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ABSTRACT
We examine the distribution of masses of black holes in transient low-mass X-ray binary systems. A

Bayesian analysis suggests that it is probable that six of the seven systems with measured mass functions
have black hole masses clustered near seven solar masses. There appears to be a signiÐcant gap between
the masses of these systems and those of the observed neutron stars. The remaining source, V404 Cyg,
has a mass signiÐcantly larger than the others, and our analysis suggests that it is probably drawn from
a di†erent distribution. Selection e†ects do not appear to play a role in producing the observed mass
distribution, which may be explained by currently unknown details of the supernova explosions and of
binary evolution prior to the supernova.
Subject headings : binaries : spectroscopic È black hole physics È stars : individual (V404 Cyg) È

stars : neutron È supernovae : general È X-rays : stars

1. INTRODUCTION

The strongest case for the existence of black holes in
nature is provided by a subclass of X-ray transients. The
strong episodic X-ray emission from these binary stars
demonstrates the existence of an accreting compact object.
Radial velocity measurements of the companion star can be
used to determine the mass function, which is a strict lower
limit to the mass of the compact accretor. In a number of
cases, this lower limit is above the upper limit of neutron
star stability of 3 & RemillardM

_
(McClintock 1986 ;

Charles, & Naylor McClintock,Casares, 1992 ; Remillard,
& Bailyn et al. Matheson, &1992 ; Bailyn 1995 ; Filippenko,
Barth et al. In these cases the1995a ; Remillard 1996).
compact object must be a black hole.

Studies of the supernovae explosions that presumably
give rise to these black holes have now progressed to the
point where meaningful statements can begin to be made
about the expected mass distribution of the black holes.
Studies of galactic chemical evolution strongly suggest that
stars with initial masses above B30 may ““ swallow ÏÏM

_many of their heavy elements during (or shortly after) the
supernova event and may therefore form relatively massive
black holes Woosley, & Weaver(Maeder 1992 ; Timmes,

Detailed models of the supernovae explosions them-1995).
selves (e.g., Woosley, & Weaver which applyTimmes, 1996),
a Ðxed amount of kinetic energy to the outer layers of the
star independent of the presupernova mass, also result in
signiÐcant post-SN accretion of material for precursor stars
with M º 30 However, there remain many uncer-M

_
.

tainties in the relation between the initial mass of the star
and the mass of the compact remnant left behind by the
supernova (see Timmes et al. The amount of1995, 1996).
kinetic energy available, how it is transferred to the ejected
material, details of the presupernova evolution of massive

1 National Young Investigator.

stars (especially relating to convection and mass loss), and
the possible inÑuence of a binary companion are all poorly
understood. In this paper, therefore, we take an empirical
approachÈwe attempt to use the available observational
evidence for stellar black holes with low-mass companions
(high-mass systems such as Cyg X-1 presumably having
followed a di†erent evolutionary path) and see what con-
straints can be made upon the underlying distribution of
black hole masses.

The mass of the black hole primary is related to them1observed mass function f (m) in the following way :

m1\ f (m)(1] q)2
sin3 i

. (1)

In order to determine the mass of the black hole, one needs
to know the mass ratio q and the inclination i of the binary
system. These parameters can be measured, although some-
what more indirectly than the mass function, as discussed in

below. also presents a compilation of the data° 2 Section 2
obtained on those low-mass X-ray transients with measured
mass functions that do not display X-ray bursts (generally
considered to be a neutron star signature). These systems
are sometimes called ““ X-ray novae ÏÏ due to their large
changes in brightness from quiescence to outbursts,
although the physical mechanism responsible for causing
the outburst is thought to resemble dwarf novae, rather
than classical novae (e.g., Chen, & LivioCannizzo, 1995 ;

& Charles In we use these data toOÏDonoghue 1996). ° 3,
examine the distribution of black hole masses following the
Bayesian analysis employed by in his study ofFinn (1994)
neutron star masses. Our results suggest that V404 Cyg is
not drawn from the same population as the other six
sources, and that the group of six have black hole masses
that cluster around 7 with a signiÐcant gap betweenM

_their distribution and that of the neutron stars. In we° 4
speculate about the implications of our results.
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2. CONSTRAINTS ON BLACK HOLE MASSES

As can be seen in the mass ratio and inclina-equation (1),
tion of the binary system are required in addition to the
mass function to determine the mass of the black hole
primary. These quantities have been measured in a variety
of ways, which are discussed in °° and2.1 2.2. Section 2.3
evaluates the currently available data on each of the seven
systems being considered.

2.1. Determining the Mass Ratio
The most conceptually straightforward way to determine

the mass ratio of a binary system is by measuring a velocity
curve for both components of the binary system. Therefore
several attempts have been made to construct an orbital
velocity curve for the emission lines emanating from the
accretion disks in black hole binaries (e.g., et al.Orosz

Such a velocity curve should track the motion of the1994).
primary ; the ratio of its amplitude to that of the velocity
curve of the absorption spectrum of the secondary deter-
mines the mass ratio. However, the emission line velocity
curve is observed to lag behind its expected phase, and thus
cannot reÑect the true motion of the primary et al.(Orosz

Thus this method, while conceptually simple, is1994).
suspect in practice. Curiously, despite the phase lag, the
results obtained by naively applying this method agree with
those of other methods.

A more reliable method for determining the mass ratio is
to observe the rotational broadening of the lines from the
secondary star. The secondary Ðlls its Roche lobe, and the
ratio of its e†ective radius to the orbital semimajor axis is
therefore determined by the mass ratio. By comparing the
projected orbital velocity of the secondary (as determined
by the velocity curve) and the projected rotational velocity
observed from the line broadening, the mass ratio can be
determined. This procedure is thought to be reliable, but the
observations require relatively high dispersion and signal to
noise, and are thus not feasible for the faintest systems.

The secondaries of these system are generally under-
massive for their spectral types when compared to typical
main-sequence stars. Presumably this is because they are
not in thermal equilibrium, due to the ongoing mass loss. In
cases where the rotational broadening cannot be observed,
crude limits on the mass of the secondary can be set by
assuming that the secondary is somewhat less massive than
a main-sequence star of similar spectral type.

2.2. Determining the Inclination
The orbital inclination can in principle be determined by

observing the ellipsoidal variability of the Roche lobe Ðlling
secondary. This has been done with high precision in the
case of GRO J1655[40 & Bailyn In this case,(Orosz 1997).
the shapes of the light curves were sufficiently accurately

determined that the mass ratio could also be determined
from the models. However, in other cases, the light curves
are modiÐed by several e†ects, which can only be modeled
approximately.

There is a contribution of light from the disk, which is
approximately constant throughout the orbit, and thus
decreases the ellipsoidal amplitude for a given inclination.
The disk fraction can be determined by comparing the
depths of the absorption features (produced by the
secondary) to those of single stars, but the disk can vary
from observation to observation, and also as a function of
phase, so the correct disk fraction to apply is not in general
well determined. Another source of distortion for the light
curves may be star spots on the rapidly rotating second-
aries, which may be particularly important for late spectral
types.

It is often assumed that light curves in the IR will be free
of disk contamination, so ellipsoidal modeling of IR light
curves is a favored method of determining the inclination.
However, it should be noted that in GRO J1655[40, the
disk is actually redder than the secondary star in quies-
cence, so the assumption that the IR is relatively free of disk
contamination may not be reliable.

2.3. SpeciÐc Systems
Here we brieÑy describe the data available on each of the

seven systems. The results are summarized in and inTable 1
which shows the mass limits derived by consider-Figure 1,

ing the extremes of the errors and ranges listed in Table 1.
The systems are listed in order of decreasing mass function.

GS 2023]34 \ Nova Cyg 1938/1989 \ V 404 Cyg.ÈThis
source has the highest measured mass function of any
compact object & Charles and is therefore(Casares 1994)
the strongest case for a black hole. & CharlesCasares (1994)
also derive the mass ratio from rotational broadening, and

et al. conÐrm the inclination limits foundPavlenko (1996)
by et al. from ellipsoidal modeling of theShahbaz (1994b)
IR light curve.

GS 2000]25 \ Nova Vul 1988.ÈThe best values for the
mass function and the mass ratio from rotational broaden-
ing were reported by Horne, & FilippenkoHarlaftis, (1996).
The limits on the inclination are derived from ellipsoidal
modeling of the IR light curve by et al.Beekman (1996).

H1705[25 \ Nova Oph 1977.ÈThe best value for the
mass function of this system is given by et al.Filippenko

The only reliable constraint on the mass of the sec-(1997).
ondary is provided by its spectral type (K7) : since the sec-
ondaries in these systems are generally undermassive, we
assume a range of secondary masses 0.3 ¹m2/M_

¹ 0.6.
Given the other measured parameters, we derive the mass
ratio quoted in The range of inclinations is fromTable 1.
ellipsoidal modeling of the optical light curve by Remillard
et al. (1996).

TABLE 1

OBSERVED CONSTRAINTS ON BLACK HOLE MASS

Object f (m) q i

GS 2023]34 . . . . . . . . . . . 6.07^ 0.05 0.060 ^ 0.005 52 ¹ i ¹ 60
GS 2000]25 . . . . . . . . . . . 5.01^ 0.12 0.042 ^ 0.012 43 ¹ i ¹ 74
H1705[25 . . . . . . . . . . . . . . 4.65^ 0.21 0.018 ^ 0.016 60 ¹ i ¹ 80
GRO J1655[40 . . . . . . . . 3.24^ 0.09 0.333 ^ 0.010 67 ¹ i ¹ 71
GS 1124[68 . . . . . . . . . . . 3.01^ 0.15 0.13 ^ 0.04 54 ¹ i ¹ 65
A0620[00 . . . . . . . . . . . . . . 2.91^ 0.08 0.067 ^ 0.010 31 ¹ i ¹ 70.5
GRO J0422]32 . . . . . . . . 1.21^ 0.06 0.049 ^ 0.020 28 ¹ i ¹ 45
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FIG. 1.ÈMass ranges for the compact primaries of the seven sources in
our sample. Note that it is incorrect to think of these ranges as representing
some number of ““ sigma ÏÏ about a mean value, due to the strongly non-
Gaussian nature of the probability distribution.

GRO J1655[40 \ Nova Sco 1994.ÈThis source displays
remarkably precise ellipsoidal variations in quiescence,
which have allowed us to determine the mass ratio and
inclination of the system to unprecedented precision (Orosz
& Bailyn The excellent Ðts are presumably due to the1997).
relatively early spectral type of the secondary (F5), which
decreases the e†ects of starspots, and the very small contri-
bution from the disk (¹5%). This is the only case among
these sources in which the shape of the ellipsoidal light
curve is sufficiently well determined to provide a strong
constraint on the mass ratio. The formal error on the incli-
nation quoted by Orosz & Bailyn is only but we use^0¡.1,
a larger range here that encompasses several other local
minima in s2, even though these minima are formally
several p less signiÐcant than the overall best Ðt at i \ 69¡.50
^ 0¡.08.

GS 1124[68 \ Nova Mus 1991.ÈThe most recent
results for the mass function and inclination of this source
are given by et al. The mass ratio is deter-Orosz (1996).
mined from the observed rotational velocity by etCasares
al. and agrees with the results from the emission line(1997)
velocity curve given by et al.Orosz (1994).

A0620[00 \ Nova Mon 1975\ V 616 Mon.ÈThis
source was the Ðrst of its class for which a mass function
was determined & Remillard The(McClintock 1986).
source has been extensively studied over the past decade by
many authors. However, there remain sharp disagreements
over the inclination. Ellipsoidal variability measurements in
the IR give inclinations in the range of 31¡ ¹ i ¹ 54¡

Naylor, & Charles while light curves in(Shahbaz, 1994a),
the optical and rotational velocity measurements yield
much higher inclinations (e.g., et al. RatherHaswell 1993).
than attempt to resolve this discrepancy here, we simply
adopt the entire range of reported results. This large range
of inclinations yields a correspondingly large range in
values for the primary mass. In contrast, all of the various
measurements of the mass ratio yield consistent results.

GRO J0422]32 \ Nova Per 1992.ÈThis is the only
source included here with a mass function signiÐcantly
less than 3 Matheson, & HoM

_
(Filippenko, 1995b).

However, it displayed no X-ray bursts, and there are a
number of indications that the inclination is relatively low
and that therefore the primary mass is in the black hole
range. However, attempts to determine the inclination by
studying ellipsoidal variations have been ambiguous, prob-
ably because the e†ects of starspots are particularly acute
for this relatively late type secondary (M0). & BailynOrosz

report an inclination of B45¡, but this conclusion(1995)
was undermined by subsequent data that revealed a smaller
ellipsoidal amplitude when the source was 0.2 mag fainter,
which goes in the wrong direction for a change in disk
contamination. Since it is clear that starspots play a major
role in this source, we adopt broad inclination limits that
simply avoid eclipses (which are not observed) and provide
enough ellipsoidal variability to produce the smallest
observed ellipsoidal modulation in the complete absence of
disk contamination.

3. APPLICATION OF BAYESIAN STATISTICS

shows the ranges over which the primary massesFigure 1
of the seven sources can vary, given the observational con-
straints. It is important to note that these mass limits
cannot be interpreted as coming from Gaussian distribu-
tions that are characterized by some ““ sigma.ÏÏ The heter-
ogeneous nature of the observed quantities and the
nonlinear ways they enter into the calculation of the
primary mass mean that the probability for a black hole to
be at a given point between the plotted limits varies in a
strongly non-Gaussian manner. Therefore, to learn more
about the black hole masses and, in particular, to see what
parent mass distribution they could have been drawn from,
we have performed a Bayesian analysis similar to that used
by to study the distribution of neutron starFinn (1994)
masses in binary systems.

Bayesian analysis is a powerful tool that allows one to
quantify the consistency of a particular model, in this case a
parent distribution of black hole masses, with a set of data
taking into account any ““ prior ÏÏ knowledge (biases) we
might have concerning the systems being studied along with
the observational uncertainties involved in obtaining the
data. In brief (see, e.g., the Bayesian approachLoredo 1990),
does not assign error bars to data but rather starts with a
model that is supposed to describe the system that produced
the data. It then asks what is the likelihood for that
particular model to be relevant or correct in the Ðrst place
(based on any prior knowledge or biases we may already
have concerning the system), and Ðnally it asks what is the
likelihood the data points could have been generated by the
model given what we understand about the measurement
process that produced the data points. Although the
approach of starting with a well-speciÐed model instead of
the data can be computationally cumbersome, it makes
maximum use of the available information and often allows
one to make signiÐcant, quantitative statements about
model-data consistency even when the data are sparse, as is
the case here. But it should be remembered that conclusions
based on a Bayesian analysis always depend critically on
the assumed models and prior knowledge (biases).

3.1. Method
To start our Bayesian analysis, we must put down the

assumptions and models for our particular problem. Since
we have only seven black hole systems for study, we do not
expect to be able to make very detailed statements about
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any particular parent distribution for black hole masses.
Accordingly, we shall only consider a very simple model
where the masses of the black hole primaries are uniformly
distributed between some lower and upper mass limits, m

land respectively. Our set of prior knowledge, which wem
u
,

denote I, includes the available information (discussed
above) for the inclinations and mass ratios of individual
systems, the assumption that our model mass distribution is
correct, broad bounds on the possible values of andm

l
m

u
,

and the assumption that all values of and are a priorim
l

m
uequally probable within those bounds, provided m

l
¹m

u
.

Given this prior knowledge, our goal is then to determine
the probability density function I), which tellsP(m

l
, m

u
o f

n
,

us how likely it is for the mass distribution speciÐed by a
particular choice of and to be the correct one givenm

l
m

uthe set of observed mass functions (our data). We willf
nexpress our results in terms of probability contours in the

(m
l
, m

u
)-plane.

BayesÏs theorem, applied to this problem, states that

P(m
l
, m

u
o M f

n
N, I) \ P(m

l
, m

u
oI)P(M f

n
N om

l
, m

u
, I)

P(M f
n
N oI)

. (2)

The quantities on the right-hand side of areequation (2)
interpreted in the following manner. The Ðrst term of the
numerator is the probability that a given com-P(m

l
, m

u
oI)

bination of and is allowed by our prior information.m
l

m
uWe will take this probability to be uniform for andm

l
¹ m

u0.5 and zero otherwise. This massM
_

¹ m
l
, m

u
¹ 30 M

_
,

range was chosen to encompass the entire reasonable range
of black hole masses in transient systems. Since P must
integrate to unity over all and we Ðnd thatm

l
m

u
,

P(m
l
, m

u
oI) \ 2

(30 [ 0.5)2 (3)

within the bounds given above, where we have chosen to
measure the in units of solar masses.(m

l
, m

u
)-plane

The second term in the numerator, I), isP(M f
n
N om

l
, m

u
,

the probability of obtaining a speciÐc set of observations
given our prior assumptions and speciÐc values ofM f

n
N m

land Since the observations of the individual black holesm
u
.

are independent of each other, we can factorize P(M f
n
N om

l
,

I) as follows :m
u
,

P(M f
n
N om

l
, m

u
, I) \<

i
P( f

i
om

l
, m

u
, I) , (4)

where are the mass functions obtained for the individ-f
i/1,nual sources. The product rule of probability yields

P( f
i
om

l
, m

u
, I)\

P
df ü

i
P( f

i
o f ü

i
, I)P( f ü

i
om

l
, m

u
, I) , (5)

where is the true value of the mass function and is thef ü
i

f
iobserved value. We will assume that the relationship

between the true and observed values of the mass function is
given by a Gaussian probability distribution with p equal to
the error in quoted by the observers. Thusf

i

P( f
i
o f ü

i
, I) \ exp

C
[ 1

2
A f

i
[ f ü

i
p
B2DN

2np . (6)

The function I) is the likelihood for the trueP( f ü
i
om

l
, m

u
,

value of the mass function to be given I and particularf
ivalues of and Since the black hole mass ism

l
m

u
.

m
i
\ f ü

i
(1 ] q)2/sin3 i , (7)

we can change variables and write

P( f ü
i
om

l
, m

u
, I) \

PP
di dqP(m

i
)P(i)P(q)

(1 ] q)2
sin3 i

, (8)

where is uniform for and zero otherwise,P(m
i
) m

l
¹m

i
¹ m

uP(q) is a Gaussian given by the mean value and error
quoted in and P(i) P sin i [i.e., P(cos i) is uniform]Table 1,
between the bounds given in and zero elsewhere,Table 1
normalized to yield unity when integrated over all angles. If
we compute for each value of q and i usingm

i
equation (7),

the integral in can be computed using standardequation (8)
methods for any given value of and these results can bef ü

i
,

used to compute I) using equations andP(M f
n
N om

l
, m

u
, (6)

(4).
Finally, the remaining term in the right-hand side of

is the ““ prior predictiveequation (2), P(M f
n
N oI),

probability ÏÏ or ““ global likelihood ÏÏ of the model under
consideration. This term represents the probability that the
observed set of can be obtained given our set of priorM f

n
N

knowledge and assumptions, I. For our problem, this rep-
resents the probability that the black hole mass distribution
for our seven systems can be correctly modeled as a uniform
distribution between two mass limits, and con-m

l
m

u
,

strained to lie between 0.5 and 30 In most Bayes-M
_

M
_

.
ian analyses, this term is to be regarded as a normalization
constant. The left-hand side of must by deÐni-equation (1)
tion have a value of unity when it is integrated over all
possible values of and and this requirement Ðxesm

l
m

u
,

if the other quantities on the right-hand side ofP(M f
n
N oI)

are known, i.e.,equation (2)

P(M f
n
N oI)\

P
0.5

30 P
0.5

30
dm

u
dm

l
P(M f

n
N om

l
, m

u
, I)

] P(m
l
, m

u
oI) . (9)

The global likelihood of a model is a very useful quantity
as it allows one to objectively compare classes of models.
Larger values of the global likelihood imply that the under-
lying model is more likely to be correct. SpeciÐcally, the
ratio of the global likelihood of two models can be shown to
constitute an ““ odds ratio,ÏÏ which compares one model to
the other To see this result, let us assume(Loredo 1990).
that we add an extra piece of information, I@ to our prior
knowledge. This new information states that we assume
that our data could be explained by some number N of
possible models and that only one of these models, we donÏt
know which, is actually the right one. Then using BayesÏs
theorem, we can write

P(M
i
o M f

n
N, I, I@) \ P(M

i
oI, I@)

P(M f
n
N oM

i
, I, I@)

P(M f
n
N oI, I@)

,

(10)

where refers to the ith of the models we are consideringM
iand I@) is our prior probability for that model toP(M
i
oI,

be correct. The expression I, I@) is the prob-P(M f
n
N oM

i
,

ability that we reproduce the data given (1) our prior set of
knowledge I, (2) that a set of possible models I@ exists, and
(3) that of these models, is the correct one. Since weM

iassumed that only one model could be correct, clearly this
probability is independent of the existence of any alterna-
tive models, Hence, this probability is the same asM

iEj
.

I), the probability that we can reproduce ourP(M f
n
N oM

i
,
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data using model constrained by our original set of priorM
iknowledge, i.e., it is the global likelihood for model M

i(calculated in the manner described above by integrating
over all the possible parameters of the model). Knowing this
we can now calculate the oddÏs ratio, favoring one of theO

ij
,

models, over another,M
i
, M

j
,

O
ij
\ P(M

i
oI@)

P(M
j
oI@)

P(M f
n
N oM

i
, I)

P(M f
n
N oM

j
, I)

. (11)

In other words, the probability favoring a model as a whole
is proportional to its prior probability times its global likeli-
hood. In what follows, we shall assume that we have no
prior knowledge of which is correct and set all theM

iequal. Thus the odds favoring one model overP(M
i
oI@)

another are simply the ratio of the global likelihoods.
Our overall procedure used to compute all the required

probabilities is as follows. We take a grid of values of andm
lin the range 0.5 For each pairm

u
M

_
¹ m

l
¹m

u
¹ 30 M

_
.

of values, we compute I) for each(m
l
, m

u
) P( f

i
om

l
, m

u
,

source by integration as described above. The results for
each source are then multiplied together to get P(M f

n
N om

l
,

I) for each grid point in We next summ
u
, (m

l
, m

u
)-space.

these values over and and determine a value for them
l

m
u
,

global likelihood such that the sum ofP(M f
n
N oI) P(m

l
,

I) is unity, as required.m
u
o M f

n
N,

3.2. Results
The results of applying this method to the full data set of

seven objects is shown in The contour enclosingFigure 2.
95% of the probability covers a region with 11 ¹m

u
/M

_
¹

17, and The maximum likelihood point is atm
l
/M

_
¹ 7.

andm
l
\ 5.5 M

_
m

u
\ 11.7 M

_
.

A more intriguing result is obtained by modifying one of
the assumptions implicit in I. Instead of assuming all the
black hole masses are drawn from the same parent mass
distribution, we assume that the masses of only six of the
objects are drawn from this distribution and that the mass
of the seventh comes from a di†erent one. For simplicity, we
will assume that the mass of the seventh is in fact known to
have some value consistent with the data so that the prob-
ability equals unity and that object e†ectivelyP( f7 oI)
drops out of the computation. Assuming that each system
in turn has a known mass, we compute a corresponding
global likelihood for the resulting model. (This is the same
likelihood as before except we now consider only the six
remaining objects.) The surprising set of likelihood values
we obtained is shown in By comparing these globalTable 2.
likelihood values to each other and to the one we obtained
above, we can ascertain whether a particular model is
““ favored ÏÏ relative to the others. In most cases, removing

FIG. 2.ÈProbability contours in the Inner contour con-(m
l
, m

u
)-plane.

tains 50% of the probability ; outer contour contains 95%. Bottom panel
does not include GS 2023]34.

one object made little di†erence to either the global likeli-
hood or the shape of the contours for the model probability
distribution (as a function of and However, when GSm

l
m

u
).

2023]34 (V404 Cyg) was removed, the change was dra-
matic (see Fig. 3).

When sources other than V404 Cyg were left out, the
model global likelihoods rose by only factors of a few. (They

TABLE 2

RESULTS OF BAYESIAN ANALYSIS

Sources Max Likely m
u

Max Likely m
l

Range m
u

Range m
l

Relative Likelihood

All . . . . . . . . . . . . . . . . . . . . . . . . . . 11.8 5.0 10.5È18.0 0.5È6.9 1
No GRO J0422]32 . . . . . . 11.9 5.0 10.5È19.4 0.5È6.9 2.0
No A0620[00 . . . . . . . . . . . . 11.9 5.1 10.5È18.5 0.5È6.9 5.6
No GS 1124[68 . . . . . . . . . 12.1 5.0 10.6È19.2 0.5È7.1 5.3
No GRO J1655[40 . . . . . . 12.2 4.8 10.5È19.5 0.5È6.8 4.2
No H1705[25 . . . . . . . . . . . . 12.1 5.2 10.5È19.0 0.5È7.2 8.8
No GS 2000]25 . . . . . . . . . 11.9 4.8 10.5È18.6 0.5È6.9 6.3
No GS 2023]34 . . . . . . . . . 6.9 6.8 6.3È11.0 2.6È7.5 134.0
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FIG. 3.ÈCumulative probability that is less than a givenm
u
[ m

lvalue. Top panel includes GS 2023]34 ; bottom panel does not. Note that
in the absence of GS 2023]34, a much narrower range of masses is
required.

rose presumably because our assumption that could bem
uas high as 30 was wrongÈwith each additional sourceM

_this assumption becomes less plausible.) By contrast, when
V404 Cyg was removed, the global likelihood of the model
rose by over 2 orders of magnitude. This strongly suggests
that V404 Cyg is indeed drawn from a di†erent distribution
than the other sources. It should be noted that V404 Cyg is
also unusual in having a longer orbit and more evolved
secondary than the other sources.

Looking at the probability contours when V404 Cyg is
left out, the maximum likelihood values of andm

l
m

ubecome much closer and Indeed,(m
l
\ 6.91 m

u
\ 6.97).

there is considerable probability that i.e., that them
l
\ m

u
,

distribution can be plausibly modeled by a single black hole
mass near 7 shows the probability that andM

_
. Figure 4 m

lare within some value of each other. This plot was gener-m
uated by integrating over the normalized probability dis-

tribution for all When all seven sources arem
u
[ m

l
¹ *m.

considered, the distribution cannot be narrower than 4 M
_wide (i.e., *mº 4 When V404 Cyg is not included,M

_
).

over 50% of the probability has *m¹ 2 This resultM
_

.
suggests that the possibility that many black holes have
masses in a small range near 7 should be seriouslyM

_considered.
Another e†ect of leaving out V404 Cyg is that the likely

values for become much higher. shows them
l

Figure 4
probability that is below some value. As can be seen,m

lthere is a 95% probability that and a 90% prob-m
l
[ 3 M

_

FIG. 4.ÈCumulative probability that is below a given value. Topm
lpanel includes GS 2023]34 ; bottom panel does not. Note that in the

absence of GS 2023]34, there is a more than 95% probability that m
l
[ 3

M
_

.

ability that Given the upper limit of ¹1.7m
l
[ 4 M

_
. M

_for the observed neutron star distribution this(Finn 1994),
result implies a considerable gap in the observed mass dis-
tribution of compact objects.

4. DISCUSSION

The mass distribution of stellar mass black holes can in
principle be predicted by models of the evolution and super-
nova explosions of massive stars. et al. seeTimmes (1996;
also & Timmes for example, Ðnd thatWoosley 1996),
compact remnants of supernovae become signiÐcantly more
massive than the presupernova iron core when the progeni-
torÏs initial mass exceeds 30 Above this mass, theM

_
.

kinetic energy of the explosion is insufficient to unbind the
entire mantle and envelope of the star, so some of the outer
regions fall back onto the core, increasing the mass of the
remnant. The reasonable assumption that the applied
kinetic energy is only weakly dependent on the progenitorÏs
initial mass results in a monotonic relation between the
mass that falls back onto the remnant and the progenitor
mass. For remnants that are dominated by fallback (i.e.,
initial mass º20 and remnant mass º3 this leadsM

_
M

_
)

to a monotonic dependence of remnant mass on progenitor
mass, in contrast to lower mass progenitors and remnants.
If the initial mass function is weighted toward lower mass
stars, as is almost certainly the case, the resulting mass
distribution of black holes with M º 3 should beM

_
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smooth and strongly biased toward masses at the lower end
of the range.

While a sample including only seven examples cannot
provide unambiguous statistical results, our work strongly
suggests that the expected distribution is not observed. As
discussed above, it is likely that one of the seven sources is
not drawn from the same distribution as the other six. These
six black holes may well be tightly clustered in mass near 7

although broader distributions are also possible.M
_

,
Finally, there is a signiÐcant gap between the lower mass
limit of this distribution and the upper limit of the observed
neutron star masses given by The expectedFinn (1994).
pileup of black holes with relatively low masses appears to
be ruled out. Thus, although the small number of sources
prevents us from drawing completely compelling conclu-
sions, the evidence against a monotonic distribution of
black holes biased toward lower masses is strong enough to
warrant serious consideration of the ways in which such a
distribution could be signiÐcantly modiÐed.

A possible caveat is that this last conclusion might arise
from observational selection e†ects. At present, however, we
cannot think of any that would prevent systems with black
hole masses near the neutron star upper limit from being
detected. These sources are easy to identifyÈin outburst
they are among the brightest objects in the X-ray sky. Also,
the clear observation of similar systems containing accret-
ing neutron stars strongly suggests that the mass of the
compact object is not critical in the identiÐcation of these
sources. Note that we have included all transient systems
with measured mass functions in our sample, except those
like Cen X-4 & Remillard that display(McClintock 1990)
type I X-ray bursts, which are convincing signatures of the
presence of a neutron star. In particular, we included GRO
J0422]32, which is often left o† lists of conÐrmed black
holes because its mass function is well below the limit of 3

generally taken to be the Ðrm upper limit for neutronM
_star stability. It is conceivable that some e†ect suppresses

the disk instability cycle over some mass range of the
primary star, thus preventing the transient behavior needed
to both identify the source in the Ðrst place, and then subse-
quently measure the mass function. Once again, however,
the existence of transient sources with neutron star pri-
maries and recurrence timescales similar to or smaller than
those of the black hole systems makes this solution implau-
sible.

The physical e†ects that might inÑuence the black hole
distribution can be divided into two classes : those that
involve the supernova explosion itself and those related to
the binary nature of the observed systems. Regarding the
supernova explosions, if the relation between the amount of
fall-back material to the mass of the precursor were close to
a step function, then one might imagine that if any signiÐ-
cant amount of material were to fall back, there would be
enough to bring the total remnant mass up to B7 InM

_
.

this case, even if the amount of fallback material increased
with increasing precursor mass after the initial step, one
would still expect a strongly peaked distribution due to the

steep expected mass function of massive stars. Unfor-
tunately, evolutionary calculations of very massive stars are
subject to a number of important uncertainties &(Woosley
Weaver particularly relating to mass loss rates, so this1995)
suggestion is hard to evaluate.

It may be that the observed distribution of black hole
masses is not a result of Type II supernova explosions in
general, but rather a consequence of the binary nature of the
observed systems. All of the orbital periods are sufficiently
small that considerable mass transfer must have occurred
prior to the supernova explosion. Since the precursor of the
supernova was almost certainly more massive than its com-
panion, it would have Ðlled its Roche lobe Ðrst, resulting in
dynamically unstable mass transfer. This in turn would
result in a common envelope conÐguration, leading to the
expulsion of much of the outer envelope of the more
massive star and a dramatic decrease in the orbital separa-
tion on a very short timescale. Such abrupt mass loss has
been shown to dramatically change the nature of the sub-
sequent supernova explosion Weingartner, &(Brown,
Wijers Langer, & Weaver However,1996 ; Woosley, 1995).
it is not clear how this set of circumstances could lead to a
narrow range of remnant masses, or to a gap, since the
e†ects of common envelope evolution are strongly depen-
dent on the initial binary separation, which presumably is
broadly distributed.

The mass of the black hole may also be inÑuenced by
mass accretion subsequent to the supernova event. If this
e†ect changed the mass of the primary signiÐcantly, one
would expect to see broadly distributed masses for the black
hole, since the system should have undergone varying
amounts of accretion after the formation of the compact
object. Such a broadened distribution cannot currently be
ruled out, but conÐrmation of the suggested sharp mass
distribution would argue strongly against signiÐcant
post-SN mass enhancement. However, it should be noted
that V404 Cyg has the most evolved secondary star of all of
these systems. In may be that in this case considerable
material has been transferred, which might conceivably
account for the anomalously high mass of this particular
black hole.

Thus, while there are a number of poorly understood
e†ects that might alter the distribution of postsupernova
remnant masses, it is not immediately obvious how these
e†ects could combine to produce the kind of distribution
favored by our analysis. Obviously, more examples of black
hole systems and better measurements of known systems
will result in more precise observational constraints using
techniques such as the ones outlined here. But already it
appears likely that we will have to consider new underlying
mechanisms for the origin of the black hole mass distribu-
tion in low-mass X-ray binaries.

We are grateful for comments from R. Larson and F.
Timmes. This research was supported by a National Young
Investigator grant to C. D. B.
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