Numerical Methods for (Time-Dependent) HJ PDEs

Ian Mitchell
Department of Computer Science
The University of British Columbia

research supported by
National Science and Engineering Research Council of Canada
Outline

• Basic representation and approximation of functions which solve evolutionary PDEs
 – Shocks / kinks for HJ PDEs
• Level Set Toolbox, alternative software and schemes
• Convergence, consistency, stability & monotonicity
• Terminology from level set methods
• Example: approximating the identical vehicle collision avoidance reach tube
Representing a Continuous Function

\[\psi : \mathbb{R}^d \to \mathbb{R} \]

- Computer representations must be finite
 - Consequently, we are forced to construct a discrete, finite representation of \(\psi \): “discretization”
- Combination of basis functions
 - If \(\eta_j \) are trigonometric, we get spectral methods
 - If \(\eta_j \) have local support, we get finite element (FE) methods
- Create grid of state space, store value of \(\psi \) at the nodes
 - Called finite difference (FD) because of derivative approximation
- Create grid of state space, store average nearby value of \(\psi \)
 - Called finite volume (FV), uncommon outside fluid mechanics
Solving an Evolution PDE

\[D_t \phi(x, t) + H(x, D_x \phi(x, t)) = 0 \]

- Although we can represent a time dependent function \(\phi \) as a function in \(\mathbb{R}^{d+1} \), most often it is represented as a collection of functions in \(\mathbb{R}^d \) at a set of time instants.
- Much of the literature for (time-dependent) HJ PDEs grew out of conservation law schemes, so there is shared terminology.
- In a Lagrangian approach, the function representation moves with the underlying flow.
- In an Eulerian approach, the function representation does not move with the underlying flow:
 - It is often fixed, but may be adaptive.
 - Updates are done without following the underlying flow.
- In a semi-Lagrangian approach, the underlying flow is used to update a fixed representation.
Pros and Cons

• Lagrangian
 – Easy concentration of resources in regions of high complexity, but other regions may become sparse
 – Challenging to collect topological information, detect shocks

• Eulerian
 – Easy to collect topological information and detect shocks but challenging to adapt representation in regions of high complexity
 – CFL timestep restrictions may slow computations

• Semi-Lagrangian
 – Mapping between Eulerian and Lagrangian representations causes loss of accuracy due to interpolation
Shocks

• In an HJ PDE framework, the Lagrangian approach corresponds to following individual optimal trajectories
 – Objective function along the trajectory starts with the terminal cost at the terminal location, and then accumulates running cost as trajectory is followed backwards
• But locally optimal trajectories can cross
• How do we assign objective function value at states from which multiple trajectories can arise?
 – Viscosity solution requires us to take the best one
 – A “shock” occurs where two (or more) optimal trajectories meet with the same value
 – PDE solution may not be differentiable at these locations (perhaps “kink” is better)
Outline

• Basic representation and approximation of functions which solve evolutionary PDEs
 – Shocks / kinks for HJ PDEs

• Level Set Toolbox, alternative software and schemes

• Convergence, consistency, stability & monotonicity

• Terminology from level set methods

• Example: approximating the identical vehicle collision avoidance reach tube
Level Set Methods

• Adopts Eulerian approach because of the shock detection problem
• Originally designed for dynamic implicit surface evolution
 – Representing the moving surface of a fluid
 – Merging and pinch-off handled automatically
• Easy to implement
 – Finite difference representation and approximation
 – Dimension by dimension treatment of spatial terms
 – Method of lines treatment of temporal terms
• Borrows extensively from conservation laws
 – Schemes with high orders of accuracy
• Tries to avoid complications of boundary conditions
 – Reinitialization procedure for implicit surfaces
• Implementation available: Toolbox of Level Set Methods
Other Level Set Software Packages

• **Level Set Method Library (LSMLIB)** [Chu & Prodanovic]
 – C/C++/Fortran with Matlab interface, dimensions 1–3
 – two types of motion, fast marching & velocity extension
 – localized algorithms, serial and parallel execution

• **Multivac C++** [Mallet]
 – C++, dimension 2
 – six types of motion, fast marching
 – localized algorithms
 – application: forest fire propagation and image segmentation

• **“A Matlab toolbox implementing level set methods”** [Sumengen]
 – Matlab, dimension 2
 – three types of motion
 – application: vision and image processing

• **Toolbox Fast Marching** [Peyré]
 – Matlab interface to C++, dimensions 2–3
 – Static HJ PDE only
Alternatives

- Semi-Lagrangian schemes
 - Falcone, Ferretti, Soravia…
- Viability schemes
 - Saint-Pierre
- Many reachability algorithms unrelated to PDEs
Convergence and Related Concepts

• Since we cannot solve the PDE exactly, we would like that our approximation approaches the true solution as some refinement parameter goes to zero: “convergence”
 – For our representation, $\Delta x \to 0$ and $\Delta t \to 0$

• Convergence can be challenging to prove directly
• For linear PDEs, consistency + stability implies convergence
 – HJ PDE is not linear, but Barles & Souganidis (1991) showed that consistency + stability + monotonicity implies convergence

• Consistency: As $\Delta x \to 0$ and $\Delta t \to 0$, the difference approximation approaches the differential equation

• Stability: Small errors made in a single step will not be compounded over time into big errors

• Monotonicity: An increase in the approximate solution will lead to an increase in the numerical Hamiltonian
Outline

• Basic representation and approximation of functions which solve evolutionary PDEs
 – Shocks / kinks for HJ PDEs
• Level Set Toolbox, alternative software and schemes
• Convergence, consistency, stability & monotonicity
• Terminology from level set methods
• Example: approximating the identical vehicle collision avoidance reach tube
Method of Lines

\[D_t \phi(x, t) + H(x, D_x \phi(x, t)) = 0 \]

- One method for dealing with evolution equations that have both spatial and temporal derivatives
- Basic idea: discretize and approximate spatial terms to form a coupled set of ordinary differential equations in time
 \[H(x, D_x \phi(x_i, t)) \approx \hat{H}(x, D_x^+ \hat{\phi}(x_i, t), D_x^- \hat{\phi}(x_i, t)) \]
 \[\approx \hat{H} \left(x, \left\{ \hat{\phi}(x_i + k) \right\}_{k=-k}^k \right) \]
 - For example
 \[D_x^+ \hat{\phi}(x_i) = \frac{\hat{\phi}(x_{i+1}) - \hat{\phi}(x_i)}{\Delta x} \]
 \[D_x^- \hat{\phi}(x_i) = \frac{\hat{\phi}(x_i) - \hat{\phi}(x_{i-1})}{\Delta x} \]
 - Now solve ODE in time for \(\phi(x_i, t) \) for all nodes \(x_i \)

\[D_t \phi(x_i, t) + \hat{H} \left(x, \left\{ \hat{\phi}(x_i + k) \right\}_{k=-k}^k \right) = 0 \]
CFL Condition

- In the simplest approaches to solving the temporal ODE (explicit schemes) require a restriction on the temporal discretization Δt with respect to the spatial discretization Δx
 - Intuitively the restriction corresponds to restricting Δt such that trajectories of the underlying dynamics will not cross more than Δx in time Δt
 - For deterministic systems, $\Delta t = O(\Delta x)$
 - The constant is related to the velocity of the underlying dynamics: the faster the flow, the smaller Δt
 - Mathematically, the restriction arises from stability
Upwind Finite Differences

- Finite difference approximation of spatial derivative has several options for which neighbouring nodes are used:

 \[
 D_x^+ \hat{\phi}(x_i) = \frac{\hat{\phi}(x_{i+1}) - \hat{\phi}(x_i)}{\Delta x} \quad \text{“right”}
 \]

 \[
 D_x^0 \hat{\phi}(x_i) = \frac{\hat{\phi}(x_{i+1}) - \hat{\phi}(x_{i-1})}{2\Delta x} \quad \text{“centered”}
 \]

 \[
 D_x^- \hat{\phi}(x_i) = \frac{\hat{\phi}(x_i) - \hat{\phi}(x_{i-1})}{\Delta x} \quad \text{“left”}
 \]

- Information travels with the underlying flow, so intuitively we would like to approximate derivatives using neighbours in the upwind (against the flow) direction:

 - Use \[D^+ \] if flow is leftward, \[D^- \] if flow is rightward

 - Mathematically, other options are unstable
ENO / WENO

- Standard schemes for higher orders of accuracy require underlying function ϕ to have (more) derivatives
 - Attempts to approximate functions without those derivatives lead to incorrect oscillatory approximations
- Since ϕ may have places without derivatives, Essentially Non-Oscillatory schemes build multiple approximations, and chose the least oscillatory
 - Extension to Weighted ENO combines all approximations with weights that favour least oscillatory approximation near a kink, but in smooth regions achieve even higher order of accuracy
- Not monotonic, so no convergence theory
 - Work very well in practice
Numerical Hamiltonian

\[H(x, D_x \phi(x_i, t)) \approx \hat{H}(x, D^+_x \phi, D^-_x \phi) \]

- Obvious substitution is unstable

\[\hat{H}(x, D^0_x \phi) = H(x, D^0_x \phi) \]

- Simplest approximation: Lax-Friedrichs
 - used in Crandall & Lions (1984)

\[\hat{H}(x, D^+_x \phi, D^-_x \phi) = H \left(x, \frac{1}{2}(D^+_x \phi + D^-_x \phi) \right) + \alpha/2(D^+_x \phi - D^-_x \phi) \]

\[= H \left(x, D^0_x \phi \right) + \alpha/2(D^+_x \phi - D^-_x \phi) \]

- Essentially adds dissipation

\[(\alpha/2)(D^+_x \phi - D^-_x \phi) \approx (\alpha/2)D^2_x \phi \]

- Upwinding: for \(H(x,p) = p \cdot f(x) \)

\[\hat{H}(x, D^+_x \phi, D^-_x \phi) = \begin{cases}
D^+_x \phi \cdot f(x), & \text{if } f(x) \leq 0; \\
D^-_x \phi \cdot f(x), & \text{if } f(x) \geq 0;
\end{cases} \]

- There may not be a single consistent “upwind” direction when the dynamics have inputs
Higher Dimensions

\[D_x \phi(x) = \begin{bmatrix} D_{x1}\phi(x) \\ D_{x2}\phi(x) \\ \vdots \\ D_{xd}\phi(x) \end{bmatrix} \quad f(x, u) = \begin{bmatrix} f_1(x, u) \\ f_2(x, u) \\ \vdots \\ f_d(x, u) \end{bmatrix} \]

- Treat each dimension independently
 - For example, upwinding numerical Hamiltonian

\[\hat{H}(x, D^+_{xi}\hat{\phi}, D^-_{xi}\hat{\phi}) = \sum_{i=1}^{d} D^?_{xi}\hat{\phi} \cdot f_i(x) \]

where

\[D^?_{xi}\hat{\phi} = \begin{cases} D^+_{xi}\phi & \text{if } f_i(x) \leq 0; \\ D^-_{xi}\phi & \text{if } f_i(x) \geq 0; \end{cases} \]
TVD / SSP

- Basic scheme is forward Euler (FE)

\[D_t \psi(t) = f(t, \psi(t)) \]

becomes

\[\psi(t + \Delta t) = \psi(t) + \Delta t f(t, \psi(t)) \]

- Combination of FE in time and the ENO / WENO spatial schemes described previously are shown to be stable (or not)

- Higher order of accuracy in time: Total Variation Diminishing (original name) or Strong Stability Preserving (SSP) temporal integration schemes
 - If a spatial scheme is stable using FE in time, then it will be stable using any SSP scheme

- In practice, the order of accuracy in space seems much more important to final results than the order of accuracy in time
 - Typically there is a big difference between first and second order accurate schemes, and then diminishing benefits for the extra expense of going to higher order
Implicit Surface Reinitialization

• Restriction of implicit surface function to signed distance often produces a more accurate representation
 – Gradient magnitude is not too small or too large, so location of and normal to the surface is easy to estimate
• Evolution of surface may perturb signed distance
 – Converging or diverging flow
 – Non-physical boundary conditions
• However, value of implicit surface function away from zero level set does not matter
• Reinitialization rebuilds a signed distance function from an implicit surface function without changing the zero level set
• Several available schemes
 – Fast marching (uses auxiliary static HJ PDE)
 – Reinitialization equation (uses auxiliary time-dependent HJ PDE)
 – Toolbox supports the latter but not the former
Reducing the Cost of Level Set Methods

- Solve Hamilton-Jacobi equation only in a band near interface
- Computational challenge: handling stencils near edge of band
 - “Narrowbanding” uses low order accurate reconstruction whenever errors are detected
 - “Local level set” modifies Hamiltonian near edge of band
- Data structure challenge: handling merging and breaking of interface
- Not supported in the Toolbox
Implementing Reach Tubes

• Collision avoidance example from the Toolbox
 – See Toolbox documentation section 2.6
• Pitfalls to avoid
 – Failure to include the kernel directories in the Matlab path
 – Grid is too coarse
 – State space dimensions are poorly scaled (be careful to scale both grid and dynamics)
 – Boundary conditions are incorrect
 – Incorrect initialization and/or incorrect grid bounds
 – Numerical instability caused by buggy boundary conditions, too little dissipation in Lax-Friedrichs, poor dimensional scaling, too large CFL, etc.
 – Mixing up `ndgrid` and `meshgrid` based grids (see documentation for discussion)
Numerical Methods for (Time-Dependent) HJ PDEs

For more information contact

Ian Mitchell
Department of Computer Science
The University of British Columbia

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/~mitchell