . See expression in reference 1
(8) H2] H` ]H2` ] H . . . . . . . . 2.40] 10~9 exp ([21,200/T) 1
(9) H2] e~] 2H ] e~ . . . . . . . . . 4.38] 10~10 exp ([102,000/T)T0.35 1
(10) H~ ] e~ ] H ] 2e~ . . . . . . . 4.00] 10~12T exp ([8750/T) 1
(11) H~ ]H ] 2H ] e~ . . . . . . . . 5.30] 10~20T exp ([8750/T) 1
(12) H~ ]H` ]H2` ] e~ . . . . . . See expression in reference 1

REFERENCES.È(1) Haiman et al. 1996 ; (2) Abel et al. 1997.
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TABLE 2

REACTION RATES FOR DEUTERIUM SPECIES

Rate CoefÐcient
Reaction (cm3s~1) Reference

(1) D` ] e~ ] D ] hl 8.40] 10~11T ~1@2T 3~0.2(1] T 60.7)~1 1
(2) D ] H ] D`] H 3.70 ] 10~10T 0.28 exp ([43/T) 3
(3) D ] H ] D ] H` 3.70] 10~10T 0.28 3
(4) D` ] H2] H` ] HD 2.10] 10~9 3
(5) HD ] H` ]H2] D 1.00] 10~9 exp ([464/T) 3

REFERENCES.È(1) Haiman et al. 1996 ; (3) Galli & Palla 1998.

tion is borne out in our simulations under a wide range of
circumstances. abundances of 10~4 to 10~3, albeit low,H2nevertheless allow the primordial gas to efficiently cool,
thus enabling the condensation into high density structures.
Once the gas reaches densities n [ 108 cm~3, three-body
reactions (Palla et al. 1983) convert the gas rapidly into fully
molecular form. These reactions are included in Paper II,
where we investigate the further collapse of a high density
clump, but are not important here.

The chemistry responsible for the formation and destruc-
tion of HD has recently been discussed by Galli & Palla
(1998). We adopt their minimum model, as listed in Table 2.

2.3. Properties of the Star-forming Region
To determine the properties of the primordial star-

forming region, two ingredients have to be considered.
First, one needs to know how the dark matter evolves. This
history of hierarchical gravitational clustering, resulting in
the collapse of increasingly massive DM halos, is speciÐed
by the adopted variant of the CDM model. Second, one has
to address the question of whether the baryons are able to
fall together with the dark matter. The opposing e†ect of
gas pressure in collapsing DM halos has been studied by
Tegmark et al. (1997). These authors argue that the primor-
dial gas can only undergo continued collapse and fragmen-
tation, and consequently star formation, if it manages to
efficiently radiate away the gravitational binding energy
that is released in this process. The efficiency of cooling can
be quantiÐed by the cooling timescale, andtcool ^ nkB T /",
is to be compared with the freefall time, Onetff^ 1/JGo.
then has the classical Rees-Ostriker criterion for fragmenta-
tion and continued collapse (Rees & Ostriker 1977) : tcool\In the early stages of the collapse, temperatures are lowtff.enough (D1000 K) for cooling to proceed mainly via the
lowest-lying rotational transition of In evaluating theH2.criterion Tegmark et al. (1997) Ðnd the minimumtcool\ tff,virial temperature necessary for sufficient cooling, and by
applying equation (4) the corresponding minimum halo
mass as a function of collapse redshift. The result of this
calculation is that a 3 p peak of mass D106 and col-M

_
,

lapsing at a redshift does meet the requirement forzvir D 30,
efficient cooling. Halos with these characteristic masses and
collapse redshifts are therefore predicted to be the sites for
the formation of the Ðrst stars.

To understand the complicated physics of gas fragmen-
tation, we now turn to a description of our numerical
simulations.

3. NUMERICAL METHODOLOGY

In this section, we describe the elements of our numerical
approach. The evolution of the dark matter and gas com-

ponents is calculated with a version of TREESPH
(Hernquist & Katz 1989), combining the smoothed particle
hydrodynamics (SPH) method with a hierarchical (tree)
gravity solver. The details of the gravitational N-body
solver and the treatment of the hydrodynamics are dis-
cussed in Appendices A and B. We here present our addi-
tions to the code which are necessary for the investigation
of the primordial gas. These are a method to solve the pri-
mordial chemistry network, and a technique to create sink
particles.

3.1. Solving the Reaction Network
Following the abundance evolution of the eight species

H, H`, H~, D, D`, HD, and e~, entails solving theH2,
corresponding coupled set of kinetic equations. Because of
the very short reaction timescales, compared to the dynami-
cal time, the adopted method of solution has to be implicit,
as in the case of the thermal energy equation. Traditional
matrix-based techniques such as the STIFBS routine (Press
et al. 1992), or the Livermore LSODAR solver (Hindmarsh
1983), prove to be computationally too expensive for three-
dimensional applications. We therefore have implemented a
fast method of solution which is based on the approximate
backwards di†erencing formula (BDF). This approach has
been pioneered by Anninos et al. (1997). Consider the rate
equation for a given species i, which can be expressed as

dn
i

dt
\ [Dn

i
] C . (17)

All reactions contributing to the destruction of species i are
contained in D, while all reactions leading to the production
of that species are summarized by the symbol C. Both D
and C are functions of temperature and the abundances of
the other species. Evaluating the right-hand side of equa-
tion (17) at the new time step, results in the discretization

n
i
new\ Cnew*t ] n

i
old

1 ] Dnew*t
. (18)

We update the hydrogen and deuterium species in the fol-
lowing order, which has been found by experimentation to
be both stable and accurate : e~, H`, H~, H, D`, HD,H2,D. An estimate for Cnew and Dnew is obtained by Ðrst insert-
ing the abundances at the old time step, and then suc-
cessively replacing them with the updated ones, as the
algorithm proceeds from species to species. In determining
the abundances of the normal hydrogen species, we do not
include the reactions of the deuterium network. This is justi-
Ðed by the very low abundance of deuterium (nD D 10~5nH).
The evolution of the deuterium network, on the other hand,
crucially depends on the abundances of the normal hydro-
gen species.
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For increased accuracy, a subcycling procedure is
adopted : The algorithm loops over the species repeatedly,
each time with a small time step given by*tsub

*tsub\ v
n
e

n5
e
, (19)

where is the abundance of free electrons, and v\ 0.1 is ann
eaccuracy parameter.

The reactions determining the abundance of the interme-
diary species H~ proceed much more rapidly than the other
reactions. Therefore, one can safely assume that H~ is
always present with its equilibrium value :

nH~ \ k3 nH n
e
] k6 nH2

(k4] k11)nH ] (k5] k12)nH` ] k10 n
e

. (20)

The identiÐcation of the reaction rates can be found in
Table 1.

To test our chemistry solver, we compare the analytically
determined equilibrium abundances as a function of tem-
perature, obtained by setting for all i, with thosedn

i
/dt \ 0

given by the chemistry solver, after the integration has con-
verged. The analytical estimates are derived as follows. For
H`, we assume and consider the collisionaln

e
\ nH`

balance :

H ] e~] H` ] 2e~ ,

H`] e~] H ] hl .

With the reaction rates in Table 1, one Ðnds

nH` \ k1
k2

nH . (21)

The abundance of atomic hydrogen is assumed to be nH \
where is the total density of normalnH,tot[ nH`, nH,tothydrogen. For we obtain (see Table 1) :H2,

nH2
\ k4 nH nH~

(k6] k8] k9)nH ] k7 nH
. (22)

The abundance of the intermediary species H~ is given by
equation (20), evaluated with For the deuteriumnH2

\ 0.
species, D` and HD, the corresponding expressions are

nD` \ kD2 nD nH`
kD1 n

e
] kD3 nH

(23)

and

nHD \ kD4 nD` nH2
kD5 nH`

. (24)

Here, correspond to the reactions in Table 2,kD1, kD2, . . .and we assume with being the totalnD \ nD,tot [ nD`, nD,totdensity of heavy hydrogen. The result of this comparison is
presented in Figure 4. As can be seen, the chemistry solver
nicely reproduces the analytical expectation.

FIG. 4.ÈTesting the chemistry solver. Shown are the equilibrium abundances for the species H`, D`, and HD. In each case, fractional abundance isH2,plotted vs. temperature. Solid lines : Abundances from allowing the chemistry solver to reach convergence (to within 10~10). Diamonds : Analytic estimate for
the equilibrium value. It can be seen that the equilibrium abundances are nicely reproduced by the solver. Notice also the extreme similarity between the
normal hydrogen and the deuterium species.
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3.2. Creation of Sink Particles
When in the course of a simulation the gas attains

increasingly high density, the SPH smoothing length
decreases according to The Courant con-h ^Nneigh1@3 n~1@3.
dition then enforces the adoption of smaller and smaller
time steps with being the sound speed. Upon*t ^ h/c

s
, c

sthe onset of gravitational instability and the resulting
runaway collapse, the simulation therefore e†ectively grinds
to a halt. To overcome this fundamental numerical limi-
tation, and to be able to follow the evolution of the overall
system for a few dynamical times, a method of creating sink
particles is necessary. Here, we describe our strategy in
doing so. Recently, Bate, Bonnell, and Price (1995) have
developed another such technique in the context of SPH
and applied it to the study of protobinary accretion.

In developing the algorithm, one has to address the fol-
lowing questions. (1) W hen a sink particle is created during a
simulation, would the incorporated particles really continue to
collapse, or would they escape again from each other, if one
were to follow their evolution further? To ensure that only
gravitationally bound particles are merged to form a sink
particle, we utilize the runaway nature of the Jeans insta-
bility. Consider how the density does evolve with time for
the SPH particles close to the Ðrst collapsing region. Den-
sities are initially close to n D 104È105 cm~3, and subse-
quently either experience only a modest rise in density or a
rapid increase by many orders of magnitude. This dichoto-
my allows for the unambiguous identiÐcation of the collaps-
ing gas particles. The Ðrst, and physically most important,
criterion for a particle to be eligible for merging therefore is
(a) The value of has to be adjusted to the physi-n [ nth. nthcal characteristics of the problem. We Ðnd that nth\ 108
cm~3 works well in our case of primordial gas that col-
lapses and fragments in the center of a dark matter halo.
Another reason for this choice lies in the fact that beyond a
density of 108 cm~3, additional physics has to be con-
sidered : Three-body reactions convert the gas into fully
molecular form, and opacity e†ects start to become impor-
tant. We address this high-density regime in Paper II, but
otherwise assume that n \ 108 cm~3. A second test a parti-
cle has to pass is (b) i.e., that it is part of a con-$ Æ ¿\ 0,
verging Ñow.

To further examine whether a given collection of particles
is gravitationally bound, one has to determine whether the
binding energy of the system is negative (criterion [c]) :

Etotal\ Egrav ] Ekin] Eth\ 0 , (25)

where and are the total gravitational, kinetic,Egrav, Ekin, Ethand thermal energies, respectively. A system will continue to
collapse only if gravity overwhelms the combined opposing
e†orts of thermal pressure and rotation. DeÐning the usual
parameters and witha \Eth/ oEgrav o b \ Erot/ oEgrav o , Erotbeing the total rotational energy of the system, the require-
ment of continued collapse can be written as (criterion [d]) :

a ] b \ 1 . (26)

In Figure 5 we show these quantities as a function of dis-
tance from the density maximum, at the instant of creating
the sink particle.

Our merging algorithm now proceeds by sorting the eligi-
ble particles according to density. Subsequently, a search is
performed within a range of around the par-rsearch\ 2hmaxticle with the highest density. All particles within this
volume are merged to form the sink particle, provided they

FIG. 5.ÈSearch radius for inclusion into sink particle. Solid line : Total
energy vs. distance from density maximum. The total energy of all particles
within a given radius is deÐned as and plottedEtotal \Egrav] Ekin ] Eth,with an arbitrary normalization. Distances are in units of theh(rmax),smoothing length of the particle with the highest density. Dotted line : Sum
of the ratios and vs. r/h. Only particlesa \ Eth/ oEgrav o b \ Erot/ oEgrav owithin *r \ 2h (dashed line) are considered to become part of the sink
particle. It is evident that this is a very conservative choice, safely meeting
the criteria a ] b \ 1 and A more aggressive merging wouldEtotal \ 0.
search within *r \ 10h, but this would entail a more elaborate testing of
whether a candidate particle would really end up in the clump, or escape
again.

fulÐll criteria (a) and (b). This procedure is repeated until all
eligible particles are assigned to a sink particle. We assume
that passing criteria (a) and (b) implies andEtotal\ 0
a ] b \ 1, without explicitly testing for it. This assumption
is justiÐed by the following physical argument. As can be
seen in Figure 5, the choice of is very conser-rsearch\ 2hmaxvative. All particles within this search volume are safely
bound, and far from pressure or rotational support. Sur-
rounding the search volume, there is a massive, collapsing
envelope, which is part of the Jeans unstable Ñow. Conse-
quently, a more aggressive merging could be adopted with

To reliably determine whether one of thersearch^ 10hmax.less bound, outer particles is to be merged, the explicit
testing for criteria (c) and (d) would be necessary in this case
(Bate et al. 1995). We have carefully veriÐed the reliability of
our merging procedure by performing test calculations with
and without criteria (c) and (d), and Ðnd that in each case
our assumption, (a)] (b)F (c)] (d), is valid.

The next conceptual step concerns the properties of the
newly created sink particle, and how to treat the boundary
to the neighboring region. This leads to the second ques-
tion : (2) Does the presence of a sink particle unphysically
a†ect the SPH particles in its vicinity? Upon its formation,
the sink particle (or clump) has mass

MCl \;
i

m
i
, (27)

a mass-weighted position vector

rCl \
;

i
m

i
r
i

MCl
, (28)

and a mass-weighted velocity

¿Cl \
;

i
m

i
¿
i

MCl
, (29)
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where the summation extends over all contributing par-
ticles. We treat the sink particle as being still gaseous, and
as consequently still participating in the SPH interactions
and smoothing procedure. A constant gas density, nCl\ nth,and temperature, are assigned to theTCl \ £

i
m

i
T
i
/MCl,clump. The resulting (constant) pressure is higher than in

the surroundings which is slightly less dense and hot. This
prescription approximately models a negative pressure gra-
dient. The unphysical infall of neighboring particles onto
the clump is therefore prevented. Such a situation would
occur if the sink particle were assumed to be collisionless,
unless special care is taken to formulate appropriate bound-
ary conditions (see Bate et al. 1995). With continuing mass
accretion, gravity becomes increasingly dominant, and the
sink particle asymptotically assumes a fully collisionless
character. In Figure 6 we demonstrate that this procedure
leads to a satisfactory treatment of the boundary between
the clump and its neighboring particles.

The Ðnal element of the algorithm handles the sub-
sequent accretion of gas, and addresses the question : (3) Is
the accretion of a given gas particle physically justiÐed, or

does the particle venture only temporarily into the vicinity of
the clump? A particle is accreted onto a preexisting clump if
criteria (a) and (b) are fulÐlled, and if it approaches to within
the accretion radius where is the smoothingr

A
\ 2hCl, hCllength of the accreting clump. This procedure proves to be

very reliable, again due to the fact that in order to reach a
density of 108 cm~3, the particle has to be part of a Jeans
unstable gas Ñow which has already proceeded well into its
runaway collapse. The position and velocity of the merged
clump and accreted particle are again taken to be the mass-
weighted averages. The density and temperature of the
clump retain their initial values, as mentioned above.

This algorithm allows us to investigate the complex
dynamics of clump formation, subsequent gas accretion,
and the occasional merger of clumps.

4. THE SIMULATIONS

With all the ingredients in hand, we now turn to the
description of our simulations and present an exploratory
survey of how the primordial gas behaves under a wide
range of initial conditions. We begin by describing our pro-

FIG. 6.ÈE†ect of merging on neighboring particles. Right column: Properties of SPH particles in the vicinity of the sink particle, brieÑy after its creation.
L eft column: Particle properties for the comparison case, where no merging takes place, and the gas evolution is followed to increasingly higher density. Top
panels : Number density vs. distance from density maximum. Distances are in units of the smoothing length of the particle with the largest density,h(rmax),evaluated at the instant of merging. Middle panels : Smoothing length vs. r/h. Bottom panels : Gas pressure vs. r/h. The vertical lines at r/h \ 2 delineate the
e†ective size of the sink particle. It can be seen that the thermodynamic properties, together with the radial gradients of density and pressure, are very similar
in the two cases. The smoothing lengths, on the other hand, are noticeably larger in the presence of a sink particle. This is to be expected, since removal of
particles entails a degrading spatial resolution.
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cedure of initializing the numerical simulations, and
explaining our choice of parameters. We then turn to the
description of the simulations, focusing Ðrst on the early
evolutionary stages, and subsequently on the later ones.

4.1. Initial Conditions
We model the site of primordial star formation as an

isolated overdensity, which corresponds to a high-p peak in
the random Ðeld of density perturbations. The numerical
simulations are initialized at by endowing a spher-z

i
\ 100

ical region, containing dark matter and gas, with a uniform
density and a Hubble expansion according to the top-hat
solution (see ° 2.1). The top-hat overdensity is embedded in
an EinsteinÈde Sitter universe with a Hubble constant h \

km s~1 Mpc~1)\ 0.5. We consider halos collaps-H0/(100
ing at and at which corresponds to D2 pzvir ^ 20 zvir ^ 30,
and D3 p peaks, respectively, with total masses of 2 ] 105
and 2] 106 The baryonic mass fraction is usuallyM

_
.

taken to be but we also consider the case)
B
\ 0.05, )

B
\

0.20.
While this is clearly a rather idealized initial conÐgu-

ration, the subsequent evolution of the halo quickly departs
from a simple, monolithic collapse. In response to the
imprinted small-scale DM Ñuctuations (see below), the halo
develops a very lumpy, nonspherical morphology. This
model, which allows for the formation of DM substructure,
and the hierarchical merger of DM clumps, embedded in a
collapsing background medium, does qualitatively describe
the dynamical behavior of the cold dark matter on very
small scales.

The major shortcoming of this approach lies in the inabil-
ity to self-consistently incorporate the angular momentum
of the halo. In a realistic cosmological setting, angular
momentum is generated by the tidal interaction of neigh-
boring overdensities which are, in general, nonspherical.
For an isolated halo, one therefore has to specify the dis-
tribution and magnitude of the angular momentum in an
explicit way. We here assume that the halo is initially in
rigid rotation with a given angular velocity u. We prescribe
u in accordance with the prediction for the spin parameter
j, as found in cosmological N-body simulations (see ° 2.1).
In computational units with G\ M \ R\ 1, one approx-
imately has the relation : u^ 6.7j. The initial angular
velocity has values u\ 0.1,0.2, and 0.4, corresponding to
j \ 0.015,0.03, and 0.06, respectively.

We now describe our procedure of initializing the posi-
tions and velocities of the DM and gas particles. To imprint
small-scale density Ñuctuations on the dark matter, we
carry out the following steps. After setting up the DM par-
ticles on a Cartesian grid, we impose periodic boundary
conditions and perturb the particles according to the Zeldo-
vich (1970) approximation. The random density Ðeld d(x)
has the Fourier decomposition withd \ ;d

k
exp (ik Æ x)

A given mode with wavevector k is speci-d
k
\ A

k
exp (ir

k
).

Ðed by the random phase distributed uniformly in ther
k
,

interval [0,2n], and the amplitude where lA
k*
\ l[P(k)]1@2,

is drawn from a Rayleigh distribution (see Padmanabhan
1993). The particles, having undisturbed position q, are dis-
placed in such a way as to reproduce the desired density
Ðeld. In the Zeldovich approach, one Ðnds for the displaced
particle position : x \ q ] f (q). The displacement Ðeld f is
related to the density via d \ [$ Æ f. It is then straightfor-
ward to show that withf \ ; f

k
exp (ik Æ q) f

k
\ id

k
k/k2.

The Zeldovich approximation also allows one to self-

consistently assign peculiar velocities : where¿pec,i\ H
i
f,

is the Hubble parameter at Adding the peculiarH
i

z
i
\ 100.

velocity to the Hubble expansion and the solid-body rota-
tion gives the resulting initial velocity for each DM particle :
¿
i
\ ¿

H,i] ¿rot,i] ¿pec,i.For Gaussian Ñuctuations, the power spectrum P(k)\
fully describes the random density Ðeld. Ono d

k
o2\Akn

small scales (M \ 107 the standard CDM model pre-M
_
),

dicts an asymptotic behavior of P(k)P k~3, and we take
n \ [3 as our standard value. To investigate the depen-
dence of the gas fragmentation on the character of the
DM substructure, we also consider the case P(k)P k0,
which corresponds to white-noise perturbations. To Ðnally
Ðx the amplitude A, we specify the initial variance of the
Ñuctuations

p
i
2\ A ; kn . (30)

The summation is over all contributing modes, where the
minimum wavenumber is given by the overall size of the
Cartesian box, and by the Nyquist frequency. We typi-kmaxcally have p

i
2^ 0.1.

The rms Ñuctuation at the moment of collapse is then

p(z\ 30)\
A1 ] z

i
1 ] z

B
p
i
^ 1 .

This choice ensures that the substructure develops on a
similar timescale as the overall collapse of the background
medium. A potential problem with this initialization pro-
cedure is the poor sampling of k-space for the longest wave-
length modes. Since the overall structure of the halo is
predominantly determined by these modes (for a k~3
spectrum), the DM morphology will change signiÐcantly
from one random realization to the next, and we can there-
fore not claim to have simulated the DM morphology in a
representative way. This is true in particular for the early
stages of the collapse, whereas at later times, di†erent initial
conÐgurations approach similar equilibrium states. To
remedy this shortcoming, we have studied cases with di†er-
ent random realizations of the DM Ñuctuations, keeping all
other parameters constant. Finally, all particles within a
given radius are selected for the simulation. The typical
number of DM particles is but we have alsoNDM^ 17,000,
performed test calculations with NDM^ 130,000.

The SPH particles, representing the baryonic component,
are placed randomly within the given spherical volume.
This procedure inevitably introduces unphysical shot-noise.
As opposed to the dark matter, however, these numerically
induced perturbations are quickly erased by pressure forces,
since the initial gas mass is close to the Jeans mass, MJDThe gas particles have velocities, consisting of105 M

_
.

Hubble expansion and rigid rotation : The¿
i
\ ¿

H,i] ¿rot,i.fractional free electron and hydrogen molecule abundances
are taken to be, respectively, andx

i
\ 4.6 ] 10~4 f

i
\ 2

(Anninos & Norman 1996). We assume a deute-] 10~6
rium abundance of (Galli & Palla 1998)nD \ 4 ] 10~5nHand initialize the density of D` and HD according to

and respectively. The gasnD` \ 10~8nH nHD \ 10~3nH2
,

temperature is Ðnally chosen to be K. The typicalT
i
\ 200

number of SPH particles is but we have alsoNSPH^ 16,384,
performed simulations with andNSPH^ 65,536 NSPH^

to test for convergence.131,072,
Initializing our simulations at poses the questionz

i
\ 100

whether this is early enough to investigate objects that are
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TABLE 3

PARAMETERS FOR THE DIFFERENT RUNS

Run M/M
_

zvir n u )
B

HD NSPH
A . . . . . . 2 ] 106 30 [3 0.2 0.05 Yes 16384
B . . . . . . 2 ] 106 30 [3 0.2 0.05 Yes 131072
C . . . . . . 2 ] 106 30 [3 0.1 0.05 Yes 16384
D . . . . . . 2 ] 106 30 [3 0.4 0.05 Yes 16384
E . . . . . . 2 ] 106 30 0 0.2 0.05 Yes 16384
F . . . . . . 2 ] 106 30 [3 0.2 0.05 No 16384
G . . . . . . 2 ] 106 20 [3 0.2 0.05 Yes 16384
H . . . . . . 2 ] 105 30 [3 0.2 0.05 Yes 16384
K . . . . . . 2 ] 106 30 [3 0.2 0.05 Yes 16384
L . . . . . . 2 ] 105 30 [3 0.2 0.20 Yes 16384

NOTE.Èn is the spectral index, u the dimensionless angular velocity, )
Bthe baryon fraction, and HD refers to the absence or presence of HD

cooling.
a Run K has the same parameters as run A, but with a di†erent realiza-

tion of the random density Ðeld.

collapsing at zD 30. The crucial initial values for the chemi-
cal abundances, the gas temperature and density are
actually obtained by integrating the respective governing
equations beginning at z\ 1100, along the line of Tegmark
et al. (1997). Although the use of the Zeldovich approx-
imation in advancing the density perturbations to z

i
\ 100

will introduce an error, the overall nature of the DM col-
lapse would not change in a signiÐcant way if the simula-
tions were started at somewhat higher redshift.

In Table 3 we summarize the parameters of the di†erent
simulations. Run A constitutes the Ðducial case, which we
will describe Ðrst, and against which we subsequently
compare the other runs.

4.2. Early Evolution
Given the almost complete absence of observations to

constrain the theoretical study of primordial star formation,
it is important to single out the essential physical processes.
We here present evidence for the existence of characteristic
values for the temperature and density of the primordial
gas, which in turn translate into a characteristic Jeans scale
for fragmentation. To illustrate this characteristic behavior,
we Ðrst describe a Ðducial simulation (run A) in greater
detail, and then investigate the e†ect of varying the initial
conditions.

4.2.1. T he Characteristic Mass Scale for Fragmentation

The parameters of run A, a halo of total mass 2 ] 106
with 105 in baryons, and virializing at areM

_
M

_
zvir ^ 30,

chosen to safely satisfy the Rees-Ostriker criterion for con-
tinued collapse and fragmentation, (see ° 2.3). In atcool \ tffprevious publication, we have described a similar case
(Bromm, Coppi, & Larson 1999). The simulation presented
here has improved on that earlier treatment by including
cooling due to HD and a more realistic initial abun-H2dance of (instead of Furthermore,f

i
\ 2 ] 10~6 f

i
\ 10~4).

run A is initialized with a di†erent random realization of the
DM Ñuctuation Ðeld.

In Figure 7 we show the initial conÐguration of run A at
Comparing the dark matter and gaseous com-z

i
\ 100.

ponents, the di†erent way of initializing them, as described
above, is clearly visible. Initially, the halo is still expanding,
until the moment of turnaround at The subsequentz

ta
^ 50.

collapse of the dark matter, occurring on a dynamical time-

scale of yr, leads to thetff D 1/[Go(z\ 100)]1@2 D 5 ] 107
eventual establishment of virial equilibrium at zvir D 30.
Since the initial gas pressure is dynamically unimportant,
the baryons freely fall together with the dark matter. Upon
compression, the gas temperature rises adiabatically until it
reaches the virial value

Tvir ^
GMmH
2kB Rvir

D 5000 K , (31)

where pc is the virial radius. At this point,Rvir ^ 100
enough molecules have been formed ( fD a few 10~4) toH2provide an efficient cooling mechanism. Consequently, the
temperature decreases again with further compression.
Figure 8 shows the situation at z\ 33.5, brieÑy before the
virialization of the dark matter. In response to the initially
imprinted k~3 noise, the dark matter has developed a pro-
nounced substructure. Evidently, the collapse proceeds in a
very inhomogeneous manner, far from the monolithic,
spherically symmetric evolution of the analytic top-hat
model. The baryons have just begun to fall into the poten-
tial wells which are created by the DM substructure. Thus,
the DM imparts a ““ gravitational head-start ÏÏ to certain
regions of the gas, which subsequently act as the nucle-
ization centers for the formation of high-density clumps.

At the end of the free-fall phase, shown in Figure 9, the
gas has developed a very lumpy, Ðlamentary structure in the
center of the DM potential. By now, the dark matter has
lost the memory of the primordial perturbations, but only
after having imprinted its signature on the gas. This almost
complete erasure of the DM substructure might be due to
insufficient numerical resolution, as has been recently sug-
gested by, e.g., Moore et al. (1999). We have performed a
test calculation with eight times as many DM particles

instead of 17,000), and Ðnd no qualitative(NDMD 130,000
change, although a still larger number of particles may be
required (106È107) to see the survival of the DM lumps.

The corresponding thermodynamic and chemical state of
the gas is summarized in Figure 10. Since the abundances,
temperature and density are plotted for every SPH particle,
this mode of presentation has an additional dimension of
information : Particles accumulate (““ pile up ÏÏ) in those
regions of the diagram where the evolutionary timescale is
slow. In Figure 10c one can clearly discern such a preferred
state at temperatures of a few 100 K, and densities of
103È104 cm~3. These characteristic values have a straight-
forward physical explanation, along the line of argument
presented in ° 2.2 regarding the microphysics of cooling.H2A temperature of T D 100È200 K is the minimum one
attainable via cooling. The corresponding criticalH2density, beyond which the rotational levels are popu-H2lated according to LTE, is then cm~3.ncrit^ 103È104
Owing to the now inefficient cooling, the gas ““ loiters ÏÏ
and passes through a phase of quasi-hydrostatic, slow
contraction.

Further insight can be gained by considering the charac-
teristic timescales of the problem, which are displayed in
Figure 11. We consider the free-fall time the cooling timetff,and the sound-crossing timetcool ^ nkB T /"H2

, tsound^
Here, pc is the characteristic size of theL char/cs. L char ^ 1

Ðlamentary gas in Figure 9. The comparison of andtcool tffexplains the evolutionary behavior of the gas, as described
above. At densities exceeding n D 100 cm~3, the gas can
cool efficiently (i.e., until it reaches the quasi-tcool \ tff),



FIG. 7.ÈRun A: Initial conÐguration for top-hat collapse. The halo has a total mass of 2 ] 106 and is endowed with a Hubble expansion such thatM
_virialization occurs at Top row: The DM particles are perturbed from a regular grid according to P(k)P k~3. Bottom row: The gas particles arezvir ^ 30.

placed at random, and comprise a mass fraction of Both components are initially in solid body rotation with the angular momentum vector)
B
\ 0.05.

pointing in the z-direction. L eft panels : Face-on view. Right panels : Edge-on view.

FIG. 8.ÈRun A: Morphology at z\ 33.5. The manner of presentation is the same as in Fig. 7. The DM has developed signiÐcant substructure, and the
baryons are just beginning to fall into the corresponding potential wells.
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FIG. 9.ÈRun A: Morphology at z\ 31.2. The convention in Fig. 7 is adopted for the rows and columns. The box size is 30 pc. The DM is in the process of
undergoing violent relaxation with the concurrent smoothing out of the substructure. Having developed a lumpy and elongated morphology, the gas has
settled into the center of the DM potential well. Shown is the situation brieÑy after the formation of the Ðrst clump of mass 1400 (small box).M

_

hydrostatic phase, where To move away from thistcoolD tff.loitering regime, and to attain higher densities, the gas has
to become gravitationally unstable. The condition for the
onset of instability, is shown in Figure 11b. Thetsound[ tff,gas is Jeans unstable for n [ 104 cm~3. Alternatively, we
can evaluate the Jeans mass for the characteristic values
T D 200 K and n D 103È104 cm~3, resulting in MJ D 103

When enough gas has accumulated in a given regionM
_

.
to satisfy runaway collapse of that Ñuid regionM [ MJ,ensues. We Ðnd that the gas becomes self-gravitating (oB[

coincident with the onset of the Jeans instability.oDM)
Although the dark matter has played an important role in
determining where most of the gas ends up, it henceforth
ceases to inÑuence the primordial gas on its further course
to stardom.

4.2.2. T he Onset of Gravitational Instability

After the onset of instability, the temperature rises again,
up to T D 1000 K at n ^ 108 cm~3, but not sufficiently to
halt the collapse. Once the gas has reached a density of

cm~3, a clump (or sink particle) is formed, and wenth\ 108
do not follow the evolution to increasingly higher density.
The initial mass of the clump, as shown in Figure 9, is 1400

close to the characteristic Jeans mass ofM
_

, MJ D 103 M
_

.
In Paper II we take up the question of how the further

collapse of a clump does proceed, up to densities of
n D 1014 cm~3. In doing so, we Ðnd no indication for
further subfragmentation. Despite the additional boost in
the cooling due to the action of three-body reactions, which
convert the gas into almost fully molecular form at n [ 108
cm~3, no runaway cooling occurs. At the end of the simula-
tion presented in Paper II, a central core of D100 is inM

_

a state of free-fall, surrounded by an extended envelope with
an approximately isothermal density proÐle, o P r~2.

Another way to understand the nature of the runaway
collapse is shown in Figure 12, where we plot the history of
the Ðrst runaway SPH particle. This particle marks the
center of the Ñuid region which is Ðrst to become gravita-
tionally unstable. It is evident that the temperature reaches
T D 300 K and subsequently oscillates around that value
for approximately 106 yr, to Ðnally experience a very rapid
rise to D1000 K. The oscillatory behavior is due to the
negative feedback of the cooling, with increased coolingH2for higher temperature and vice versa. Similarly, the density
stays at n D 104 cm~3 for D106 yr, before the onset of the
runaway collapse.

It has been pointed out by Bate & Burkert (1997) that to
avoid numerical fragmentation, one has to resolve the Jeans
scale, One can estimate the resolution limit,MJ [Mres.of the simulation asMres,

Mres ^
ANneigh

NSPH

B
MB . (32)

For run A, where this results inNSPH\ 16,384, Mres D 200
and the criterion above is reasonably well satisÐed. ToM

_
,

test for numerical convergence, we have performed a simu-
lation with (run B) and a correspondingNSPH\ 131,072
mass resolution of This high-resolution runMres D 25 M

_
.

conÐrms that clumps initially form with masses close to
D103 M

_
.

It is a longstanding question whether the Jeans mass is
relevant for the understanding of the characteristic mass of
present-day star formation. In the primordial case, however,
where one can argue that magnetic and turbulent pressures



36 BROMM, COPPI, & LARSON Vol. 564

FIG. 10.ÈRun A: Gas properties at z\ 31.2. (a) Free electron abundance vs. hydrogen number density (in cm~3). At densities exceeding n D 103 cm~3,
recombination is very efficient, and the gas becomes almost neutral. (b) Hydrogen molecule abundance vs. number density. After a quick initial rise, the H2abundance approaches the asymptotic value of fD 10~3, owing to the operation of the H~ channel. (c) Gas temperature vs. number density. At densities
below D1 cm~3, the gas temperature rises because of adiabatic compression until it reaches the virial value of K. At higher densities, cooling dueTvir ^ 5000
to drives the temperature down again, until the gas settles into a quasi- hydrostatic state at T D 500 K and n D 104 cm~3. Upon further compression dueH2to the onset of the gravitational instability, the temperature experiences a modest rise again. (d) Jeans mass (in vs. number density. The Jeans massM

_
)

reaches a value of for the quasi-hydrostatic gas in the center of the DM potential well, and reaches the resolution limit of the simulation,MJ D 103 M
_for densities close to the merging threshold of n \ 108 cm~3.Mres ^ 200 M

_
,

FIG. 11.ÈRun A: Important timescales at z\ 31.3. Shown is the situ-
ation brieÑy before the formation of the Ðrst clump. (a) Free-fall timescale
(solid line) and cooling timescale (dotted symbols) vs. number density (in
cm~3). Timescales are in units of 106 yr. The gas particles pile up at a
density of n D 104 cm~3, where (b) Free-fall timescale (solid line)tcool ^ tff.and sound-crossing timescale (dotted symbols) vs. number density (in
cm~3). The onset of the Jeans instability (i.e., at n D 104 cm~3tsound [ tff)coincides with the condition in (a).tcool ^ tff

are initially unimportant, one is left with the classic battle
between gravity and thermal pressure, as originally
envisioned by Jeans (1902). Primordial star formation,
therefore, might be the most clear-cut setting for the appli-
cation of the Jeans criterion.

4.2.3. Exploring Parameter Space

We now harness the key advantage of our method, the
ability to perform controlled experiments, and ask how sen-
sitive the results, obtained in run A, are to variations in the
initial conditions. Again, we here discuss the simulations up
to the formation of the Ðrst clumps, and turn to the further
clump evolution later.

Spectral index.ÈTo investigate the role of the DM sub-
structure, we consider in run E the case of a white-noise
spectrum, P(k)P k0. Admittedly, such a spectrum is physi-
cally ad hoc, in contrast to the k~3 case, which is ultimately
motivated by the theory of inÑation. With the rms Ñuctua-
tion on a given mass scale being p(M)P M~(n`3)@6 for spec-
tral index n, one Ðnds

p(M)P 4
5
6
0
0
const. for k~3 ,
M~1@2 for k0 .

(33)

The k~3 case, therefore, has approximately equal power on
all mass scales, whereas the smallest resolvable scale (given
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FIG. 12.ÈHistory of Ðrst runaway Ñuid element. (a) Gas temperature
(in K) vs. cosmic time (in 107 yr). Dashed line : Characteristic temperature

K. (b) Hydrogen number density (in cm~3) vs. cosmic time.Tchar ^ 300
Dashed line : Characteristic density cm~3. The Ñuid elementnchar ^ 104
spends D106 yr at temperatures and densities close to the characteristic
values. After this period of ““ loitering,ÏÏ the runaway collapse sets in, oper-
ating on a timescale D105 yr.

by the Nyquist frequency) dominates the white-noise
realization.

In Figures 13 and 14, we present the evolution of run E
up to the onset of gravitational instability. This time
sequence is to be compared to the corresponding Figures
7È9 for run A. At redshift z\ 33.5, brieÑy before virializa-
tion, the baryons have not yet begun to fall into the shallow
DM potential wells, in contrast to run A. Toward the end of
the free-fall phase, at z\ 31.2, the gas has settled into a
ringlike central conÐguration with a morphology that is
somewhat more regular than in run A.This distribution
derives from the rather homogeneous character of the
overall collapse, which deviates much less from spherical
symmetry than the k~3 case. High-density clumps are
formed again with initial masses close to D103 and theM

_
,

full di†erence to run A becomes manifest only during the
later evolutionary stages, as will be discussed below.

The occurrence of the regular ring structure in Figure 14
might be an artifact of the initial conditions in run E, which
are highly symmetric. Such a ringlike conÐguration,
however, is not a typical result. In general, the resulting
morphology is a somewhat accidental feature of our results,
and is not important for the main conclusions of this study.

Random realization of DM Ñuctuations.ÈTo address the
problem of poor k-space sampling for the longest wave-
length modes, and the resulting morphological variations in
the dark matter, we now compare runs A and K and the
corresponding Figures 9 and 15. Run K has the same pa-
rameters as run A, but a dark matter component that is
perturbed according to a di†erent realization of the Gauss-

FIG. 13.ÈRun E: Morphology at z\ 33.5. The convention in Fig. 7 is adopted for the rows and columns. Compared to run A in Fig. 8, there is relatively
more DM substructure on the smallest resolvable scales, and the overall collapse proceeds in a more regular way. The baryons do not yet fall into the shallow
DM potential wells.



FIG. 14.ÈRun E: Morphology at z\ 31.2. The convention in Fig. 7 is adopted for the rows and columns. The box size is 30 pc. Shown is the situation
brieÑy before the formation of the Ðrst clump (enclosed in the small box). Again, the dark matter is loosing its substructure in the process of virialization,
whereas the gas has settled into a ringlike, central conÐguration that has a very knotty appearance.

FIG. 15.ÈRun K: Case with di†erent realization of P(k)P k~3 noise. Shown is the morphology at z\ 31.2, brieÑy after the formation of the Ðrst two
clumps with masses 360, and 520 (small box). The convention in Fig. 7 is adopted for the rows and columns. The box size is 60 pc. This case is to beM

_compared to run A in Fig. 9. Both cases have the same initial conditions with the exception of the random realization of the DM Ñuctuation Ðeld. It can be
seen that the resulting morphology is very di†erent here, with a much more extended central gas conÐguration.
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ian random process. The appearance of the central gas con-
Ðguration at z\ 31.2 is quite di†erent indeed, with a much
more extended, Ðlamentary distribution of gas in run K.
Also, the Ðrst two clumps to form have masses close to

compared to the one D1500 clump in runD 500M
_

, M
_A. We will see below, however, that these two cases later on

converge to a rather similar state, despite the di†erences
during the early evolutionary stages.

Angular momentum.ÈIn runs C, A, and D with initial
angular velocities of u\ 0.1, 0.2, and 0.4, respectively, we
investigate the inÑuence of angular momentum (or spin) on
the evolution of the primordial gas. Increasing the amount
of spin has two main e†ects. First, the moment of virializa-
tion and of the onset of gravitational instability is delayed,
leading to the sequence of collapse redshifts : zvir ^ 31.7,
31.2, and 29.8 for runs C, A, and D. Second, the gas is less
centrally concentrated, resulting in a reduced rate for the
merging of clumps, as will be discussed in the following
section.

The Ðrst e†ect can be understood in terms of a straight-
forward modiÐcation of the analytical top-hat model,
adding to it the presence of angular momentum. By con-
sidering the energy balance at turnaround, an estimate for
the turnaround radius can be obtained as follows (in dimen-
sionless units where G\ M \ R\ 1) :

1
R

ta
^ 1 [ 1

3
u

i
2[ 1

2
H

i
2 , (34)

where and are the initial angular velocity and Hubbleu
i

H
i

parameter, respectively. With the virial radius given by
the redshift of virialization is approximatelyRvir ^ 1/2R

ta
,

1 ] zvir ^ (1] zvir,nr)(1È20.5j2) . (35)

Choosing the redshift of virialization in the absence of rota-
tion as nicely reproduces the numerical results.zvir,nr \ 31.8
The presence of angular momentum, therefore, delays the
collapse by reducing the binding energy of the halo.

Halo mass.ÈIn run H we study the collapse of a less
massive halo of total mass 2 ] 105 This case onlyM

_
.

marginally satisÐes the Rees-Ostriker criterion (see ° 2.3).
The smaller halo mass translates into a lower virial tem-
perature, K, which in turn leads to a reducedTvir D 2000
efficiency of cooling. Consequently, the condition for theH2termination of the free-fall phase, is reachedtcool D tff,already at lower densities (102È103 cm~3). The gas, there-
fore, goes through a prolonged phase of quasi-hydrostatic
contraction, and attains a roughly spherical conÐguration.
In Figure 16 we show the central gas distribution at two
successive redshifts. Only one clump forms in the center of
the cloud with an initial mass of D400 Subsequently,M

_
.

this clump grows in mass up to D2000 M
_

.
The main di†erence to run A, besides the formation of

only one clump instead of a few, is that here the Jeans
instability proceeds less violent, since the opposing e†ect of
pressure is nonnegligible in this case.

Baryon fraction.ÈIn a universe with a signiÐcant contri-
bution to the critical density in the form of vacuum energy,
a larger fraction of the matter resides in the baryonic com-
ponent. For one has)

m
\ 1 [ )" \ 0.3, oB^ 0.20o

m
,

FIG. 16.ÈRun H: Case of halo with total mass of 2 ] 105 Shown is the morphology of the gas for two subsequent times. Top row: Gas distributionM
_

.
at z\ 27.2, brieÑy after the formation of a clump with M D 400 Bottom row: Gas distribution at z\ 26.3. By now, the clump has grown in mass toM

_
.

M D 1800 L eft panels : Face-on view. Right panels : Edge-on view. The box has a linear size of 15 pc. In the case of this low-mass halo, where theM
_

.
requirement for efficient cooling, is only marginally satisÐed, one clump forms in the center of the DM potential and reaches a Ðnal mass of D2000tcool \ tff,M

_
.
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where is the total density of matter. In run L we considero
ma halo with 20% of the mass in gaseous form. From the

outset, this case behaves very di†erent from the simulations
with a low baryon fraction. As can be seen in Figure 17, the
gravitational instability is already triggered during the free-
fall phase in the three dominating DM condensations. Since
the thermal properties of the gas are not very di†erent from
those in run A, and there is a four times larger amount of
available gas, gravity more easily overwhelms thermal pres-
sure. The peculiar character of run L continues into the
later evolutionary stages, where an altogether larger frac-
tion of the gas is able to condense into high-density clumps.

Collapse redshift.ÈIn run G, we consider the collapse of a
halo with total mass 2]106 collapsing atM

_
, zvir^20.

run A and G correspond to a D3 p and D2 p peak in the
Gaussian random Ðeld, respectively. We show the situation
brieÑy after the formation of the Ðrst clump in Figure 18,
which should be compared to the equivalent stage for run A
in Figure 9. The initial clump mass is again D103 andM

_
,

the main di†erence between the two cases lies in the much
more extended morphology of the gas in run G, with a
linear size of D40 pc compared to D10 pc in run A. The
larger extension of the central gas conÐguration is simply
due to the smaller binding energy of the halo in run G, with
almost the same amount of initial rotational energy as in
run A. Otherwise, the evolution of the two simulations is
very similar.

Summarizing the results from our exploratory survey up
to the onset of gravitational instability, two important
lessons can be learned. First, the morphology of the collapse

varies signiÐcantly among the di†erent cases, depending on
the initial conditions. Second, the thermodynamic behavior
of the primordial gas is very similar for all the cases studied,
despite the morphological diversity. To demonstrate this,
we show in Figures 19 and 20 the location of the individual
SPH particles in the temperature versus density plane for
eight di†erent runs. As can be seen, in each case, the gas
does attain the characteristic values of the temperature and
density, T D a few 100 K and n D 103È104 cm~3. In this
preferred region of T -n space, the evolution of the system
slows down, allowing to imprint the corresponding charac-
teristic Jeans scale of onto the gas. FromMJ D 103 M

_examining Figures 19 and 20, it is also evident that the gas
particles begin their runaway collapse with these character-
istic values, to swiftly attain a temperature of T D 1000 K at
the threshold density of n \ 108 cm~3, at which point they
are incorporated into a sink particle (i.e., a clump).

We turn next to the discussion of how the high-density
clumps subsequently evolve, and of the processes through
which they grow in mass, the accretion of surrounding
di†use material and the merging of clumps.

4.3. L ater Evolution
At the end of the free-fall phase, the primordial cloud has

fragmented into clumps with initial masses of MClDThese clumps are the basic elements in the102È103 M
_

.
building-up of a spectrum of masses through the processes
of accretion and merging. To address the complex dynamics
that is involved in the shaping of the mass function, it is
essential to be able to follow the systemsÏs evolution over a

FIG. 17.ÈRun L: Morphology of case with high at z\ 31.7. The convention in Fig. 7 is adopted for the rows and columns. The box size is 90 pc.)
BShown is the situation brieÑy after the formation of the Ðrst clumps with masses of 750, 850, and 1440 The halo is still in its initial free-fall collapse, andM

_
.

the DM has not yet virialized. Already in this early dynamical stage, the gas in the deepest DM potential wells has undergone runaway collapse. This
behavior is in marked contrast to the cases with a low baryon fraction ()

B
\ 0.05).



FIG. 18.ÈRun G: Case of top-hat with Shown is the morphology at z\ 20.6, brieÑy after the Ðrst clump has formed with a mass of 920 (inzvir ^ 20. M
_the region marked by the small box). The convention in Fig. 7 is adopted for the rows and columns. The box size is 90 pc. Compared to run A (a top-hat of the

same mass collapsing at in Fig. 9, the resulting gas conÐguration is much more extended.zvir ^ 30)

FIG. 19.ÈGas properties in simulations with di†erent initial conditions I. Temperature vs. hydrogen number density. All runs are shown at very nearly
the same instant, at z\ 31.0. (a) Fiducial case (run A) : Halo of total mass 2 ] 106 collapsing at initialized with P(k)P k~3, and including HDM

_
, zvir \ 30,

cooling. (b) Varying the power spectrum (run E) : Same as (a), but P(k)P k0. (c) Varying the cooling (run F) : Same as (a), but no HD cooling. (d) Same as (a),
but di†erent realization of the random density Ðeld (run K).
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FIG. 20.ÈGas properties in simulations with di†erent initial conditions II. Temperature vs. hydrogen number density. (a) Varying the number of particles
(run B) : Simulation with large number of SPH particles, shown at z\ 31.0. For clarity and ease of comparison, only every eighth particle is plotted. (b)
Varying the angular momentum (run C) : Low-spin case, shown at z\ 31.7. (c) Varying the halo mass (run H) : Less-massive halo, shown at z\ 27.2. (d)
Varying the collapse redshift (run G) : Halo with shown at z\ 20.6. The thermodynamic behavior, displayed in Figs. 23 and 24, is very robust underzvir ^ 20,
variation of the initial conditions, and in each case, the gas attains characteristic values of temperature and density close to T D 200 K and n D 103È104
cm~3, respectively.

few dynamical timescales. The technique of creating sink
particles allows us to do so, which is another important
advantage of our approach.

In the following, we Ðrst discuss the physics of accretion
and merging, and then the resulting distribution of clump
masses.

4.3.1. Accretion and Merging of Clumps

The next question to ask is : W hat determines the fraction
of gas that ends up in high-density clumps, and how does the
di†erence in this quantity between the various simulations
arise? With being the total amount of gasM

B
\ 105 M

_and yr the initial dynamical timescale of the DMtdynD 107
halo, the overall rate of conversion between di†use gas and
clumps can be estimated to be M0 conv^ M

B
/tdyn^ 10~2 M

_yr~1. The conversion rate, sets an upper limit to theM0 conv,star formation rate (SFR). Feedback e†ects from the
developing protostars are expected to limit the SFR to a
somewhat smaller value which at present is not known with
any certainty.

The clumps are comprised of gas which at some point has
become Jeans unstable, and which has been drawn from the
reservoir of cooled gas at the characteristic values of tem-
perature and density, T D a few 100 K and n ^ 103È104
cm~3. In approximate pressure equilibrium with the cooled
gas, a second, hot phase has formed at T D 104 K and
n D 101 cm~3. Whatever material resides in this hot phase
is not available for the formation of clumps. The total
amount of cooled gas is typically Mcool D 8È9 ] 104 M

_
.

Once there is not enough gas left to overwhelm the
opposing pressure, i.e., the Jeans instability ceases.M \MJ,

If is the average Jeans mass at the moment of virializa-MJtion, where the average includes all SPH particles which
have been able to cool, the baryonic mass fraction in clumps
is approximately given by

fCl^
Mcool[ MJ

M
B

. (36)

In Table 4, we summarize the resulting conversion efficiency
for three di†erent simulations. The two simulations (runs C
and E) with a more concentrated gas morphology and cor-
respondingly higher gas density are characterized by fCl Das compared to in the case of the less centrally0.7, fCl D 0.5
concentrated gas conÐguration in runs A and K. As can be
seen, equation (36) nicely describes the numerical results. All

TABLE 4

EFFICIENCY OF FORMING CLUMPS

tdyn Mcool SM
J
T

Run (yr) (M
_
) (M

_
) fCl

A . . . . . . 6.0] 106 8.0] 104 3.0] 104 0.5
C . . . . . . 5.4] 106 9.0] 104 2.0] 104 0.7
E . . . . . . 3.0] 106 8.5] 104 1.5] 104 0.7

NOTE.ÈParameters for the simulations in Fig. 21. istdynthe dynamical time of the DM halo at the moment of
virialization, the total amount of gas which has beenMcoolable to cool, the average Jeans mass at virialization,SM

J
T

and the baryonic mass fraction in clumps. Run K hasfClvirtually the same parameters as run A.
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runs have a similar average temperature K, but theT D 300
average gas density is an order of magnitude larger in runs
C and E. For these latter two simulations, therefore, the
corresponding Jeans mass is smaller, and less of the cooled
gas is left behind in a pressure-supported state. In general,
the conversion efficiency increases with the central con-fClcentration and density of the gas. The larger central concen-
tration is due to the low degree of angular momentum in
run C and to the absence of a signiÐcant deviation from
spherical symmetry in run E. The fraction constitutes anfClupper limit for the star formation efficiency (SFE), with the
same degree of uncertainty as in the case of and theM0 convSFR.

In Figure 21 we show how the two most massive clumps
grow in mass for four di†erent simulations, which corre-
spond to the cases in Table 4. The clumps are formed with
initial masses close to M D 103 and then gain in massM

_by the slow accretion of surrounding gas and by merging
with other clumps. Both mechanisms can be clearly dis-
cerned in the Ðgure, where the merging events correspond
to the steplike, sudden increase in mass. It is evident that
there is signiÐcant merging activity in the high-density
simulations (runs C and E), whereas in runs A and K, the
clumps at late times only grow by steady accretion. This
di†erence can be understood by considering the timescale
for the collision of clumps, and the corresponding colli-tcoll,sion rate (e.g., Bonnell, Bate, & Zinnecker 1998)

1
tcoll

\ 16JnnCl vracc2
A
1 ] GMCl

2v2racc

B
. (37)

TABLE 5

EXPECTED MERGING OF CLUMPS

nCl v tcoll
Run (pc~3) (km s~1) (yr) Nmerger

A . . . . . . 5] 10~3 12.3 1.5] 107 D1
C . . . . . . 3] 10~2 10.3 3.0] 106 D5
E . . . . . . 3] 10~2 14.3 3.0] 106 D5

NOTE.ÈExplaining the merging histories in Fig. 21 ; isnClthe number density of clumps, v the velocity dispersion, tcollthe collision timescale, and the expected number ofNmergermergers in *t ^ 2 ] 107 yr. Run K has virtually the same
parameters as run A.

Here, is the number density of clumps, v the velocitynCldispersion, the accretion radius, and the mass of aracc MClclump. The second term in the brackets is the Safronov
number, describing the e†ect of gravitational focusing. Esti-
mating the accretion radius as pc (see ° 3.2)racc ^ 2hCl ^ 0.1
and taking the clump mass to be theMCl ^ 20,000 M

_
,

result of evaluating equation (37) is summarized in Table 5.
We accordingly expect of order 5 merger events in the high-
density simulations (runs C and E), as opposed to only 1
event in the low-density cases (runs A and K). As can be
seen in Figure 21, this prediction is borne out in the numeri-
cal simulations. A clump can become very massive by
undergoing multiple mergers, up to D50,000 in run C,M

_and D60,000 in run E. This runaway growth of oneM
_central clump is analogous to the evolution of a supergiant

FIG. 21.ÈGrowth of clumps in di†erent runs. Solid line : Mass of most massive clump vs. time. Dashed line : Mass of second most massive clump vs. time.
Mass is plotted in units of 103 and time in 2 ] 107yr, which corresponds to the initial dynamical timescale. (a) run A: Fiducial case. (b) run C: Low-spinM

_
,

case. (c) run E: P(k)P k0. (d) run K: Di†erent realization of P(k)P k~3. A rapid rise in mass (a ““ step ÏÏ) corresponds to a merger with another clump, whereas
a phase of slow and steady growth is due to accretion of di†use gas. Notice the similarity in panels (a) and (d), with two dominant clumps surviving without
further merging. The simulations in panels (b) and (c), corresponding to runs which result in a more centrally concentrated morphology, on the other hand,
build up one very massive clump by successive merger events.
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cD galaxy in the center of rich clusters of galaxies. From
Figure 21 it is evident that at late evolutionary stages,
clumps grow in mass mainly by merging with other clumps.
In comparison, accretion of surrounding gas is a rather
inefficient process.

4.3.2. Distribution of Clump Masses

In this section we discuss the clump mass spectrum that
results from the complex dynamics of merging and accre-
tion described above. Although the initial masses of the
clumps are close to D103 rather independent of theM

_
,

initial conditions, the subsequent evolution of the clumps
proceeds di†erently from case to case. As we have seen, the
efficiency of merging is very sensitive to the central density
of the postvirialization cloud. Despite the existence of a
characteristic mass scale for Population III star formation,
the mass spectrum, being determined by the merging
history of the clumps, is therefore expected to vary signiÐ-
cantly. In the following, we investigate how the distribution
of clump masses depends on the initial conditions. For each
simulation, the gas and clump morphology is shown at a
late evolutionary stage, where most of the available, cooled
gas has already been incorporated into clumps.

The total angular momentum of a halo proves to be a
very important parameter in determining the mass spec-
trum of the clumps. To demonstrate this, we consider the
simulations with low, intermediate, and high initial spin in
Figures 22, 23, and 24, respectively. As can be clearly seen,
the mass of the dominating clump decreases with increasing
spin. This clump massÈspin relation has a straightforward

explanation in the lower central density of the higher spin
simulations, and the corresponding reduction in the merger
rate. Hence, high-density clumps with masses M Z 50,000

can form in the center of the lowest-spin halos. TheseM
_massive clumps might conceivably lead to the formation of

seed black holes for future quasar activity. Eisenstein &
Loeb (1995) have investigated a scenario along these lines,
emphasizing the cosmological importance of the low-spin
systems.

The emergence of such very massive (cD-like) clumps is
due to the efficient outward transport of angular momen-
tum via tidal torques. Although we do not include the e†ect
of any external tidal Ðelds, and have to insert the angular
momentum explicitly at the beginning of the simulation, the
subsequent dynamics does lead to internal tidal Ðelds. In
cases where there is such a ““ cD behavior,ÏÏ the e†ect
responsible for it therefore seems to be modeled in a physi-
cally consistent way. Interestingly, a high degree of central
concentration is also found in the simulation of ABN2000,
who have self-consistently included cosmological tidal
Ðelds. As we discuss below, the neglect of any protostellar
feedback seems to be the more crucial factor in accounting
for the emergence of very massive clumps.

Earlier on, we have mentioned that the two simulations
(runs A and K) with a di†erent realization of the k~3 power
spectrum, and all other parameters being equal, lead to a
rather di†erent DM and gas morphology at the moment of
virialization. During the later stages of the evolution,
however, these simulations converge to a similar state. In
both simulations, the morphology is dominated by two

FIG. 22.ÈRun C: Low-spin case at z\ 28.9. Top row: The remaining gas in the di†use phase. Bottom row: Distribution of clumps. The numbers next to
the dots denote clump mass in units of L eft panels : Face-on view. Right panels : Edge-on view. The length of the box is 30 pc. Dominated by a massiveM

_
.

clump of D40,000 comprising D40% of the initially present gas, a compact, disklike feature has formed in the center of the DM potential.M
_

,



FIG. 23.ÈRun A: Intermediate-spin case at z\ 28.9. The manner of presentation is the same as in Fig. 22. Compared to the low-spin case, the gas has
settled into a less regular, more extended conÐguration with two dominant clumps of mass close to 20,000 During the subsequent evolution, the clumpsM

_
.

survive without merging, and grow in mass only slightly by accretion of surrounding gas.

FIG. 24.ÈRun D: High-spin case at z\ 25.5. The manner of presentation is the same as in Fig. 22. Notice that here the situation is shown at a much later
instant, reÑecting the delayed conversion of the di†use gas into clumps. The gas morphology is highly irregular and dispersed. In this case, no very massive
clumps have formed, but instead a number of clumps with masses of a few 103 M

_
.
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clumps with masses close to D20,000 The overall fea-M
_

.
tures of the mass spectrum, therefore, do not seem to
depend signiÐcantly on the random initialization of the DM
Ñuctuations. The late-time morphology in the simulation
with a high baryon fraction (run L) is characterized by the
largest fraction of gas in clumps, D 75 %, and has a central
cD clump of mass M D 200,000 which has gobbled upM

_
,

a remarkable one-half of the total gas mass. As we have
pointed out before, the case of a high baryon fraction
behaves distinctly di†erent from the low simulations in)

Bthat gravitational instability is already triggered during the
initial free-fall phase. Now we see that run L is also distin-
guished by an extremely top-heavy spectrum of clump
masses. This case serves as an illustration for what happens
when the relative balance of gas pressure and self-gravity is
shifted in favor of the latter.

To assess the possible role of HD cooling in the evolution
of the primordial gas, we compare run A, which does
include HD cooling, and run F, which does not. Otherwise,
the two cases have identical initial conditions. We Ðnd that
the gas and clump morphologies, as well as the thermody-
namic behavior in the T versus n plane, are overall very
similar. Slight di†erences, however, do exist in the way the
gas fragments and in the resulting clump masses. Cooling
due to the HD molecule, and the corresponding chemistry
of its formation and destruction, should therefore be
included for completeness, even though it does not appear
to be of preeminent importance in the parameter regime
considered here. In our simulations, we have assumed a
deuterium abundance of but we havenD \ 4 ] 10~5nH,
carried out a test calculation with a 10 times higher abun-
dance. With such a high D abundance, the thermal evolu-
tion of the gas proceeds very di†erently. Cooling now is so
efficient that the gas quickly settles down to the temperature
of the CMB, and the corresponding Jeans mass is reduced
below the resolution limit of that simulation, Mres D 200

If deuterium were indeed that abundant, the character-M
_

.
istic mass scale of D103 would then disappear, since itM

_derives from the properties of (see ° 2). Our adoptedH2value of however, seems to be a conser-nD/nH \ 4 ] 10~5,
vatively high choice, according to recent observations of
high-redshift absorption systems (e.g., Burles & Tytler
1998).

Finally, we discuss the cumulative distribution of clump
masses. We consider the average of all simulations with DM
Ñuctuations imprinted according to a k~3 spectrum, initial
spin u\ 0.2, and a total halo mass of 2 ] 106 . As weM

_have discussed above, varying these parameters leads to a
signiÐcant change in the distribution of clump masses, and
we have therefore included in the averaging only the cases
with these Ðducial values. We evaluate the number of
clumps per unit logarithmic mass, and compare this to the
Salpeter case of the present-day stellar IMF, dN/
d log mP m~1.35. It turns out that the resulting mass spec-
trum is remarkably Ñat, and that the halos in our
simulations are very efficient in building up very massive
clumps, up to a few times 104 M

_
.

This mass spectrum has to be taken cum grano salis, and
important caveats apply. First, recall that clumps are born
with masses close to D103 and only subsequently reachM

_higher masses through successive mergers and accretion.
For these mechanisms to be e†ective, there has to be suffi-
cient time. Typical merging timescales are of order a few 106
yr, during which time the Ðrst stars in the halo might have

already evolved far enough to explode as supernovae,
thereby considerably disturbing the remaining gas in the
halo. In general, the neglect of any feedback e†ects consti-
tutes the major shortcoming in our treatment of these later
evolutionary stages. Up to the point of forming the Ðrst
clump, and possibly the Ðrst few, all the relevant physics is
in principle known. It is only toward the later stages in the
evolution that the physical basis of the simulations becomes
increasingly uncertain. It is also worth remembering that
only those processes are allowed for in our numerical treat-
ment that tend to increase the mass of a clump. This intro-
duces a bias toward higher mass in the resulting mass
spectrum.

Having stated all these provisions, it is nevertheless
remarkable how efficient the Population III halos are in
building up clumps of very high mass. The assessment of
how relevant this Ðnding is for an understanding of the
stellar IMF has to await a more realistic treatment of the
complex physics of accretion from a dust-free envelope, the
merging of subcondensations, and the various feedback
e†ects.

5. SUMMARY AND CONCLUSIONS

We have investigated the collapse and fragmentation of
primordial, metal-free gas. The gas is embedded in dark
matter halos of mass close to D106 which virialize atM

_
,

redshifts z^ 20È30. Because of the low virial temperatures
in these halos of a few 1000 K, cooling can only proceed via

We Ðnd that for these systems there exists a preferredH2.region in parameter space. The primordial gas does attain
characteristic temperatures of a few 100 K and densities of
D103È104 cm~3. These values have their physical explana-
tion in the microphysics of cooling, related to theH2minimum temperature that can be reached via and toH2,the critical density where the cooling rate changes from
being proportional to n2 to an only linear dependence on
density. This change in the cooling rate reÑects the tran-
sition from non-LTE (NLTE) to LTE level populations of
the hydrogen molecule. With these values of temperature
and density, the corresponding characteristic Jeans mass is

At some point during the simulation, the gasMJD 103 M
_

.
becomes gravitationally unstable, and forms high-density
(n[ 108 cm~3) clumps with initial masses close to the char-
acteristic Jeans scale of D103 This is a very robustM

_
.

result, and is quite independent of the initial conditions.
This suggests that Population III star formation might have
favored massive stars, possibly even very massive ones with
M Z 100 M

_
.

In contrast to this robust nature of the thermodynamics,
the resulting morphology is a somewhat accidental feature
of our simulations, varying substantially between di†erent
random realizations of the initial DM density Ðeld.

Although the clumps form initially with similar masses
close to the characteristic value of D103 their furtherM

_
,

evolution is very sensitive to the initial conditions. Clumps
grow in mass through accretion of surrounding gas, and
merging with other clumps. Both mechanisms sensitively
depend on the central gas density. We now discuss the
dependence of the resulting clump masses on the most
important parameters.

Total halo mass.ÈWith increasing mass of the DM halo,
the clump masses also tend to increase. Initial clump masses
are close to in the 105 halo, andMCl\ 400 M

_
M

_approximately twice as massive in the 106 cases. InM
_
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addition, a few clumps form almost simultaneously in the
more massive halos, whereas only a single one forms in the
center of the ““ marginal ÏÏ (105 halo.M

_
)

Angular momentum.ÈThe growth of a clump by accretion
and merging is very sensitive to the amount of angular
momentum initially imparted to the DM halo. Lower spin
halos acquire denser central conÐgurations, which favor the
frequent merging of clumps. Clump masses can then
become very large (up to a few times 104 M

_
).

Collapse redshift.ÈThe efficiency of accretion and
merging is also increased in runs with higher collapse red-
shifts, which is again a direct consequence of the enhanced
overall density. As a result, clump masses tend to be larger
at higher redshift.

Baryon fraction.ÈIn the simulation with a larger fraction
of baryons relative to the DM, runaway collapse is already
triggered during the initial free-fall collapse, and resulting
clump masses are systematically higher.

Recently, ABN2000 have used the adaptive mesh reÐne-
ment (AMR) method to study the formation of the Ðrst
stars. These authors start their calculation with cosmo-
logical initial conditions, resulting in the most realistic
treatment of the problem to date. Since they have presented
only one case, however, it is not easy to ascertain the
robustness of their result, and this is the speciÐc advantage
of our exploratory approach. We agree on the existence of
characteristic values for the density and temperature of the
primordial gas, deriving from the microphysics of H2cooling. ABN2000 give an upper limit for the Ðnal mass of a
Population III star of 200 whereas the distribution ofM

_
,

clump masses in our work suggests that somewhat higher
masses, perhaps up to 1000 are possible. ABN2000M

_
,

have criticized our earlier work (Bromm et al. 1999) in that
the rather smooth gaseous disk found in that study is
unrealistic and an artifact of the assumed top-hat initial
conditions. Most of the cases presented here, however, do
not yield such a regular disk morphology, and result in very
irregular conÐgurations that are dominated by Ðlaments
and knots. Furthermore, our run H, corresponding to a less

massive halo is in good overall agreement(Mtot\ 105 M
_
),

with the simulation of ABN2000 as to the morphology and
the fact that only one clump forms in the center of the DM
halo.

Although one has a reasonably strong case in arguing
that all the relevant physics is in hand to follow the collapse
of the primordial gas up to the formation of the Ðrst high-
density region, this fortunate circumstance gives way to
growing uncertainty afterward. Two of the most tantalizing
questions are the following. How e†ective is the energy
output from the protostellar core in shutting o† accretion from
a very massive, dust-free envelope? On this question hinges
the ultimate mass scale of the Ðrst stars, and it is at present
far from being answered. In Paper II, however, we will
further address the question of the upper mass limit of a
Population III star. This upper mass limit is important for
testing the idea that Population III stars might be the pre-
cursors of black holes of mass D103 intermediateM

_
,

between stellar and supermassive ones (e.g., Madau & Rees
2001). W hat is the IMF of Population III stars? In our
simulations, we have seen how the mass spectrum of clumps
is built up through the complex interplay of merging and
accretion, and that the resulting mass spectrum is very Ñat
compared to the Salpeter IMF. It is difficult to tell,
however, how this result relates to the stellar IMF, since
again we are hampered by our neglect of any negative feed-
back e†ects, which are almost certain to play an important
role in determining the IMF. Both questions highlight the
importance of feedback e†ects for a deeper understanding
of the star formation process.

We are grateful to A. Ferrara, A. Loeb, M. Norman, and
M. Rees for comments and stimulating discussions. We
would like to thank Z. Haiman and A. Loeb for providing
us with their chemical reaction rates and L. Hernquist for
making available to us a version of TREESPH. Support
from the NASA ATP grant NAG 5-7074 is gratefully
acknowledged.

APPENDIX A

A. N-BODY SOLVER

In the following, we brieÑy discuss the basic ideas of solving the gravitational N-body problem and refer the reader to
Hernquist & Katz (1989, hereafter HK89 henceforth), Aarseth (1994), and Barnes (1998) for further details. In the context of
TREESPH, the treatment of self-gravity is almost identical for the dark matter and the gas, since both components are
represented by particles which constitute a Monte Carlo sampling of the underlying Ñuids. Let us Ðrst turn to the dark matter
and describe the minor modiÐcations for the gas at the end of this section.

Since particle methods are Lagrangian by design, mass is conserved automatically, thus rendering the equation of contin-
uity superÑuous. The equation of motion for DM particle i simply reads

d¿
i

dt
\ [(+')

i
. (A1)

The gravitational potential is given by the standard solution to PoissonÏ s equation :

'
i
\ [G

P o(r)
o r [ r

i
o
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If one now were to assume the case of true point masses, the density could be written as

o(r) \ ;
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m
j
d(r [ r

j
) , (A3)
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with d(r) being the Dirac delta-function. Inserting equation (A3) into equation (A2), and applying the gradient operator, yields
the familiar result for the gravitational acceleration of particle i :

[(+')
i
\ G;

jEi
m

j
r
j
[ r

i
o r

j
[ r

i
o3 . (A4)

This straightforward procedure has two crucial shortcomings which we now discuss in turn, together with the adopted
remedies.

First, there is the problem of discreteness on very small scales. Close encounters of particles lead to collisional two-body
relaxation, which is clearly undesirable in modeling a smooth Ñuid. Therefore, gravitational forces have to be softened on
scales close to the interparticle distance. In TREESPH, this is accomplished by replacing the singular Dirac delta-function
with the spherical spline kernel W , used in the SPH formalism (see Appendix B) :

o(r) \ ;
j

m
j
W (r [ r

j
; v) . (A5)

The result of inserting this Ansatz into equation (A2) is given by HK89. Because of its compact nature (W (r) \ 0 for r [ 2v),
the use of this kernel reproduces the Kepler-potential exactly for r [ 2v. Each particle has its own softening length, which isv

i
,

adjusted such that there is a constant number of neighbors, in a softening volume: where is the localN
s
, N

s
^ n

i
(2v

i
)3, n

jparticle density. In our simulations, we have set N
s
\ 16.

The second problem concerns the computational expense of determining the gravitational forces, which scales as O(N2) for
the direct summation in equation (A4). An ingenious way to overcome this prohibitive cost has been developed by Barnes &
Hut (1986). Their method organizes the particles into a recursive tree structure, such that individual particles correspond to
the leaves of the tree, neighboring particles in space to leaves on the same branch, and the system as a whole to the root of the
tree. Each node of this tree represents a cubical cell in real space. The leaves correspond to the smallest cells, containing only
one particle, higher level branching points to larger cells, containing groups of particles, and the root to the overall system
box, including all the particles. This procedure is completely adaptive, and can accommodate arbitrary geometries. To Ðnally
calculate the gravitational force on a given particle, the tree is traversed from the root down. For each node (cell) of size s and
distance d to the particle, an accuracy criterion is evaluated :

s
d

\ h , (A6)

where the parameter h determines the desired precision, and is chosen to be h \ 0.8 in our simulations. If this criterion is
fulÐlled, all the particles in the given cell are treated as a single group whose gravitational inÑuence is approximately described
by performing a multipole expansion of the respective potential, in our case up to quadrupole order. If, on the other hand, the
accuracy criterion is not met, the tree is walked down to the next level of reÐnement. This procedure is repeated recursively,
until either the criterion in equation (A6) is fulÐlled or the tree descent has reached the level of individual particles (the leaves).
In consequence, forces are calculated accurately but expensively only for nearby particles, and approximately but fast for
more remote ones. Both the construction of the tree and the subsequent descent of it have a computational cost of only
O(N log N), making simulations with larger numbers of particles possible.

The equation of motion is solved explicitly using a standard, time-centered leapfrog integrator. The position and velocity of
particle i are updated according to
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Here, superscripts denote time steps. Velocities are stored at times that are o†set by one-half a time step from the positions
and accelerations. This (leapfrog) characteristic guarantees the second-order accuracy of the algorithm. Each particle is
allowed to have its individual time step, which is chosen to fulÐll the criterion*t

i
,

*t
i
¹ etol

E
i

a
i
v
i
. (A8)

is the total energy of particle i, and the tolerance parameter, which we have set to beE
i

etol etol \ 0.1.
The gaseous component is treated in exactly the same way, with the exception that in this case the gravitational softening

length is always equal to the SPH smoothing length (see below). In Figure 1 we demonstrate that the code does nicely
reproduce the analytical top-hat solution, with total energy and angular momentum being conserved to better than 5%.

APPENDIX B

B. THE SPH METHOD

We brieÑy describe the basic principles of the smoothed particle hydrodynamics (SPH) method, and give an intuitive
motivation for the resulting equations. Further details are given in, e.g., Benz (1990), Monaghan (1992), (1998), andMu� ller
HK89.
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The Ñuid is sampled by discrete particles, representing Ñuid elements. To model a continuous medium, the mass of a particle
is smoothed according to
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j
; h) . (B1)

The smoothing kernel, W , is strongly peaked at and normalized to give / W d3r \ 1, where integration is over all space.r \ r
j
,

TREESPH implements the spherically symmetric spline kernel
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The smoothing length, h, describes the spatial extent of a given SPH particle. TREESPH assigns variable smoothing lengths
to each particle, thereby introducing an adaptive spatial resolution, such that there is a (roughly) constant number of particles,

within the smoothing volume. We have adopted in our work. Now, one can easily Ðnd smoothed estimatesNneigh, Nneigh\ 32
for any variable A(r). Starting with the interpolation formula

A(r)\
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and assigning an e†ective volume to each particle j via one can approximate the integral asm
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where and The crucial advantage of the SPH method lies in the fact that it does not need a grid toA
j
\A(r

j
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j
).

evaluate spatial derivatives. To illustrate this point, let us apply the gradient operator to equation (B4) :
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Consequently, taking spatial derivatives in SPH only involves the analytical di†erentiation of the kernel function, which is
speciÐcally chosen to admit this.

Next, we present the SPH equations as used in our numerical work. We give heuristic arguments for their appearance and
refer to the cited literature for the formal derivations. The equation of continuity is again automatically fulÐlled owing to the
Lagrangian nature of the SPH method. The equation of motion for particle i reads
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To Ðnd a smoothed estimate for the pressure gradient, one could naively write, using equation (B5) :
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This form, however, does not conserve linear and angular momentum. To satisfy NewtonÏ s third law, one wants an
expression, which is symmetric with respect to any given pair of particles, i and j. From among the options given in
TREESPH, we have chosen to work with
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The symbol denotes derivation with respect to and The pressure is given by the ideal gas law+
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k is the (dimensionless) mean molecular weight, c the ratio of speciÐc heats, and the speciÐc internal energy (in ergs g~1).u
iFor an almost neutral gas consisting of helium and atomic hydrogen, one has k ^ 1.2, and c\ 5/3. The corresponding

symmetric estimate for the viscous acceleration, can be written asash\ [+Qeff/o,
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Finding a symmetric estimate for relies on the following conceptual steps. First, let us specify the pseudoviscous%
ij
, Qeff/o2,

pressure, arising from the presence of an artiÐcial viscosity. The latter has two contributions : A bulkQeff \ [oleff $ Æ ¿,
viscosity,

leff \ alc
s
, (B10)

and a von Neumann-Richtmyer viscosity,

leff \ [bl2$ Æ ¿ . (B11)

Here, l is a characteristic length, the sound speed, and a, b are parameters of order unity. The resulting pseudo-viscousc
spressure can then be written as

Qeff \ [aoc
s
l$ Æ ¿] bol2($ Æ ¿)2 . (B12)

A symmetric estimate for is given byl$ Æ ¿

k
ij
\

4
5
6

0
0

h
ij
¿
ij

Æ r
ij

r
ij
2 ] 0.01h

ij
2

if ¿
ij

Æ r
i
Æ r

ij
¹ 0 ,

0 otherwise .
(B13)

where and Assembling these ingredients, one Ðnally has¿
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where and In our work, we use a \ 1 and b \ 2. We have experimented with alternativeo
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s,j)/2.

prescriptions for the artiÐcial viscosity (as given by HK89), and Ðnd that our results do not depend on this choice. Certain
morphological features such as pronounced rings, however, could be due to an unphysical viscosity that can arise in
simulations with a relatively small number of particles. The equation of motion is now fully speciÐed, and is solved with the
leapfrog integrator. The stability of the integration is enforced by the classic Courant condition :
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HK89 give a version of the criterion that also takes into account the artiÐcial viscosity. The appropriate time step for a given
SPH particle is the minimum of the Courant time step and the one given by the energy criterion, equation (A8).

Along similar lines, HK89 write the smoothed form of the thermal energy equation, equation (5), as
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In the presence of radiative cooling and heating, this equation cannot be solved explicitly, since the corresponding radiative
timescales are typically much shorter than the dynamical time that sets the time step for the equation of motion. The thermal
energy equation is therefore integrated implicitly, using the standard second-order trapezoidal rule (see HK89 for further
details).
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